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Abstract: An iterative outlier elimination procedure based on hypothesis testing, commonly known
as Iterative Data Snooping (IDS) among geodesists, is often used for the quality control of modern
measurement systems in geodesy and surveying. The test statistic associated with IDS is the extreme
normalised least-squares residual. It is well-known in the literature that critical values (quantile
values) of such a test statistic cannot be derived from well-known test distributions but must be
computed numerically by means of Monte Carlo. This paper provides the first results on the
Monte Carlo-based critical value inserted into different scenarios of correlation between outlier
statistics. From the Monte Carlo evaluation, we compute the probabilities of correct identification,
missed detection, wrong exclusion, over-identifications and statistical overlap associated with IDS
in the presence of a single outlier. On the basis of such probability levels, we obtain the Minimal
Detectable Bias (MDB) and Minimal Identifiable Bias (MIB) for cases in which IDS is in play. The MDB
and MIB are sensitivity indicators for outlier detection and identification, respectively. The results
show that there are circumstances in which the larger the Type I decision error (smaller critical
value), the higher the rates of outlier detection but the lower the rates of outlier identification.
In such a case, the larger the Type I Error, the larger the ratio between the MIB and MDB. We also
highlight that an outlier becomes identifiable when the contributions of the measures to the wrong
exclusion rate decline simultaneously. In this case, we verify that the effect of the correlation between
outlier statistics on the wrong exclusion rate becomes insignificant for a certain outlier magnitude,
which increases the probability of identification.

Keywords: probability; hypothesis testing; outlier detection; monte carlo; quality control;
control system; reliability; random number generators

1. Introduction

In recent years, Outlier Detection has been increasingly applied in sensor data processing [1–9].
Despite the countless contributions made over the years, there is continuing research on the subject,
mainly because there has been an increase in computational power. One can argue that computational
complexity is becoming high because of the era of information overload. However, this limitation
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has been overcome over the years, mainly by the rapid development of computers, which now allow
advanced computational techniques to be used efficiently on personal computers or even on handheld
computers [10]. Therefore, computational complexity is no longer a bottleneck because we have fast
computers and large data storage systems at our disposal [11,12].

Here, we assume that an outlier is a measurement that is so likely to be caused by a blunder that
it is better to either not use it or not use it as it is [13]. Failure to identify an outlier can jeopardise the
reliability level of a system. Because of its importance, outliers must be appropriately treated to ensure
the quality of data analysis.

Two categories of advanced techniques for the treatment of a dataset contaminated by outliers
have often been developed and applied in various situations: Robust Adjustment Procedures
(see, e.g., [14–18]) and Statistical Hypothesis Testing (see, e.g., [2,12,19–23]). The first one is an
estimation technique that is not unduly affected by outliers or other small departures from model
assumptions. Classes of this technique include M-estimates (which follow from maximum likelihood
considerations), L-Estimates (which are linear combinations of order statistics), and R-Estimates (based
on statistical rank tests). Some classes of such robust adjustment methods, as well as their properties,
are well known, while other methods are still being researched (see, e.g., L1-norm estimation [24],
M-estimation [25–27], R-estimation [28–30] and those based on meta-heuristics [31]). Besides the
undoubted advantages of Robust Estimation, here, we focus on the hypothesis test-based outlier.
The following advantages of the outlier test were mentioned by [32]:

1. It is an opportunity to investigate the causes of outliers;
2. Identified outliers can be remeasured; and
3. If the outliers are discarded from the measurements, then standard adjustment software, which

operates according to the least-squares criterion, can be used.

In this paper, we consider iterative data snooping (IDS), which is the most common procedure
found in the geodetic practice [12,33]. Most conventional geodetic studies have a chapter on
IDS (see, e.g., [34,35]). IDS has also become very popular and is routinely used in adjustment
computations [36]. It is important to mention that IDS is not restricted to the field of geodetic statistics
but is a generally applicable method [22].

IDS is an iterative outlier elimination procedure, which combines estimation, testing and
adaptation [37]. Parameter estimation is often conducted in the sense of the least-squares estimation
(LSE). Assuming that no outlier exists, the LSE is the best linear unbiased estimator (BLUE) [35].
The LSE has often been used in several remote sensing applications (see, e.g., [38–41]). However,
outliers can inevitably occur in practice and cause the loss of the LSE BLUE-property. Then,
hypothesis testing is performed with the aim of identifying any outliers that may be present in
the dataset. After its identification, the suspected outlier is then excluded from the dataset as a
corrective action (i.e., adaptation), and the LSE is restarted without the rejected measurement. If model
redundancy permits, this procedure is repeated until no more (possible) outliers can be identified
(see, e.g., [35], p. 135). Although here we restrict ourselves to the case of one outlier at a time, IDS can
also be applied to the case of multiple (simultaneous) outliers [42]. For more details about multiple
(simultaneous) outliers, refer to [43–45].

Of particular importance for quality control purposes are decision probabilities. Probability
levels have already been described in the literature for the case in which data snooping is run once
(i.e., only one single estimation and testing), as well as for the case in which the outlier is parameterised
in the model (see, e.g., [2,19–21,23,37,46,47]). For such cases, the probability of correct detection (PCD)
and correct identification (PCI) and their corresponding Minimal Detectable Bias (MDB) and Minimal
Identifiable Bias (MIB) have already been described for data snooping [37,46].

The MDB is defined as the smallest value of an outlier that can be detected given a certain PCD.
The MDB is an indicator of the sensitivity of data snooping to outlier detection and not to outlier
identification. On the other hand, the MIB is defined as the smallest value of an outlier that can
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be identified given a certain PCI ; i.e., the MIB is an indicator of the sensitivity of data snooping to
outlier identification. It is important to highlight that “outlier detection” only informs us whether
or not there might have been at least one outlier. However, the detection does not tell us which
measurement is an outlier. The localisation of the outlier is a problem of “outlier identification”.
In other words, “outlier identification” implies the execution of a search among the measurements for
the most likely outlier.

However, both the MDB and MIB cannot be used as a diagnostic tool when IDS is in play. In this
contribution, we highlight the fact that the correct outlier identification for IDS is not only dependent
on the correct/missed detection and wrong exclusion but also other decision probabilities.

The evaluation of the probability levels associated with IDS is not a trivial task. When used
for data snooping for a single run, the probabilities of IDS are multivariate integrals over complex
regions [2,47]. This complexity is due to the fact that IDS is not only based on multiple hypothesis
testing but also on multiple rounds of estimation, testing and exclusion. Because an analytical formula
is not easy to compute, the Monte Carlo method should be run to obtain the probabilities and the
minimal bias (MDB and MIB) indicators for IDS. The Monte Carlo method provides insights into these
cases, in which analytical solutions are too complex to fully understand, are doubted for one reason or
another or are not available [12]. The Monte Carlo method for quality control purposes has already
been applied in geodesy (see, e.g., [2,10,22,23,33,46,48–51]). For in-depth coverage of Monte Carlo
methods, consult, for instance, [52–54].

