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Abstract: An iterative outlier elimination procedure based on hypothesis testing, commonly known
as Iterative Data Snooping (IDS) among geodesists, is often used for the quality control of modern
measurement systems in geodesy and surveying. The test statistic associated with IDS is the extreme
normalised least-squares residual. It is well-known in the literature that critical values (quantile
values) of such a test statistic cannot be derived from well-known test distributions but must be
computed numerically by means of Monte Carlo. This paper provides the first results on the
Monte Carlo-based critical value inserted into different scenarios of correlation between outlier
statistics. From the Monte Carlo evaluation, we compute the probabilities of correct identification,
missed detection, wrong exclusion, over-identifications and statistical overlap associated with IDS
in the presence of a single outlier. On the basis of such probability levels, we obtain the Minimal
Detectable Bias (MDB) and Minimal Identifiable Bias (MIB) for cases in which IDS is in play. The MDB
and MIB are sensitivity indicators for outlier detection and identification, respectively. The results
show that there are circumstances in which the larger the Type I decision error (smaller critical
value), the higher the rates of outlier detection but the lower the rates of outlier identification.
In such a case, the larger the Type I Error, the larger the ratio between the MIB and MDB. We also
highlight that an outlier becomes identifiable when the contributions of the measures to the wrong
exclusion rate decline simultaneously. In this case, we verify that the effect of the correlation between
outlier statistics on the wrong exclusion rate becomes insignificant for a certain outlier magnitude,
which increases the probability of identification.

Keywords: probability; hypothesis testing; outlier detection; monte carlo; quality control;
control system; reliability; random number generators

1. Introduction

In recent years, Outlier Detection has been increasingly applied in sensor data processing [1-9].
Despite the countless contributions made over the years, there is continuing research on the subject,
mainly because there has been an increase in computational power. One can argue that computational
complexity is becoming high because of the era of information overload. However, this limitation
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has been overcome over the years, mainly by the rapid development of computers, which now allow
advanced computational techniques to be used efficiently on personal computers or even on handheld
computers [10]. Therefore, computational complexity is no longer a bottleneck because we have fast
computers and large data storage systems at our disposal [11,12].

Here, we assume that an outlier is a measurement that is so likely to be caused by a blunder that
it is better to either not use it or not use it as it is [13]. Failure to identify an outlier can jeopardise the
reliability level of a system. Because of its importance, outliers must be appropriately treated to ensure
the quality of data analysis.

Two categories of advanced techniques for the treatment of a dataset contaminated by outliers
have often been developed and applied in various situations: Robust Adjustment Procedures
(see, e.g., [14-18]) and Statistical Hypothesis Testing (see, e.g., [2,12,19-23]). The first one is an
estimation technique that is not unduly affected by outliers or other small departures from model
assumptions. Classes of this technique include M-estimates (which follow from maximum likelihood
considerations), L-Estimates (which are linear combinations of order statistics), and R-Estimates (based
on statistical rank tests). Some classes of such robust adjustment methods, as well as their properties,
are well known, while other methods are still being researched (see, e.g., L1-norm estimation [24],
M-estimation [25-27], R-estimation [28-30] and those based on meta-heuristics [31]). Besides the
undoubted advantages of Robust Estimation, here, we focus on the hypothesis test-based outlier.
The following advantages of the outlier test were mentioned by [32]:

1.  Itis an opportunity to investigate the causes of outliers;

2.  Identified outliers can be remeasured; and

3. If the outliers are discarded from the measurements, then standard adjustment software, which
operates according to the least-squares criterion, can be used.

In this paper, we consider iterative data snooping (IDS), which is the most common procedure
found in the geodetic practice [12,33]. Most conventional geodetic studies have a chapter on
IDS (see, e.g., [34,35]). IDS has also become very popular and is routinely used in adjustment
computations [36]. It is important to mention that IDS is not restricted to the field of geodetic statistics
but is a generally applicable method [22].

IDS is an iterative outlier elimination procedure, which combines estimation, testing and
adaptation [37]. Parameter estimation is often conducted in the sense of the least-squares estimation
(LSE). Assuming that no outlier exists, the LSE is the best linear unbiased estimator (BLUE) [35].
The LSE has often been used in several remote sensing applications (see, e.g., [38—41]). However,
outliers can inevitably occur in practice and cause the loss of the LSE BLUE-property. Then,
hypothesis testing is performed with the aim of identifying any outliers that may be present in
the dataset. After its identification, the suspected outlier is then excluded from the dataset as a
corrective action (i.e., adaptation), and the LSE is restarted without the rejected measurement. If model
redundancy permits, this procedure is repeated until no more (possible) outliers can be identified
(see, e.g., [35], p. 135). Although here we restrict ourselves to the case of one outlier at a time, IDS can
also be applied to the case of multiple (simultaneous) outliers [42]. For more details about multiple
(simultaneous) outliers, refer to [43—45].

Of particular importance for quality control purposes are decision probabilities. Probability
levels have already been described in the literature for the case in which data snooping is run once
(i-e., only one single estimation and testing), as well as for the case in which the outlier is parameterised
in the model (see, e.g., [2,19-21,23,37,46,47]). For such cases, the probability of correct detection (Pcp)
and correct identification (Pcy) and their corresponding Minimal Detectable Bias (MDB) and Minimal
Identifiable Bias (MIB) have already been described for data snooping [37,46].