Recent studies by Rofatto et al. [12,55] provide an algorithm based on Monte Carlo to determine
the probability levels associated with IDS. In that case, five classes of decisions for IDS are described,
namely, the probability of correct identification (PCI), the probability of missed detection (PMD),
the probability of wrong exclusion (PWE), the probability of over-identification positive (Pover+),
and the probability of over-identification negative (Pover−), defined as follows:

• PCI : The probability of correctly identifying and removing an outlying measurement;
• PMD: The probability of not detecting the outlier (i.e., Type II decision error for IDS);
• PWE: The probability of identifying and removing a non-outlying measurement while the ‘true’

outlier remains in the dataset (i.e., Type III decision error for IDS);
• Pover+: The probability of correctly identifying and removing the outlying measurement and

others and
• Pover−: The probability of identifying and removing more than one non-outlying measurement

while the ‘true outlier’ remains in the dataset.

However, the procedure used by these authors [12,55] does not allow the user to control the Type
I decision error (denoted by α′). The probability level α′ (known as the significance level of a test)
defines the size of a test and is often called the “false alarm probability”. In this paper, we highlight
the fact that the test statistic associated with IDS does not have a known distribution, and therefore,
its critical values (i.e., the percentile of its probability distribution) cannot be taken from well-known
statistical tables (e.g., normal distribution).

Here, the critical value is computed by Monte Carlo such that a user-defined Type I decision error
α′ for IDS is warranted. In other words, the Type I decision error α′ is effectively user-controlled when
both the functional and stochastic parts of the model are taken into account. To do so, we employ
the Monte Carlo method because the critical region of the test statistic associated with IDS is too
complicated. The critical region is the subset of the measurements for which the null hypothesisH0 is
rejected [12]. Therefore, the false alarm rate can be user-controlled by setting the appropriate size of
the critical region.

We show that one of the advantages of having critical values based on the distribution test of IDS
is that the dependencies between the least-squares residuals are captured by Monte Carlo simulation.
In this paper, we present the first results on the Monte Carlo-based critical value in two different
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scenarios of correlation between outlier test statistics. We also discuss this issue in the context of the
well-known Bonferroni correction [56] to control the Type I decision error α′ for IDS.

Moreover, herein, a new class of decision is taken into account when IDS is performed,
which corresponds to the probability of simultaneously flagging two (or more) measurements as
outliers. We call this the probability of “statistical overlap” (Pol). This means that Pol occurs in cases
in which one alternative hypothesis has the same distribution as another one. In other words, these
hypotheses cannot be distinguished; i.e., they are nonseparable, and an outlier cannot be identified [37].

We also investigate the probabilities of making correct decisions and the risks of incorrect decisions
when IDS is performed in the presence of an outlier in two different scenarios of correlation between
outlier test statistics. On the basis of the probability levels associated with IDS (i.e., PCI , PMD/PCD,
PWE, Pover+, Pover− and Pol), we also show how to find the two sensitivity indicators MDB and MIB
for IDS. We also analyse the relationship between the sensitivity indicators MDB and MIB for IDS.

2. Binary Hypothesis Testing versus Multiple Hypothesis Testing: True Data Snooping

Random measurement errors in a system are unavoidable. The stochastical properties of
measurement errors are directly associated with the assumption of the probability distribution of these
errors. In geodesy and many other scientific branches, the well-known normal distribution is one
of the most used measurement error models. Its choice is further justified by both the central limit
theorem and the maximum entropy principle. Some alternative measurement error models can be
found in [11].

Therefore, the null hypothesis, denoted byH0, is formulated under the condition that random
errors are normally distributed with expectation zero. In other words, the model associated with the
null hypothesisH0 consists of the one believed to be valid under normal working conditions, i.e., in the
absence of outliers. When it is assumed to be ‘true’, this model is used to estimate unknown parameters,
usually in a least-squares approach. Thus, the null hypothesis H0 of the standard Gauss–Markov
model in the linear or linearised form is given by [34]

H0 : E{y} = Ax +E{e} = Ax; D{y} = Qe (1)

where E{.} is the expectation operator, D{.} is the dispersion operator, y ∈ Rn×1 is the vector of
measurements, A ∈ Rn×u is the Jacobian matrix (also called the design matrix) of full rank u, x ∈ Ru×1

is the unknown parameter vector, e ∈ Rn×1 is the unknown vector of measurement errors and
Qe ∈ Rn×n is the positive-definite covariance matrix of the measurements y.

Under normal working conditions (i.e.,H0), the measurement error model is then given by

e ∼ N(0, Qe), (2)

Here, we confine ourselves to the case in which A and Qe have full column rank.
The best linear unbiased estimator (BLUE) of e underH0 is the well-known estimated least-squares

residual vector ê ∈ Rn×1, which is given by

ê = y− Ax̂

= y− A(ATW A)−1(ATWy)

= Ax + e− A(ATW A)−1(ATW(Ax + e))

= e− A(ATW A)−1(ATWe)

= (I− A(ATW A)−1 ATW)e

= Re,

(3)

with x̂ ∈ Ru×1 being the BLUE of x under H0; W ∈ Rn×n is the known matrix of weights, taken as
W = σ0

2Q−1
e , where σ2

0 is the variance factor, I ∈ Rn×n is the identity matrix and R ∈ Rn×n is known
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as the redundancy matrix. The R matrix is an orthogonal projector that projects onto the orthogonal
complement of the range space of A.

We restrict ourselves to regular models, and therefore, the degrees of freedom r (redundancy) of
the model underH0 (Equation (1)) is

r = rank(Qê) = n− rank(A) = n− u, where (4)

Qê = Qe − σ0
2 A(ATW A)−1 AT (5)

On the other hand, an alternative model is proposed when there are doubts about the reliability
level of the model underH0. Here, we assume that the validity of the null hypothesisH0 in Equation (1)
can be violated if the dataset is contaminated by outliers. The model in an alternative hypothesis,
denoted by HA, is to oppose Equation (1) by an extended model that includes the unknown vector
∇ ∈ Rq×1 of deterministic bias parameters as follows ([20,35]):

HA : y = Ax + C∇+ e =
(

A C
)( x
∇

)
+ e, (6)

where C ∈ Rn×q is the matrix that relates bias parameters, i.e., the values of the outliers to observations.
We restrict ourselves to the matrix (A C) having full column rank, such that

r = rank
(

A C
)
= u + q ≤ n (7)

One of the most used procedures based on hypothesis testing for outliers in linear (or linearised)
models is the well-known data snooping method [19,20]. This procedure consists of screening each
individual measurement for the presence of an outlier [42]. In that case, data snooping is based on a
local model test, such that q = 1, and therefore, the n alternative hypothesis is expressed as

H(i)
A : y = Ax + ci∇i + e =

(
A ci

)( x
∇i

)
+ e, ∀i = 1, · · · , n (8)

Now, matrix C in Equation (6) is reduced to a canonical unit vector ci, which consists exclusively
of elements with values of 0 and 1, where 1 means that the ith bias parameter of magnitude ∇i affects
the ith measurement, and 0 means otherwise. In that case, the rank of (A ci) ∈ Rn×(u+1) and the vector

∇ in Equation (6) reduces to a scalar ∇i in Equation (8), i.e., ci=
(

0 0 0 · · · 1ith 0 · · · 0
)T

.
When q = n− u, an overall model test is performed. For more details about the overall model test, see,
for example, [46,47].

Note that the alternative hypothesis H(i)
A in Equation (8) is formulated under the condition

that the outlier acts as a systematic effect by shifting the random error distribution under H0 by
its own value [13]. In other words, the presence of an outlier in a dataset can cause a shift of the
expectation under H0 to a nonzero value. Therefore, hypothesis testing is often employed to check
whether the possible shifting of the random error distribution under H0 by an outlier is, in fact,
a systematic effect (bias) or merely a random effect. This hypothesis test-based approach is called the
mean-shift model [20]. The mean-shift model has been widely employed in a variety of applications,
such as structural deformation analyses, sensor data processing, the integrity monitoring of GNSS
(Global Navigation Satellite System) models and the design and quality control of geodetic networks
(see, e.g., [1,3,6,8,12,19–22,45,51,57–61]). The alternative to the mean-shift model is variance inflation.
Until now, it has been rarely used in geodesy because it is more difficult to derive a powerful test and
a reliability theory for it [12,13,62].
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2.1. Binary Hypothesis Testing

In the context of the mean-shift model, the test statistic involved in data snooping is given by the
normalised least-squares residual, denoted by wi. This test statistic, also known as Baarda’s w-test,
is given as follows:

wi =
ci

TQ−1
e ê√

ciTQ−1
e QêQ−1

e ci

, ∀i = 1, · · · , n (9)

Then, a test decision is performed as [63]

Accept H0 i f |wi| ≤ k, reject otherwise in f avour o f H(i)
A (10)

Note that the decision rule (10) says that if the Baarda’s w-test statistic is larger than some critical
value k, i.e., a percentile of its probability distribution, then we reject the null hypothesis in favour of
the alternative hypothesis. This is a special case of testing the null hypothesis H0 against only one
single alternative hypothesis H(i)

A , and therefore, the rejection of the null hypothesis automatically
implies the acceptance of the alternative hypothesis and vice versa [46,47]. In other words, the outlier
detection automatically implies outlier identification and vice versa. This is because the formulation
of the alternative hypothesis H(i)

A is based on the condition that an outlier exists and is located at a
pre-specified position in the dataset. In other words, the alternative hypothesis in a binary test says
that “a specific measurement is an outlier”.

Because Baarda’s w-test in its essence is based on binary hypothesis testing, in which one decides
between the null hypothesisH0 and only one single alternative hypothesisH(i)

A of (8), it may lead to
wrong decisions of Type I and Type II. The probability of a Type I Error α0 is the probability of rejecting
the null hypothesisH0 when it is true, whereas the probability of a Type II error β0 is the probability
of failing to reject the null hypothesis H0 when it is false (note: the index ‘0’ represents the case in
which a single hypothesis is tested). Instead of α0 and β0, there is the confidence level CL = 1− α0

and the power of the test γ0 = 1− β0, respectively. The first deals with the probability of accepting a
true null hypothesis H0; the second addresses the probability of correctly accepting the alternative
hypothesisH(i)

A . In that case, given a probability of a Type I decision error α0, we find the critical value
k0 as follows:

k0 = Φ−1
(

1− α

2

)
(11)

where Φ−1 denotes the inverse of the cumulative distribution function (cdf) of the two-tailed standard
normal distribution N(0, 1).

The normalised least-squares residual wi follows a standard normal distribution with the
expectation that E{wi} = 0 if H0 holds true (there is no outlier). On the other hand, if the system
is contaminated with a single outlier at the ith location of the dataset (i.e., under H(i)

A ), then the
expectation of wi is

E{wi} =
√

λ0 =
√

ciTQ−1
e QêQ−1

e ci∇2
i (12)

where λ0 is the non-centrality parameter for q = 1. Note, therefore, that there is an outlier that
causes the expectation of wi to become

√
λ0. The square-root of the non-centrality parameter

√
λ0

in Equation (12) represents the expected mean shift of a specific w-test. In such a case, the term
ci

TQ−1
e QêQ−1

e ci in Equation (12) is a scalar, and therefore, it can be rewritten as follows [64]:

|∇i| = MDB0(i) =

√
λ0

ciTQ−1
e QêQ−1

e ci
, ∀i = 1, · · · , n (13)
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where |∇i| is the Minimal Detectable Bias (MDB0(i) ) for the case in which there is only one single
alternative hypothesis, which can be computed for each of the n alternative hypotheses according to
Equation (8).

For a single outlier, the variance of an estimated outlier, denoted by σ2
∇i

, is

σ2
∇i

=
(

ci
TQ−1

e QêQ−1
e ci

)−1
, ∀i = 1, · · · , n (14)

Thus, the MDB can also be written as

MDB0(i) = σ∇i

√
λ0, ∀i = 1, · · · , n (15)

where σ∇i =
√

σ2
∇i

is the standard deviation of estimated outlier ∇i.
The MDB in Equations (13) or (15) of an alternative hypothesis is the smallest-magnitude outlier

that can lead to the rejection of the null hypothesisH0 for a given α0 and β0. Thus, for each model of
the alternative hypothesisH(i)

A , the corresponding MDB can be computed [12,49,65]. The limitation of
this MDB is that it was initially developed for the binary hypothesis testing case. In that case, the MDB
is a sensitivity indicator of Baarda’s w-test when only one single alternative hypothesis is taken into
account. In this article, we are confined to multiple alternative hypotheses. Therefore, both the MDB
and MIB are computed by considering the case of multiple hypothesis testing.

2.2. Multiple Hypothesis Testing

The alternative hypothesis in Equation (8) has been formulated under the assumption that the
measure yi for some fixed i is an outlier. From a practical point of view, however, we do not know
which measurement is an outlier. Therefore, a more appropriate alternative hypothesis would be [22]
“There is at least one outlier in the vector of measurements yi”. Now, we are interested in knowing which of
the alternative hypotheses may lead to the rejection of the null hypothesis with a certain probability.
This means testingH0 againstH(1)

A ,H(2)
A ,H(3)

A , . . . ,H(n)
A . This is known as multiple hypothesis testing

(see, e.g., [1,2,12,21,23,37,46,66–69]). In that case, the test statistic coming into effect is the maximum
absolute Baarda’s w-test value (denoted by max-w), which is computed as [12]

max-w = max
i∈{1,··· ,n}

|wi| (16)

The decision rule for this case is given by

Accept H0 i f max-w ≤ k̂

Otherwise,

Accept H(i)
A i f max-w > k̂

(17)

The decision rule in 17 says that if none of the n w-tests get rejected, then we accept the null
hypothesis H0. If the null hypothesis H0 is rejected in any of the n tests, then one can only assume
that detection occurred. In other words, if the max-w is larger than some percentile of its probability
distribution (i.e., some critical value k̂), then there is evidence that there is an outlier in the dataset.
Therefore, “outlier detection” only informs us whether the null hypothesisH0 is accepted or not.