The MDB is defined as the smallest value of an outlier that can be detected given a certain Pcp.
The MDB is an indicator of the sensitivity of data snooping to outlier detection and not to outlier
identification. On the other hand, the MIB is defined as the smallest value of an outlier that can
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be identified given a certain Pcy; i.e., the MIB is an indicator of the sensitivity of data snooping to
outlier identification. It is important to highlight that “outlier detection” only informs us whether
or not there might have been at least one outlier. However, the detection does not tell us which
measurement is an outlier. The localisation of the outlier is a problem of “outlier identification”.
In other words, “outlier identification” implies the execution of a search among the measurements for
the most likely outlier.

However, both the MDB and MIB cannot be used as a diagnostic tool when IDS is in play. In this
contribution, we highlight the fact that the correct outlier identification for IDS is not only dependent
on the correct/missed detection and wrong exclusion but also other decision probabilities.

The evaluation of the probability levels associated with IDS is not a trivial task. When used
for data snooping for a single run, the probabilities of IDS are multivariate integrals over complex
regions [2,47]. This complexity is due to the fact that IDS is not only based on multiple hypothesis
testing but also on multiple rounds of estimation, testing and exclusion. Because an analytical formula
is not easy to compute, the Monte Carlo method should be run to obtain the probabilities and the
minimal bias (MDB and MIB) indicators for IDS. The Monte Carlo method provides insights into these
cases, in which analytical solutions are too complex to fully understand, are doubted for one reason or
another or are not available [12]. The Monte Carlo method for quality control purposes has already
been applied in geodesy (see, e.g., [2,10,22,23,33,46,48-51]). For in-depth coverage of Monte Carlo
methods, consult, for instance, [52-54].

Recent studies by Rofatto et al. [12,55] provide an algorithm based on Monte Carlo to determine
the probability levels associated with IDS. In that case, five classes of decisions for IDS are described,
namely, the probability of correct identification (Pc;), the probability of missed detection (Puip),
the probability of wrong exclusion (Pwr), the probability of over-identification positive (Poper+),
and the probability of over-identification negative (Pyyer—), defined as follows:

e Pcr: The probability of correctly identifying and removing an outlying measurement;

e  Ppup: The probability of not detecting the outlier (i.e., Type II decision error for IDS);

o  Pwr: The probability of identifying and removing a non-outlying measurement while the ‘true’
outlier remains in the dataset (i.e., Type III decision error for IDS);

®  Pover+: The probability of correctly identifying and removing the outlying measurement and
others and

o Pover—: The probability of identifying and removing more than one non-outlying measurement
while the ‘true outlier’ remains in the dataset.

However, the procedure used by these authors [12,55] does not allow the user to control the Type
I decision error (denoted by a’). The probability level a’ (known as the significance level of a test)
defines the size of a test and is often called the “false alarm probability”. In this paper, we highlight
the fact that the test statistic associated with IDS does not have a known distribution, and therefore,
its critical values (i.e., the percentile of its probability distribution) cannot be taken from well-known
statistical tables (e.g., normal distribution).

Here, the critical value is computed by Monte Carlo such that a user-defined Type I decision error
o' for IDS is warranted. In other words, the Type I decision error &’ is effectively user-controlled when
both the functional and stochastic parts of the model are taken into account. To do so, we employ
the Monte Carlo method because the critical region of the test statistic associated with IDS is too
complicated. The critical region is the subset of the measurements for which the null hypothesis H, is
rejected [12]. Therefore, the false alarm rate can be user-controlled by setting the appropriate size of
the critical region.

We show that one of the advantages of having critical values based on the distribution test of IDS
is that the dependencies between the least-squares residuals are captured by Monte Carlo simulation.
In this paper, we present the first results on the Monte Carlo-based critical value in two different
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scenarios of correlation between outlier test statistics. We also discuss this issue in the context of the
well-known Bonferroni correction [56] to control the Type I decision error «’ for IDS.

Moreover, herein, a new class of decision is taken into account when IDS is performed,
which corresponds to the probability of simultaneously flagging two (or more) measurements as
outliers. We call this the probability of “statistical overlap” (P,;). This means that P,; occurs in cases
in which one alternative hypothesis has the same distribution as another one. In other words, these
hypotheses cannot be distinguished; i.e., they are nonseparable, and an outlier cannot be identified [37].

We also investigate the probabilities of making correct decisions and the risks of incorrect decisions
when IDS is performed in the presence of an outlier in two different scenarios of correlation between
outlier test statistics. On the basis of the probability levels associated with IDS (i.e., Pc1, Pmp/ Pcp,
PWE, Pover+, Pover— and Py;), we also show how to find the two sensitivity indicators MDB and MIB
for IDS. We also analyse the relationship between the sensitivity indicators MDB and MIB for IDS.

2. Binary Hypothesis Testing versus Multiple Hypothesis Testing: True Data Snooping

Random measurement errors in a system are unavoidable. The stochastical properties of
measurement errors are directly associated with the assumption of the probability distribution of these
errors. In geodesy and many other scientific branches, the well-known normal distribution is one
of the most used measurement error models. Its choice is further justified by both the central limit
theorem and the maximum entropy principle. Some alternative measurement error models can be
found in [11].

Therefore, the null hypothesis, denoted by H), is formulated under the condition that random
errors are normally distributed with expectation zero. In other words, the model associated with the
null hypothesis H( consists of the one believed to be valid under normal working conditions, i.e., in the
absence of outliers. When it is assumed to be ‘true’, this model is used to estimate unknown parameters,
usually in a least-squares approach. Thus, the null hypothesis Hg of the standard Gauss—-Markov
model in the linear or linearised form is given by [34]

Ho : E{y} = Ax+ E{e} = Ax; D{y} = Q. 1)

where E{.} is the expectation operator, D{.} is the dispersion operator, y € R"*! is the vector of
measurements, A € R"** is the Jacobian matrix (also called the design matrix) of full rank u, x € R**!
is the unknown parameter vector, e € R"*! is the unknown vector of measurement errors and
Q. € R™" is the positive-definite covariance matrix of the measurements y.

Under normal working conditions (i.e., Hy), the measurement error model is then given by

e~N(0,Q.), )

Here, we confine ourselves to the case in which A and Q. have full column rank.
The best linear unbiased estimator (BLUE) of e under H, is the well-known estimated least-squares
residual vector é € R"*!, which is given by

(ATwA)~H(ATwy)
+e—AATWA) 1 (ATW(Ax +e))
=e—A(ATWA) 1(ATWe)
=I-AATWA) 1ATW)e

= Re,

é= A
A

y_
y_
Ax

®)

with # € R**! being the BLUE of x under Ho; W € R"*" is the known matrix of weights, taken as
W = 0p?Q, !, where 0 is the variance factor, I € R"*" is the identity matrix and R € R"*" is known
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as the redundancy matrix. The R matrix is an orthogonal projector that projects onto the orthogonal
complement of the range space of A.

We restrict ourselves to regular models, and therefore, the degrees of freedom r (redundancy) of
the model under H, (Equation (1)) is

r = rank(Qg) = n — rank(A) = n — u, where 4)

Q: = Q. — 0p”A(ATWA) AT 5)

On the other hand, an alternative model is proposed when there are doubts about the reliability
level of the model under H,. Here, we assume that the validity of the null hypothesis #( in Equation (1)
can be violated if the dataset is contaminated by outliers. The model in an alternative hypothesis,
denoted by H 4, is to oppose Equation (1) by an extended model that includes the unknown vector
V € R7*! of deterministic bias parameters as follows ([20,35]):

?Q:y:Ax+CV+e:(A c)<é>+a ©)

where C € R"*1 is the matrix that relates bias parameters, i.e., the values of the outliers to observations.
We restrict ourselves to the matrix (A C) having full column rank, such that

r:rank(A C>:u+q§n (7)

One of the most used procedures based on hypothesis testing for outliers in linear (or linearised)
models is the well-known data snooping method [19,20]. This procedure consists of screening each
individual measurement for the presence of an outlier [42]. In that case, data snooping is based on a
local model test, such that g4 = 1, and therefore, the n alternative hypothesis is expressed as

X

7—[&? y=Ax+cV;te= (A c,') (V'
1

>+aw—L~,n ®)

Now, matrix C in Equation (6) is reduced to a canonical unit vector c;, which consists exclusively
of elements with values of 0 and 1, where 1 means that the ith bias parameter of magnitude V; affects
the ith measurement, and 0 means otherwise. In that case, the rank of (A ¢;) € R™® (u+1) and the vector

V in Equation (6) reduces to a scalar V; in Equation (8), i.e., ¢;= (0 00 --- 1m 0 --. 0) !
When q = n — u, an overall model test is performed. For more details about the overall model test, see,
for example, [46,47].

Note that the alternative hypothesis ”HE;) in Equation (8) is formulated under the condition
that the outlier acts as a systematic effect by shifting the random error distribution under H, by
its own value [13]. In other words, the presence of an outlier in a dataset can cause a shift of the
expectation under Hy to a nonzero value. Therefore, hypothesis testing is often employed to check
whether the possible shifting of the random error distribution under #( by an outlier is, in fact,
a systematic effect (bias) or merely a random effect. This hypothesis test-based approach is called the
mean-shift model [20]. The mean-shift model has been widely employed in a variety of applications,
such as structural deformation analyses, sensor data processing, the integrity monitoring of GNSS
(Global Navigation Satellite System) models and the design and quality control of geodetic networks
(see, e.g., [1,3,6,8,12,19-22,45,51,57-61]). The alternative to the mean-shift model is variance inflation.
Until now, it has been rarely used in geodesy because it is more difficult to derive a powerful test and
a reliability theory for it [12,13,62].
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2.1. Binary Hypothesis Testing

In the context of the mean-shift model, the test statistic involved in data snooping is given by the
normalised least-squares residual, denoted by w;. This test statistic, also known as Baarda’s w-test,
is given as follows:

To-1s
w; = Qe  yi_q...n )
VT Q' QeQ: e
Then, a test decision is performed as [63]
Accept Hy if |w;i| <k, reject otherwise in favour of Hg) (10)

Note that the decision rule (10) says that if the Baarda’s w-test statistic is larger than some critical
value k, i.e., a percentile of its probability distribution, then we reject the null hypothesis in favour of
the alternative hypothesis. This is a special case of testing the null hypothesis H( against only one
single alternative hypothesis ’HS), and therefore, the rejection of the null hypothesis automatically
implies the acceptance of the alternative hypothesis and vice versa [46,47]. In other words, the outlier
detection automatically implies outlier identification and vice versa. This is because the formulation
of the alternative hypothesis Hg) is based on the condition that an outlier exists and is located at a
pre-specified position in the dataset. In other words, the alternative hypothesis in a binary test says
that “a specific measurement is an outlier”.