However, the detection does not tell us which alternative hypothesisH(i)
A would have led to the

rejection of the null hypothesisH0. The localisation of the alternative hypothesis, which would have
rejected the null hypothesis, is a problem of “outlier identification”. Outlier identification implies the
execution of a search among the measurements for the most likely outlier. In other words, one seeks to
find which of Baarda’s w-test is the maximum absolute value max-w and if that max-w is greater than
some critical value k̂.
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Therefore, the data snooping procedure of screening measurements for possible outliers is actually
an important case of multiple hypothesis testing and not single hypothesis testing. Moreover, note that
outlier identification only happens when outlier detection necessarily exists; i.e., “outlier identification”
only occurs when the null hypothesisH0 is rejected. However, correct detection does not necessarily
imply correct identification [2,12,46].

3. Probability Levels of Data Snooping for a Single Run under Multiple Alternative Hypotheses

Two sides of the multiple testing problem can be formulated: one under the reality of the null
hypothesisH0, i.e., the event that there is no outlier in the dataset, and another one coinciding with
the alternative hypothesisH(i)

A , i.e., the event that there is an outlier. The probability levels associated
with data snooping for both events are presented in Table 1.

Table 1. Probability levels associated with data snooping under multiple alternative hypotheses.

Reality Unknown
Result of the Test

H0 H(1)
A H(2)

A · · · H(n)
A

H0
Correct decision

1−α’
Type I Error

α01

Type I Error
α02

· · · Type I Error
α0n

H(1)
A

Type II error
β10

Correct identification
1−β11

Type III error
κ12

· · · Type III error
κ1n

H(2)
A

Type II error
β20

Type III error
κ21

Correct identification
1−β22

· · · Type III error
κ2n

...
...

...
...

. . .
...

H(n)
A

Type II error
βn0

Type III error
κn1

Type III error
κn2

· · · Correct identification
1−βnn

3.1. On the Scenario Coinciding with the Null HypothesisH0

For the scenario coinciding with the null hypothesis H0, there is the probability of incorrectly
identifying at least one alternative hypothesis. This type of wrong decision is known as the family-wise
error rate (FWE). The FWE is defined as

FWE = α0i = P
(
|wi| > |wj| ∀j, |wi| > k(i 6= j)

∣∣∣ H0 : true
)

, ∀i = 1, . . . , n (18)

The probability of accepting the null hypothesis in test i is 1−α, ∀i = 1, . . . , n, where α is the
significance level or size of the test for single hypothesis testing. The classical and well-known
procedure to control the FWE is the Bonferroni correction [56]. If all tests are mutually independent,
then the probability that a trueH0 is accepted in each test is approximately

(1− α)n = 1− α′ (19)

where α’ is the Type I Error for the entire dataset. Thus, we have

α = 1− (1− α′)1/n (20)

which is approximately

α =
α′

n
(21)

The quantity in Equation (21) is just equal to the upper bound of the Bonferroni inequality, i.e.,
α′ ≤ nα [56].

Controlling the FWE at a pre-specified level α′ corresponds to controlling the probability of a Type
I decision error when carrying out a single test. In other words, one uses a global Type I Error rate α′
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that combines all tests under consideration instead of an individual error rate α that only considers
one test at a time [69]. In that case, the critical value kbon f is computed as

kbon f = Φ−1
(

1− α′

2n

)
(22)

For single hypothesis testing, given a probability of a Type I decision error α0, it is easier for us to
find the critical value using Equation (11). On the other hand, the rate of Type I decision errors for
multiple testing, α′, cannot be directly controlled by the user. One can argue about the application
of Bonferroni [56] using Equation (22). However, Bonferroni is a good approximation for the case in
which alternative hypotheses are independent. In practice, however, the test results always depend
on each other to some degree because we always have a correlation between w-tests. The correlation
coefficient between any Baarda’s w-test statistic (denoted by ρwi ,wj ), such as wi and wj, is given by [21]

ρwi ,wj =
ci

TQ−1
e QêQ−1

e cj√
ciTQ−1

e QêQ−1
e ci

√
cjTQ−1

e QêQ−1
e cj

, ∀(i 6= j) (23)

The correlation coefficient ρwi ,wj can assume values within the range [−1, 1].
Here, the extreme normalised residuals max-w (i.e., maximum absolute) in Equation (16) are

treated directly as a test statistic. Note that when using Equation (16) as a test statistic, the decision
rule is based on a one-sided test of the form max-w ≤ k̂. However, the distributions of max-w cannot
be derived from well-known test distributions (e.g., normal distribution). Therefore, critical values
cannot be taken from a statistical table but must be computed numerically. This problem has already
been addressed by Lehmann [22]. In that case, the dependencies between residuals are not neglected
because the critical values are based on the distribution of max-w, which depends on the correlation
between w-test statistics ρwi ,wj .

According to Equation (23), the correlation ρwi ,wj depends on the matrices A and Qe, and therefore,
the distribution of max-w also depends on these matrices. In other words, the critical value depends
on the uncertainty of the measurement sensor and the mathematical model of the problem.

In order to guarantee the user-defined Type I decision error α′ for data snooping, the critical value
must be computed by Monte Carlo.

The key of Monte Carlo is artificial random numbers (ARN) [70], which are called ’artificial’
because the random numbers are generated using a deterministic process. A random number generator
is a technology designed to generate a deterministic sequence of numbers that do not have any pattern
and therefore appear to be random. It is ‘random’ in the sense that the sequence of numbers generated
passes statistical tests for randomness. For this reason, random number generators are typically
referred to as pseudo-random number generators (PRNGs).

A PRNG simulates a sequence of independent and identically distributed (i.i.d.) numbers chosen
uniformly between 0 and 1. PRNGs are part of many machine learning and data mining techniques.
In a simulation, a PRNG is implemented as a computer algorithm in some programming language and
is made available to the user via procedure calls or icons [71]. A good generator produces numbers that
are not distinguishable from truly random numbers in limited computation time. This is particularly
true for Mersenne Twister, a popular generator with the long period length of 2199371−1 [72].

In essence, Monte Carlo replaces random variables with computer ARN, probabilities with
relative frequencies and expectations with arithmetic means over large sets of such numbers [12].
A computation with one set of ARN is a Monte Carlo experiment [33].

The procedure to compute the critical value of max-w is given step-by-step as follows:
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1. Specify the probability density function (pdf) of the w-test statistics. The pdf assigned to the
w-test statistics under anH0-distribution is

(w1, w2, w3, · · · , wn)
T ∼ N (0,Rw) (24)

whereRw ∈ Rn×n is the correlation matrix with the main diagonal elements equal to 1, and the
off-diagonal elements are the correlation between the w-test statistics computed by Equation (23).