Because Baarda’s w-test in its essence is based on binary hypothesis testing, in which one decides
between the null hypothesis Hg and only one single alternative hypothesis ’Hg) of (8), it may lead to
wrong decisions of Type I and Type II. The probability of a Type I Error ag is the probability of rejecting
the null hypothesis # when it is true, whereas the probability of a Type II error By is the probability
of failing to reject the null hypothesis H( when it is false (note: the index ‘0" represents the case in
which a single hypothesis is tested). Instead of ay and By, there is the confidence level CL =1 — «
and the power of the test 79 = 1 — By, respectively. The first deals with the probability of accepting a
true null hypothesis Hy; the second addresses the probability of correctly accepting the alternative
hypothesis Hg). In that case, given a probability of a Type I decision error &g, we find the critical value
ko as follows:

ko= @ (1 - g) (11)

where @~ denotes the inverse of the cumulative distribution function (cdf) of the two-tailed standard
normal distribution N(0, 1).

The normalised least-squares residual w; follows a standard normal distribution with the
expectation that E{w;} = 0 if #H holds true (there is no outlier). On the other hand, if the system
is contaminated with a single outlier at the ith location of the dataset (i.e., under HS)), then the
expectation of wj; is

E{w;} = /Ao = /e Q; ' QoQ; i V2 12)

where Ay is the non-centrality parameter for 4 = 1. Note, therefore, that there is an outlier that
causes the expectation of w; to become /A. The square-root of the non-centrality parameter \/Ag
in Equation (12) represents the expected mean shift of a specific w-test. In such a case, the term
¢i"Q,1Q;Q, l¢; in Equation (12) is a scalar, and therefore, it can be rewritten as follows [64]:

Ao .
|V'|:MDBOZ. = — —,Vi=1,---,n (13)
1 ® ¢i’Q,'Q:Q, i
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where |V;| is the Minimal Detectable Bias (MDBO(’,)) for the case in which there is only one single
alternative hypothesis, which can be computed for each of the n alternative hypotheses according to
Equation (8).

For a single outlier, the variance of an estimated outlier, denoted by O’%i, is

0%, = (7 1QeQ: Nei) , Wi=1,00e (14)
Thus, the MDB can also be written as

MDBy, = og,\/Ao, Vi=1,--- ,n (15)

where oy, = U%, is the standard deviation of estimated outlier V;.

The MDB in Equations (13) or (15) of an alternative hypothesis is the smallest-magnitude outlier
that can lead to the rejection of the null hypothesis Hg for a given &g and By. Thus, for each model of
the alternative hypothesis 7—[;), the corresponding MDB can be computed [12,49,65]. The limitation of
this MDB is that it was initially developed for the binary hypothesis testing case. In that case, the MDB
is a sensitivity indicator of Baarda’s w-test when only one single alternative hypothesis is taken into
account. In this article, we are confined to multiple alternative hypotheses. Therefore, both the MDB

and MIB are computed by considering the case of multiple hypothesis testing.

2.2. Multiple Hypothesis Testing

The alternative hypothesis in Equation (8) has been formulated under the assumption that the
measure y; for some fixed i is an outlier. From a practical point of view, however, we do not know
which measurement is an outlier. Therefore, a more appropriate alternative hypothesis would be [22]
“There is at least one outlier in the vector of measurements y;”. Now, we are interested in knowing which of
the alternative hypotheses may lead to the rejection of the null hypothesis with a certain probability.
This means testing H against ’Hg), 7—[542), 7—[543), cee, H%). This is known as multiple hypothesis testing
(see, e.g., [1,2,12,21,23,37,46,66-69]). In that case, the test statistic coming into effect is the maximum

absolute Baarda’s w-test value (denoted by max-w), which is computed as [12]

max-w = max |wj| (16)
ic{1,n}

The decision rule for this case is given by

Accept Hy if max-w <k
Otherwise, 17)
Accept Hg) if max-w >k

The decision rule in 17 says that if none of the n w-tests get rejected, then we accept the null
hypothesis Hy. If the null hypothesis H, is rejected in any of the  tests, then one can only assume
that detection occurred. In other words, if the max-w is larger than some percentile of its probability
distribution (i.e., some critical value k), then there is evidence that there is an outlier in the dataset.
Therefore, “outlier detection” only informs us whether the null hypothesis H, is accepted or not.

However, the detection does not tell us which alternative hypothesis Hg) would have led to the
rejection of the null hypothesis H. The localisation of the alternative hypothesis, which would have
rejected the null hypothesis, is a problem of “outlier identification”. Outlier identification implies the
execution of a search among the measurements for the most likely outlier. In other words, one seeks to
find which of Baarda’s w-test is the maximum absolute value max-w and if that max-w is greater than
some critical value k.
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Therefore, the data snooping procedure of screening measurements for possible outliers is actually
an important case of multiple hypothesis testing and not single hypothesis testing. Moreover, note that
outlier identification only happens when outlier detection necessarily exists; i.e., “outlier identification”
only occurs when the null hypothesis H is rejected. However, correct detection does not necessarily

imply correct identification [2,12,46].

3. Probability Levels of Data Snooping for a Single Run under Multiple Alternative Hypotheses

Two sides of the multiple testing problem can be formulated: one under the reality of the null
hypothesis Hy, i.e., the event that there is no outlier in the dataset, and another one coinciding with
the alternative hypothesis ’HX), i.e.,, the event that there is an outlier. The probability levels associated
with data snooping for both events are presented in Table 1.

Table 1. Probability levels associated with data snooping under multiple alternative hypotheses.

| 5 Result of the Test
Reality Unknown
Ho ) HY . )
Correct decision Type I Error Type I Error Type I Error
Ho 1—o it o
01 X02 X0n
e Type Il error Correct identification Type III error . Type III error
A B1o 1-pn K12 Kin
ey Type Il error Type III error Correct identification Type III error
A P20 K21 1—pxn Kan
e Type Il error Type Il error Type Il error ~ Correct identification
A /SnO Kn1 Kn2 1*,311;1

3.1. On the Scenario Coinciding with the Null Hypothesis H,

For the scenario coinciding with the null hypothesis H, there is the probability of incorrectly
identifying at least one alternative hypothesis. This type of wrong decision is known as the family-wise
error rate (FWE). The FWE is defined as

FWE = ag; = P (|w;i| > |wj| V], |wi| > k(i #j) | Ho:true), Vi=1,...,n (18)
]

The probability of accepting the null hypothesis in test i is 1—«, Vi = 1,...,n, where « is the
significance level or size of the test for single hypothesis testing. The classical and well-known
procedure to control the FWE is the Bonferroni correction [56]. If all tests are mutually independent,
then the probability that a true H, is accepted in each test is approximately

1—a)"=1-4d (19)
where « is the Type I Error for the entire dataset. Thus, we have
x=1—(1—a)/" (20)

which is approximately

«
x = o (21)

The quantity in Equation (21) is just equal to the upper bound of the Bonferroni inequality, i.e.,
&' < na [56].

Controlling the FWE at a pre-specified level a’ corresponds to controlling the probability of a Type
I decision error when carrying out a single test. In other words, one uses a global Type I Error rate o’
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that combines all tests under consideration instead of an individual error rate « that only considers
one test at a time [69]. In that case, the critical value ky,, ¢ is computed as

/
Kpong = @1 (1 - ;‘n) 22)

For single hypothesis testing, given a probability of a Type I decision error wy, it is easier for us to
find the critical value using Equation (11). On the other hand, the rate of Type I decision errors for
multiple testing, a’, cannot be directly controlled by the user. One can argue about the application
of Bonferroni [56] using Equation (22). However, Bonferroni is a good approximation for the case in
which alternative hypotheses are independent. In practice, however, the test results always depend
on each other to some degree because we always have a correlation between w-tests. The correlation
coefficient between any Baarda’s w-test statistic (denoted by pw;,w;), such as w; and wj, is given by [21]

TO-10.0-1c.
Puwi ey = oL O Qe84 V(i # ) (23)
VT Q1 QeQ: e /70,1 Q.0 e

The correlation coefficient Pw;,w; can assume values within the range [—1, 1].

Here, the extreme normalised residuals max-w (i.e., maximum absolute) in Equation (16) are
treated directly as a test statistic. Note that when using Equation (16) as a test statistic, the decision
rule is based on a one-sided test of the form max-w < k. However, the distributions of max-w cannot
be derived from well-known test distributions (e.g., normal distribution). Therefore, critical values
cannot be taken from a statistical table but must be computed numerically. This problem has already
been addressed by Lehmann [22]. In that case, the dependencies between residuals are not neglected
because the critical values are based on the distribution of max-w, which depends on the correlation
between w-test statistics pw,,w -

According to Equation (23), the correlation pq, ; depends on the matrices A and Q,, and therefore,
the distribution of max-w also depends on these matrices. In other words, the critical value depends
on the uncertainty of the measurement sensor and the mathematical model of the problem.

In order to guarantee the user-defined Type I decision error &’ for data snooping, the critical value
must be computed by Monte Carlo.

The key of Monte Carlo is artificial random numbers (ARN) [70], which are called ’artificial’
because the random numbers are generated using a deterministic process. A random number generator
is a technology designed to generate a deterministic sequence of numbers that do not have any pattern
and therefore appear to be random. It is ‘random’ in the sense that the sequence of numbers generated
passes statistical tests for randomness. For this reason, random number generators are typically
referred to as pseudo-random number generators (PRNGs).