2. In order to have w-test statistics under H0, uniformly distributed random number sequences
are produced by the Mersenne Twister algorithm, and then they are transformed into a normal
distribution by using the Box–Muller transformation [73]. Box–Muller has already been used
in geodesy for Monte Carlo experiments [22,33,74]. Therefore, a sequence of m random vectors
from the pdf assigned to the w-test statistics is generated according to Equation (24). In that case,
we have a sequence of m vectors of the w-test statistics as follows:[

(w1, w2, w3, · · · , wn)
T(1)

, (w1, w2, w3, · · · , wn)
T(2)

, · · · , (w1, w2, w3, · · · , wn)
T(m)

]
(25)

3. Compute the test statistic by Equation (16) for each sequence of w-test statistics. Thus, we have(
max

i∈{1,··· ,n}
|wi|(1), max

i∈{1,··· ,n}
|wi|(2), · · · , max

i∈{1,··· ,n}
|wi|(m)

)
(26)

4. Sort in ascending order the maximum test statistic in Equation (26), getting a sorted vector w̃,
such that

w̃(1) < w̃(2), w̃(3), · · · ,< w̃(m) (27)

The sorted values w̃ in Equation (27) provide a discrete representation of the cumulative density
function (cdf) of the maximum test statistic max-w.

5. Determine the critical value k̂ as follows:

k̂ = w̃[(1−α′)×m] (28)

where [.] denotes rounding down to the next integer that indicates the position of the selected
elements in the ascending order of w̃. This position corresponds to a critical value for a stipulated
overall false alarm probability α′. This can be done for a sequence of values α′ in parallel.

It is important to mention that the probability of a Type I decision error for multiple testing α′ is
larger than that of Type I for single testing α0. This is because the critical region in multiple testing is
larger than that in single hypothesis testing.

3.2. On the Scenario Coinciding with the Alternative HypothesisH(i)
A

The other side of the multiple testing problem is the situation in which there is an outlier in the
dataset. In that case, apart from Type I and Type II errors, there is a third type of wrong decision
associated with Baarda’s w-test. Baarda’s w-test can also flag a non-outlying observation while the
‘true’ outlier remains in the dataset. We are referring to the Type III error [67], also referred to as the
probability of wrong identification (PWI). The description of the Type III error (denoted by κij in
Table 1) involves a separability analysis between alternative hypotheses [2,21,23,66]. Therefore, we are
now interested in the identification of the correct alternative hypothesis. In that case, the non-centrality
parameter in Equation (12) is not only related to the sizes of Type I and Type II decision errors but also
dependent on the correlation coefficient ρwi ,wj given by Equation (23).
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On the basis of the assumption that one outlier is in the ith position of the dataset (i.e., H(i)
A is

‘true’), the probability of a Type II error (also referenced as the probability of “missed detection”, denoted
by PMD) for multiple testing is

PMD = βi0 = P
(⋂n

i=1
|wi| ≤ k̂

∣∣∣ H(i)
A : true

)
, (29)

and the size of a Type III wrong decision (also called “misidentification”, denoted by PWI) is given by

PWI =
n

∑
i=1

κij =
n

∑
i=1
P
(
|wj| > |wi| ∀i, |wj| > k̂(i 6= j)

∣∣∣ H(i)
A : true

)
(30)

On the other hand, the probability of correct identification (denoted by PCI) is

PCI = 1− βii = P
(
|wi| > |wj| ∀j, |wi| > k̂(i 6= j)

∣∣∣ H(i)
A : true

)
(31)

with

1−PCI = βii = βi0 +
n

∑
i=1

κij, f or (i 6= j) (32)

Note that the three probabilities of missed detection PMD, wrong identification PWI and correct
identification PCI sum up to unity: i.e., PMD + PWI + PCI = 1.

The probability of correct detection PCD is the sum of the probability of correct identification PCI
(selecting a correct alternative hypothesis) and the probability of misidentification PWI (selecting one
of the n− 1 other hypotheses), i.e.,

PCD = PCI + PWI (33)

The probability of wrong identification PWI is identically zero, PWI = 0, when the correlation
coefficient is exactly zero, ρwi ,wj = 0. In that case, we have

PCD = PCI = 1−PMD (34)

The relationship given in Equation (34) would only happen if one neglected the nature of the
dependence between alternative hypotheses. In other words, this relationship is valid for the special
case of testing the null hypothesisH0 against only one single alternative hypothesisH(i)

A .
Since the critical region in multiple hypothesis testing is larger than that in single hypothesis

testing, the Type II decision error (i.e., PMD) for the multiple test becomes smaller [12]. This means
that the correct detection in binary hypothesis testing (γ0) is smaller than the correct detection PCD
under multiple hypothesis testing, i.e.,

PCD > γ0 (35)

Detection is easier in the case of multiple hypothesis testing than single hypothesis testing.
However, the probability of correct detection PCD under multiple testing is spread out over all
alternative hypotheses, and therefore, identifying is harder than detecting. From Equation (33), it is
also noted that detection does not depend on identification. However, outlier identification depends
on correct outlier detection. Therefore, we have the following inequality:

PCI ≤ PCD (36)

Note that the probability of correct identification PCI depends on the probability of missed
detection PMD and wrong identification PWI for the case in which data snooping is run only once, i.e.,
a single round of estimation and testing. However, in this paper, we deal with data snooping in its
iterative form (i.e., IDS), and therefore, the probability of correct identification PCI depends on other
decision rules.
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4. On the Probability Levels of Iterative Outlier Elimination and Its Sensitivity Indicators

In the previous section, probability levels are described for the case in which the data snooping
procedure is applied only once according to the detector given by Equation (16). In practice, however,
data snooping is applied iteratively: after identification and elimination of a single outlier, the model
is reprocessed, and outlier identification is restarted. This procedure of iterative outlier elimination is
known as iterative data snooping (IDS) [35]. Therefore, IDS is not only a case of multiple hypothesis
testing but also a case of multiple runs of estimation, testing and adaptation. In that case, adaptation
consists of removing a possible outlier.

Rofatto et al. [12,55] showed how to compute the probability levels associated with the IDS
procedure. They introduced two new classes of wrong decisions for IDS, namely, over-identification
positive and over-identification negative. The first is the probability of IDS flagging the outlier and
good observations simultaneously. The second is the probability of IDS flagging only the good
observations as outliers (more than one) while the outlier remains in the dataset.

This paper extends the current decision errors of IDS for the case in which there is a single outlier
in the dataset. In addition to the probability levels described so far, there is the probability that the
detector in (16) simultaneously flags two (or more) observations during a round of IDS. Here, this is
referred to as statistical overlap. Statistical overlap occurs when two (or more) Baarda’s w-test statistics
are equal. For instance, if the correlation coefficient between two w-test statistics (ρwi ,wj ) were exactly

1.00 (or −1.00), i.e., if ρwi ,wj = ±1.00, then the alternative hypothesis, say,H(i)
A , would have the same

distribution as another one, H(j)
A . Th would mean that those hypotheses would not be distinguished,

i.e., they would not be separable, and an outlier would not be identified [2]. Note that the correlation
ρwi ,wj provides an indication of whether or not the system redundancy is sufficient to identify an
outlier. When the correlation coefficient between two w-test statistics is exactly 1.00 (or −1.00), i.e.,
ρwi ,wj = ±1.00, a statistical overlap Pol is expected to occur. We further discuss Pol when we present
the results.