A PRNG simulates a sequence of independent and identically distributed (i.i.d.) numbers chosen
uniformly between 0 and 1. PRNGs are part of many machine learning and data mining techniques.
In a simulation, a PRNG is implemented as a computer algorithm in some programming language and
is made available to the user via procedure calls or icons [71]. A good generator produces numbers that
are not distinguishable from truly random numbers in limited computation time. This is particularly
true for Mersenne Twister, a popular generator with the long period length of 2199371 —1 [72].

In essence, Monte Carlo replaces random variables with computer ARN, probabilities with
relative frequencies and expectations with arithmetic means over large sets of such numbers [12].
A computation with one set of ARN is a Monte Carlo experiment [33].

The procedure to compute the critical value of max-w is given step-by-step as follows:
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1. Specify the probability density function (pdf) of the w-test statistics. The pdf assigned to the
w-test statistics under an Hy-distribution is

(w1, Wy, w3, - -+, wy)" ~ N (0, Rap) (24)

where Ry, € R™*" is the correlation matrix with the main diagonal elements equal to 1, and the
off-diagonal elements are the correlation between the w-test statistics computed by Equation (23).

2. In order to have w-test statistics under Hg, uniformly distributed random number sequences
are produced by the Mersenne Twister algorithm, and then they are transformed into a normal
distribution by using the Box-Muller transformation [73]. Box-Muller has already been used
in geodesy for Monte Carlo experiments [22,33,74]. Therefore, a sequence of m random vectors
from the pdf assigned to the w-test statistics is generated according to Equation (24). In that case,
we have a sequence of m vectors of the w-test statistics as follows:

r(1) ()

(m)
|:(w1/w2!w3r"' /wn) /(w]/w2/w3/”' /wn) o /(w1/w2/w3/"' /wH)T :| (25)

3.  Compute the test statistic by Equation (16) for each sequence of w-test statistics. Thus, we have

< max |w;|V, max |w;|®, .-, max |w,—|(m)> (26)
i1, n} i1, n} i€l n}
4. Sort in ascending order the maximum test statistic in Equation (26), getting a sorted vector w,
such that
V) < p@ wG) ... < plm) (27)

The sorted values @ in Equation (27) provide a discrete representation of the cumulative density
function (cdf) of the maximum test statistic max-w.
5. Determine the critical value k as follows:

k= 7’{~][(1—131/)><111] (28)

where [.] denotes rounding down to the next integer that indicates the position of the selected
elements in the ascending order of @. This position corresponds to a critical value for a stipulated
overall false alarm probability a’. This can be done for a sequence of values &’ in parallel.

It is important to mention that the probability of a Type I decision error for multiple testing ' is
larger than that of Type I for single testing ag. This is because the critical region in multiple testing is
larger than that in single hypothesis testing.

3.2. On the Scenario Coinciding with the Alternative Hypothesis HX)

The other side of the multiple testing problem is the situation in which there is an outlier in the
dataset. In that case, apart from Type I and Type II errors, there is a third type of wrong decision
associated with Baarda’s w-test. Baarda’s w-test can also flag a non-outlying observation while the
‘true’ outlier remains in the dataset. We are referring to the Type III error [67], also referred to as the
probability of wrong identification (Pwp). The description of the Type III error (denoted by «;; in
Table 1) involves a separability analysis between alternative hypotheses [2,21,23,66]. Therefore, we are
now interested in the identification of the correct alternative hypothesis. In that case, the non-centrality
parameter in Equation (12) is not only related to the sizes of Type I and Type II decision errors but also
dependent on the correlation coefficient pu, w; given by Equation (23).
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(i)

On the basis of the assumption that one outlier is in the ith position of the dataset (i.e., H,’ is
‘true’), the probability of a Type II error (also referenced as the probability of “missed detection”, denoted
by Pusp) for multiple testing is

Pmp = Bio =P (ﬂ:;1|w,~\ <k ‘ Hg) : true) , (29)
and the size of a Type Il wrong decision (also called “misidentification”, denoted by Py) is given by
- - ; (i)
Pwi = Y wi = Y P (lewjl > [ewg] ¥i, [awj] > k(i # j) | 15« true) (30)
i=1 i=1

On the other hand, the probability of correct identification (denoted by P¢;) is

Per =1 Bis = P (lwil > lwj] V), |wil > k(i # j) | HY : true) (31)

with ;
1—Pcp = Bii = Bio + Y_ xij, for (i # ) (32)

i=1

Note that the three probabilities of missed detection Py;p, wrong identification Py and correct
identification Pc; sum up to unity: i.e., Pyp + Pwr + Per = 1.

The probability of correct detection Pcp is the sum of the probability of correct identification Pc;
(selecting a correct alternative hypothesis) and the probability of misidentification Py (selecting one
of the n — 1 other hypotheses), i.e.,

Pcp = Pcr + Pwi (33)

The probability of wrong identification Py is identically zero, Py = 0, when the correlation
coefficient is exactly zero, pw,w; = 0. In that case, we have

Pcp = Pcr=1—"Pump (34)

The relationship given in Equation (34) would only happen if one neglected the nature of the
dependence between alternative hypotheses. In other words, this relationship is valid for the special
case of testing the null hypothesis Hg against only one single alternative hypothesis pr.