In contrast to the data snooping single run, the success rate of correct detection PCD for
IDS depends on the sum of the probabilities of correct identification PCI , wrong exclusion (PWE),
over-identification cases (Pover+ and Pover−), and statistical overlap (Pol), i.e.,

PCD = 1−PMD = PCI + PWE + Pover+ + Pover− + Pol (37)

It is important to mention that the probability of correct detection is the complement of the
probability of missed detection. Note from Equation (39) that the probability of correct detection PCD
is available even for cases in which the identification rate is null, PCI = 0. However, the probability
of correct identification (PCI) necessarily requires that the probability of correct detection PCD be
greater than zero. For the same reasons given for the data snooping single run in the previous section,
detecting is easier than identifying. In that case, we have the following relationship for the success rate
of correct outlier identification PCI :

PCI = PCD − (PWE + Pover+ + Pover− + Pol), (38)

such as
∃(PCI) ∈ [0, 1] ⇐⇒ (PCD) > 0 (39)

It is important to mention that the wrong exclusion PWE describes the probability of identifying
and removing a non-outlying measurement while the ‘true’ outlier remains in the dataset. In other
words, PWE is the Type III decision error for IDS). The overall wrong exclusion PWE is the result of the
sum of each individual contribution to PWE, i.e.,

PWE =
n−1

∑
i=1
PWE(i) (40)
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We can also compute a weighting factor, denoted by pi(PWE)
, for each individual contribution to

PWE as follows:

pi(PWE)
=
PWE(i)

PWE
, ∀i = 1, . . . , n− 1, (41)

so that

n−1

∑
i=1

pi(PWE)
=

n−1
∑

i=1
PWE(i)

PWE
(42)

The weighting factor pi(PWE)
is within a range of [0,1].

On the basis of the probability levels of correct detection PCD and correct identification PCI ,
the sensitivity indicators of minimal biases—Minimal Detectable Bias (MDB) and Minimal Identifiable
Bias (MIB)—for a given α′ can be computed as follows:

MDB = arg min
∇i
PCD(∇i) > P̃CD, ∀i = 1, · · · , n (43)

MIB = arg min
∇i
PCI(∇i) > P̃CI , ∀i = 1, · · · , n (44)

Equation (43) gives the smallest outlier ∇i that leads to its detection for a given correct detection
rate P̃CD, whereas (44) provides the smallest outlier∇i that leads to its identification for a given correct
identification rate P̃CI .

As a consequence of the inequality in (36), the MIB will be larger than MDB, i.e., MIB ≥ MDB.
For the special case of having only one single alternative hypothesis, there is no difference between the
MDB and MIB [46]. The computation of MDB0 is easily performed by Equations (13) or (15), whereas
the computation of the MDB in Equation (43) and the MIB in Equation (44) must be computed using
Monte Carlo because the acceptance region (as well as the critical region) for the case of multiple
alternative hypotheses is analytically intractable.

The non-centrality parameter for detection (λ(MDB)
q=1 ) and identification (λ(MIB)

q=1 ) for IDS can be
computed similarly to Equation (12) as follows, respectively:

λ
(MDB)
q=1 =

MDB2
(i)

σ2
∇i

(45)

λ
(MIB)
q=1 =

MIB2
(i)

σ2
∇i

(46)

Thus,

MIB(i)

MDB(i)
=

√√√√√ λ
(MIB)
q=1

λ
(MDB)
q=1

(47)

Note from Equation (47) that the relationship between the non-centrality parameters for detection
(λ(MDB)

q=1 ) and identification (λ(MIB)
q=1 ) do not depend on the variance (or standard deviation) of estimated

outlier σ2
∇i

.
In the case of IDS, the power depends not only on the rate of Type II and Type III decision errors

but also on the rate of over-identifications and the probability of statistical overlap. In the next section,
we provide a procedure for computing the errors and success rates associated with IDS.
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5. Computational Procedure for the Estimation of Success and Failure Rates of Iterative
Outlier Elimination

After finding the critical value k̂ by the process described in Section 3.1, the procedure based on
Monte Carlo is also applied to compute the probability levels of IDS when there is an outlier in the
dataset as follows (summarised as a flowchart in Figure 1).

First, random error vectors are synthetically generated on the basis of a multivariate normal
distribution because the assumed stochastic model for random errors is based on the matrix covariance
of the observations. Here, we use the Mersenne Twister algorithm [72] to generate a sequence of
random numbers and Box–Muller [73] to transform it into a normal distribution.

The magnitude intervals of simulated outliers are user-defined. The magnitude intervals are
based on the standard deviation of the observation, e.g., |3σ| to |6σ|, where σ is the standard deviation
of the observations. Since the outlier can be positive or negative, the proposed algorithm randomly
selects the signal of the outlier (for q = 1). Here, we use the discrete uniform distribution to select the
signal of the outlier. Thus, the total error (ε) is a combination of random errors, and its corresponding
outlier is as follows:

ε = e + ci∇i (48)

In Equation (48), e is the random error generated from the normal distribution according to
Equation (2), and the second part ci∇i is the additional parameter that describes the alternative
model according to Equation (8). Next, we compute the least-squares residuals vector according to
Equation (3), but now we use the total error (ε) as follows:

ê = Rε (49)

For IDS, the hypothesis of (8) for q = 1 (one outlier) is assumed, and the corresponding test
statistic is computed according to (9). Then, the maximum test statistic value is computed according
to Equation (16). Now, the decision rule is based on the critical value k̂ computed by Monte Carlo
(see the steps (24)–(28) from Section 3.1). After identifying the measurement suspected to be the most
likely outlier, it is excluded from the model, and least-squares estimation (LSE) and data snooping
are applied iteratively until there are no further outliers identified in the dataset. Every time that a
measurement suspected to be the most likely outlier is removed from the model, we check whether
the normal matrix ATW A is invertible or not. If the determinant of ATW A is 0, det|ATW A| = 0,
then there is a necessary and sufficient condition for a square matrix ATW A to be non-invertible.
In other words, we check whether or not there is a solution available in the sense of ordinary LSE after
removing a possible outlier.

The IDS procedure is performed for m experiments of random error vectors for each experiment
contaminated by an outlier in the ith measurement. Therefore, for each measurement contaminated by
an outlier, there are υ = 1, . . . , m experiments.
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Figure 1. Flowchart of the algorithm to compute the probability levels of Iterative Data Snooping (IDS)
for each measurement in the presence of an outlier.