Since the critical region in multiple hypothesis testing is larger than that in single hypothesis
testing, the Type Il decision error (i.e., Pyp) for the multiple test becomes smaller [12]. This means
that the correct detection in binary hypothesis testing (7o) is smaller than the correct detection Pcp
under multiple hypothesis testing, i.e.,

Pcp > o (35)

Detection is easier in the case of multiple hypothesis testing than single hypothesis testing.
However, the probability of correct detection Pcp under multiple testing is spread out over all
alternative hypotheses, and therefore, identifying is harder than detecting. From Equation (33), it is
also noted that detection does not depend on identification. However, outlier identification depends
on correct outlier detection. Therefore, we have the following inequality:

Pcr < Pcp (36)

Note that the probability of correct identification P¢; depends on the probability of missed
detection Pysp and wrong identification Py for the case in which data snooping is run only once, i.e.,
a single round of estimation and testing. However, in this paper, we deal with data snooping in its
iterative form (i.e., IDS), and therefore, the probability of correct identification Pc; depends on other
decision rules.
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4. On the Probability Levels of Iterative Outlier Elimination and Its Sensitivity Indicators

In the previous section, probability levels are described for the case in which the data snooping
procedure is applied only once according to the detector given by Equation (16). In practice, however,
data snooping is applied iteratively: after identification and elimination of a single outlier, the model
is reprocessed, and outlier identification is restarted. This procedure of iterative outlier elimination is
known as iterative data snooping (IDS) [35]. Therefore, IDS is not only a case of multiple hypothesis
testing but also a case of multiple runs of estimation, testing and adaptation. In that case, adaptation
consists of removing a possible outlier.

Rofatto et al. [12,55] showed how to compute the probability levels associated with the IDS
procedure. They introduced two new classes of wrong decisions for IDS, namely, over-identification
positive and over-identification negative. The first is the probability of IDS flagging the outlier and
good observations simultaneously. The second is the probability of IDS flagging only the good
observations as outliers (more than one) while the outlier remains in the dataset.

This paper extends the current decision errors of IDS for the case in which there is a single outlier
in the dataset. In addition to the probability levels described so far, there is the probability that the
detector in (16) simultaneously flags two (or more) observations during a round of IDS. Here, this is
referred to as statistical overlap. Statistical overlap occurs when two (or more) Baarda’s w-test statistics
are equal. For instance, if the correlation coefficient between two w-test statistics (pw,,w;) were exactly

1.00 (or —1.00), i.e., if P2, w i = £1.00, then the alternative hypothesis, say, H(i), would have the same
distribution as another one, Hg). Th would mean that those hypotheses would not be distinguished,
i.e., they would not be separable, and an outlier would not be identified [2]. Note that the correlation
Pw;,w; provides an indication of whether or not the system redundancy is sufficient to identify an
outlier. When the correlation coefficient between two w-test statistics is exactly 1.00 (or —1.00), i.e.,
Pw;w; = £1.00, a statistical overlap P, is expected to occur. We further discuss P, when we present
the results.

In contrast to the data snooping single run, the success rate of correct detection Pcp for
IDS depends on the sum of the probabilities of correct identification Pc;, wrong exclusion (Pwr),
over-identification cases (Poyer+ and Poyer—), and statistical overlap (Py), i.e.,

PCD =1- PMD = PCI + PWE + Pover+ + ,Poverf + Pol (37)

It is important to mention that the probability of correct detection is the complement of the
probability of missed detection. Note from Equation (39) that the probability of correct detection Pcp
is available even for cases in which the identification rate is null, Pc; = 0. However, the probability
of correct identification (P¢) necessarily requires that the probability of correct detection Pcp be
greater than zero. For the same reasons given for the data snooping single run in the previous section,
detecting is easier than identifying. In that case, we have the following relationship for the success rate
of correct outlier identification P¢;:

7DCI = 7DCD - (PWE + 73overJr + Pover— + Pol)/ (38)

such as
A(Pcy) €10,1] <= (Pcp) >0 (39)

It is important to mention that the wrong exclusion Py g describes the probability of identifying
and removing a non-outlying measurement while the ‘true” outlier remains in the dataset. In other
words, Py is the Type III decision error for IDS). The overall wrong exclusion Py is the result of the
sum of each individual contribution to Py, i.e.,

n—1
Pwe = ) Pwe (40)
i=1
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We can also compute a weighting factor, denoted by Pi(Pye)’ for each individual contribution to
Pwe as follows:

Pweqy .
Pi(Pys) = ngl Ni=1,...,n—1, (41)
so that
n—1
n—1 ‘21 Pwe i)
. = 42
,; Pi(Puwe) Pwe (42)

The weighting factor pjp, ) is within a range of [0,1].

On the basis of the probability levels of correct detection Pcp and correct identification Pcy,
the sensitivity indicators of minimal biases—Minimal Detectable Bias (MDB) and Minimal Identifiable
Bias (MIB)—for a given &’ can be computed as follows:

MDB = argngnPCD(vi) >Pcp,Vi=1,--,n (43)

MIB = argn%inPCI(Vi) >Pep,Vi=1,---,n (44)

Equation (43) gives the smallest outlier V; that leads to its detection for a given correct detection
rate Pcp, whereas (44) provides the smallest outlier V; that leads to its identification for a given correct
identification rate Pc;.