The probability of correct identification PCI is obtained by the ratio between the correct
identification cases and possible cases. Thus, if m is the total number of Monte Carlo experiments
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(possible cases), then we count the number of times that the outlier is correctly identified (denoted as
nCI) and then approximate the probability of correct identification PCI as

PCI =
nCI
m

(50)

Similar to Equation (50), false decisions are computed as

PMD =
nMD

m
(51)

PWE =
nWE

m
(52)

Pover+ =
nover+

m
(53)

Pover− =
nover−

m
(54)

Pol =
nol
m

(55)

where:

• nMD is the number of experiments in which IDS does not detect the outlier (PMD corresponds to
the rate of missed detection);

• nWE is the number of experiments in which the IDS procedure flags and removes only one single
non-outlying measurement while the ‘true’ outlier remains in the dataset (PWE is the wrong
exclusion rate);

• nover+ is the number of experiments in which IDS correctly identifies and removes the outlying
measurement and others, and Pover+ corresponds to its probability;

• nover− represents the number of experiments in which IDS identifies and removes more than
one non-outlying measurement, whereas the ‘true outlier’ remains in the dataset (Pover− is the
probability corresponding to this error probability class); and

• nol is the number of experiments in which the detector in Equation (16) flags two (or more)
measurements simultaneously during a given iteration of IDS. Here, this is referred to as the
number of statistical overlap nol , and Pol corresponds to its probability.

In contrast to [12], in this paper, the probability levels associated with IDS are evaluated for
each observation individually and for each outlier magnitude. Furthermore, we take care to control
the family-wise error rate. In the next sections, we show the application of the algorithm described in
Figure 1 to compute statistical quantities for IDS.

6. On the Probability Levels of Iterative Outlier Elimination

In this experiment, we considered two closed levelling networks: one with a low correlation
between residuals and another one with a high correlation. For the low correlation case, we used the
network given by Rofatto et al. [60], whereas for the high correlation, we chose the network from
Knight et al. [43]. Figures 2a,b show the configuration of these networks, respectively.

Figure 3 shows an example of levelling for a single line. The equipment used to measure the
level difference is an electronic digital level. In this case, the instrument is designed to operate by
employing electronic digital image processing and is used in conjunction with a special barcoded staff
(also called a barcode rod). After an operator accomplishes rough levelling with a bull’s eye bubble,
an electronic digital level can be used to digitally obtain the barcoded staff reading. The result can be
recorded manually in a levelling field-book or automatically stored in the data collector of the digital
level. A simple height difference is obtained from the difference between the backsight staff reading
and the foresight staff reading. An example of a “digital level – barcode staff ” system is displayed in
Figure 4. For more details about digital levels, see, for example [75–77].
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△h6 

Figure 2. Levelling geodetic networks: (a) Levelling network adapted from [60] with a low correlation
between w-test statistics; (b) Levelling network adapted from [43] with a high correlation between
w-test statistics.

Digital Level 

hj 

hi 

backsight 

Barcode rod 

Horizontal line 
 of sight 

Tripod 

△hij  =  backsight – foresight 

{ 
foresight 

{ 

Direction of levelling 

Figure 3. Example of levelling for a single line: the digital level instrument is placed between the
points whose height difference is to be found. Special barcoded staffs are placed at these points and
then sighted through the digital level instrument.
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Figure 4. Example of a digital level – barcode staff system.

There are several levelling lines available for a levelling geodetic network. In the absence of
outliers, i.e., underH0, the model for levelling a geodetic network can be written in the sense of the
standard Gauss–Markov model in Equation (1) as follows:

∆hi−j + e∆hi−j
= hj − hi, (56)

where ∆hi−j is the height difference measured from point i to j, and e∆hi−j
is the random error associated

with the levelling measurement. Generally, one of these points has a known height h, from which
the height of another point is determined. The point with the known height is referred to here as the
control point or benchmark (denoted by CP).

From network (a) in Figure 2, we have one control point and four points with unknown
heights (A, B, C and D) for a total of four minimally constrained points. The control point is fixed
(hard constraint or non-stochastic variable). In that case, matrix A is given by

A =



−1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1
0 0 0 −1
−1 0 0 1
−1 0 1 0

0 −1 0 0
0 −1 0 1
0 0 −1 0


(57)

In Figure 2, the red dashed lines are the external connections among the points of the network
(a), whose measurements are ∆hA−CP, ∆hA−B, ∆hB−C, ∆hC−D and ∆hD−CP, whereas the blue dashed
lines are the internal connections, whose measurements consist of ∆hA−D, ∆hA−C, ∆hB−CP, ∆hB−D
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and ∆hC−CP. The distances of the external and internal connections are considered 240 m and 400 m,
respectively. The equipment used is a spirit level with a nominal standard deviation for a single staff
reading of 0.02 mm/m. Lines of sight distances are kept at 40 m. Each partial height difference, in turn,
involves one instrument setup and two sightings: forward and back. Thus, the standard deviation for
each total height difference equals

σ∆hi−j
=
√

2p× 40 m× 0.02 mm
m

=
√

2p× 0.8 mm,
(58)

where p is the number of partial height differences. In this case, each total height difference between
external or internal connections is made of, respectively, three or five partial height differences.
The readings are assumed to be uncorrelated and have equal uncertainty. In this case, the standard
deviations of the measures for external and internal connections are 1.96 mm and 2.53 mm, respectively.

On the other hand, from network (b) in Figure 2, there are two control stations (fixed) and three
user-stations with unknown heights. Matrix A is given by

A =



1 0 0
−1 1 0

0 −1 0
0 0 1
0 0 −1
−1 0 1


(59)

For network (b), we have the following measurements: ∆h1 = ∆hCP1−P2 , ∆h2 = ∆hP2−P3 , ∆h3 =

∆hP3−CP4 , ∆h4 = ∆hCP4−P5 , ∆h5 = ∆hP5−CP1 and ∆h6 = ∆hP2−P5 . In this case, the covariance matrix of
the measurements (metro units) is given by [43]

Qe =



5.5 3.7 0.3 −3.2 −0.5 0.1
3.7 3.9 0.0 −0.8 −0.6 −0.7
0.3 0.0 0.8 −1.4 0.1 0.8
−3.2 −0.8 −1.4 5.4 −0.3 −2.1
−0.5 −0.6 0.1 −0.3 0.2 0.3

0.1 −0.7 0.8 −2.1 0.3 1.4


(60)

The correlation coefficients ρwi ,wj between w-test statistics were computed for both network (a)
and network (b) according to Equation (23). Table 2 provides the correlation ρwi ,wj for network (a),
and Table 3 provides it for network (b). In general, the correlation ρwi ,wj for network (b) is much
higher than that for network (a).

From Table 2, we observe that the maximum correlation is ρwi ,wj = ±0.4146 for network (a) (i.e.,
ρwi ,wj = ±41.46%). In this case, as the correlation coefficient is less than 50%, the missed detection rate
PMD is expected to be larger than the other decision errors of IDS.