As a consequence of the inequality in (36), the MIB will be larger than MDB, i.e., MIB > MDB.
For the special case of having only one single alternative hypothesis, there is no difference between the
MDB and MIB [46]. The computation of M DBy is easily performed by Equations (13) or (15), whereas
the computation of the MDB in Equation (43) and the MIB in Equation (44) must be computed using
Monte Carlo because the acceptance region (as well as the critical region) for the case of multiple

alternative hypotheses is analytically intractable.

The non-centrality parameter for detection ()\[(]A:/IlD B)) and identification ()\;]\:Af B)) for IDS can be

computed similarly to Equation (12) as follows, respectively:

MDB2

MDB (i)
/\f]:l ):T (45)

Vi

MIB2

MIB (i)
M = = ()

Vi

Thus,

(47)

Note from Equation (47) that the relationship between the non-centrality parameters for detection

(/\‘(71\:4{j B) 1\2/11[ B)) do not depend on the variance (or standard deviation) of estimated

) and identification (/\‘(7
outlier U%i.

In the case of IDS, the power depends not only on the rate of Type II and Type III decision errors
but also on the rate of over-identifications and the probability of statistical overlap. In the next section,

we provide a procedure for computing the errors and success rates associated with IDS.
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5. Computational Procedure for the Estimation of Success and Failure Rates of Iterative
Outlier Elimination

After finding the critical value k by the process described in Section 3.1, the procedure based on
Monte Carlo is also applied to compute the probability levels of IDS when there is an outlier in the
dataset as follows (summarised as a flowchart in Figure 1).

First, random error vectors are synthetically generated on the basis of a multivariate normal
distribution because the assumed stochastic model for random errors is based on the matrix covariance
of the observations. Here, we use the Mersenne Twister algorithm [72] to generate a sequence of
random numbers and Box—Muller [73] to transform it into a normal distribution.

The magnitude intervals of simulated outliers are user-defined. The magnitude intervals are
based on the standard deviation of the observation, e.g., |3 to |6¢|, where ¢ is the standard deviation
of the observations. Since the outlier can be positive or negative, the proposed algorithm randomly
selects the signal of the outlier (for ¢ = 1). Here, we use the discrete uniform distribution to select the
signal of the outlier. Thus, the total error (¢) is a combination of random errors, and its corresponding
outlier is as follows:

e=e+cV; (48)

In Equation (48), e is the random error generated from the normal distribution according to
Equation (2), and the second part ¢;V; is the additional parameter that describes the alternative
model according to Equation (8). Next, we compute the least-squares residuals vector according to
Equation (3), but now we use the total error (¢) as follows:

¢ =Re (49)

For IDS, the hypothesis of (8) for g = 1 (one outlier) is assumed, and the corresponding test
statistic is computed according to (9). Then, the maximum test statistic value is computed according
to Equation (16). Now, the decision rule is based on the critical value k computed by Monte Carlo
(see the steps (24)—(28) from Section 3.1). After identifying the measurement suspected to be the most
likely outlier, it is excluded from the model, and least-squares estimation (LSE) and data snooping
are applied iteratively until there are no further outliers identified in the dataset. Every time that a
measurement suspected to be the most likely outlier is removed from the model, we check whether
the normal matrix ATWA is invertible or not. If the determinant of ATWA is 0, det| ATWA| = 0,
then there is a necessary and sufficient condition for a square matrix ATWA to be non-invertible.
In other words, we check whether or not there is a solution available in the sense of ordinary LSE after
removing a possible outlier.

The IDS procedure is performed for m experiments of random error vectors for each experiment
contaminated by an outlier in the ith measurement. Therefore, for each measurement contaminated by
an outlier, there are v = 1, ..., m experiments.
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Enter the matrices A and Q,
Define the significance level (a')
Define the magnitude interval of outlier (for g = 1)

v

Determine the critical value &

v

Generate a sample of random errors e~N(0,Q,)

Add an outlier of magnitude Vi

v

Compute the total error € = e + ciVi
Compute the least-squares residual vector é = Re

v

Compute w-test statistics: w; (vi = 1,...,n)
Compute the maximum w-test statistic: max|w;|

No
Ve

Yes \.

End of iterative
data snooping

vy

Iy

No

Identify, store and remove the measurement from the dataset

(Reduce A, Q, e ciandRton—1 measurements)

Yes /T-\ No
\dEtlA_‘/VAbO/

and 1, <

Compute and store: 1y, nyip, e, Hoperss 1

over-

Compute the probabilities: Pci, Pvp, Pwe, Povers, Pover- and Poi

End

Figure 1. Flowchart of the algorithm to compute the probability levels of Iterative Data Snooping (IDS)
for each measurement in the presence of an outlier.

The probability of correct identification Pcr is obtained by the ratio between the correct
identification cases and possible cases. Thus, if m is the total number of Monte Carlo experiments
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(possible cases), then we count the number of times that the outlier is correctly identified (denoted as
ncr) and then approximate the probability of correct identification Pc; as

_ cr
Pcr = 