From Table 3, it is expected that the wrong exclusion rate PWE will be significantly more
pronounced than other wrong decisions of IDS. This is because of the high correlation between
test statistics for network (b). Note also that the correlation coefficient between the second (∆h2)
and third ∆h3 measurement is exactly 1.00 (i.e., ρwi ,wj = 100%). This means that if one of these
measurements is an outlier, then its corresponding w-test statistics will overlap. Therefore, an outlier
can never be identified if it occurs in one of these measurements, but it can be detected.
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Table 2. Correlation matrix of w-test statistics for levelling network (a).

∆hi−j A−CP A−B C−B D−C CP−D D−A C−A CP−B D−B C−CP

A−CP 1.0000 −0.4146 −0.0488 −0.0488 −0.4146 −0.3464 −0.3134 −0.3464 −0.0660 −0.3134
A−B 1.0000 0.4146 0.0488 0.0488 −0.3134 −0.3464 0.3464 0.3134 0.0660
C−B 1.0000 0.4146 0.0488 −0.0660 −0.3464 −0.3134 −0.3464 0.3134
D−C 1.0000 0.4146 −0.3134 0.3134 −0.0660 −0.3464 −0.3464

CP−D 1.0000 0.3464 0.0660 −0.3134 0.3134 −0.3464
D−A 1.0000 −0.2565 −0.0223 −0.2565 0.0223
C−A 1.0000 0.0223 −0.0223 0.2565

CP−B 1.0000 −0.2565 −0.2565
D−B 1.0000 −0.0223

C−CP 1.0000

Table 3. Correlation matrix of w-test statistics for levelling network (b).

∆hi−j ∆h1 ∆h2 ∆h3 ∆h4 ∆h5 ∆h6

∆h1 1.00 −0.41 −0.41 0.96 0.98 0.97
∆h2 1.00 1.00 −0.36 −0.50 −0.61
∆h3 1.00 −0.36 −0.50 −0.61
∆h4 1.00 0.98 0.93
∆h5 1.00 0.98
∆h6 1.00

In the following subsections, we compute and analyse the probability levels associated with IDS
for two cases. In the first part, the dataset is considered to be free of outliers, whereas, in the second
one, there is an outlier in the dataset.

6.1. Scenario Coinciding with the Null Hypothesis: Absence of Outliers

In this context, we investigated the extent to which the Bonferroni correction deviates from the
distribution of max-w on the basis of Monte Carlo. For this purpose, we considered the following
Type I decision error rates: α′ = 0.001, α′ = 0.0027, α′ = 0.01, α′ = 0.025, α′ = 0.05 and α′ = 0.1. It is
important to mention that the probability of a Type I Error of α′ = 0.0027 corresponds to a critical
value of k = 3 in the case of a single test, which is known as the 3σ-rule [32]. We also set up m = 200,000
Monte Carlo experiments, as proposed by [12]. For each α′, we computed the corresponding critical
value according to Bonferroni from Equation (22) and on the basis of Monte Carlo from the procedure
described in Section 3, specifically from step (24) to (28). Both methods were applied for networks
(a) and (b) in Figure 2. The result is displayed in Figure 5.

From Figure 5, we observe that the critical values computed from Monte Carlo are always
smaller than those values computed by Equation (22) for both networks. This is because matrix R in
Equation (3) promotes the correlation between residuals. Note that matrix R depends on the network
geometry given by matrix A. This means that we will always have some degree of correlation between
residuals. If we neglect the correlation between residuals, as in (22), then we are assuming that there
is no association between residuals. Thus, we overestimate the probability of max-w by using (22),
and the dashed curve in Figure 5 is always above the solid curve. Therefore, with Bonferroni, the user
has no full control over Type I Errors. We point out some particularities as follows.

The Bonferroni method can only be used with a good approximation to control the Type I Error
of IDS for the case in which we have a measurement system with high redundancy and low residual
correlation (i.e., low correlation between w-test statistics ρwi ,wj ) and for small α′. This is the case for
network (a). On the other hand, Bonferroni does not work well for network (b). In the latter case,
the effect is more pronounced because of the low redundancy and high residual correlation. In general,
under the condition that the correct decision is made when the null hypothesisH0 is accepted, it is less
likely to get a large max-w than the prediction by (22).
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Figure 5. Critical values of max-w for both levelling networks (a) in blue and (b) in red. Solid curves
were obtained from the Monte Carlo procedure in Section 4 with m = 200,000 Monte Carlo experiments.
Dashed curves were obtained from Bonferroni in (22).

Here, we treated the extreme (i.e., maximum absolute) normalised residuals max-w in (16) directly
as a test statistic. Figure 6 shows the distribution of max-w for both networks (a) and (b). We observe
that the distribution of max-w for network (a) gets closer to a normal distribution than network (b).
This means that the smaller the correlation between residuals, the smaller the Type I decision error rate
α′ and, therefore, the larger the critical values. Figure 7 shows the cumulative distribution of max-w
for both networks (a) and (b). Figure 7 reveals that, for the same level of error probability, the critical
value for network (a) is always smaller than the one computed for network (b).

Figure 6. Probability histograms of max-w for networks (a) in blue and (b) in red.
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Figure 7. Cumulative frequency of max-w for networks (a) in blue and (b) in red.

Until now, our outcomes have been investigated under the condition that H0 is true. In the
next subsection, we analyse the probability levels of IDS in the presence of an outlier. In that case,
the decision rule is based on critical values from the max-w distribution, as detailed in Table 4. It is
important to note that the critical value 3 of the 3σ-rule is not valid for a multiple test case. In fact,
the critical values for outlier identification (i.e., a multiple test) depend on the geometry of the network
and the sensor uncertainty. Therefore, the probability associated with the 3σ-rule for network (a) will
be close to α′ = 0.025, and that for network (b) will be close to α′ = 0.0067.

Table 4. Critical values from the Bonferroni and Monte Carlo procedures for networks (a) and (b).

α′ kbon f from (22) for Net (a) kbon f from (22) for Net (b) k̂ from (28) for Net (a) k̂ from (28) for Net (b)

0.001 3.89 3.76 3.89 3.56
0.0027 3.64 3.51 3.64 3.28
0.01 3.29 3.14 3.28 2.88
0.025 3.02 2.87 3 2.56
0.05 2.81 2.64 2.77 2.29
0.1 2.58 2.39 2.52 2

6.2. Scenario Coinciding with an Alternative Hypothesis: Presence of an Outlier

In this scenario, there is an outlier in the dataset. Thus, the correct decision is made when the
alternative hypothesisH(i)

A from Equation (8) is accepted. In this step, we computed the probability
levels of IDS using the procedure in Section 5. The decision rule is based on critical values computed
by Monte Carlo. These values are presented in Table 4. We arbitrarily defined the outlier magnitude
from |3σ| to |8σ| for network (a) and |1σ| to |12σ| for network (b).

The sensitivity indicators MDB and MIB were also computed according to Equations (43) and (44),
respectively. The success rates for outlier detection and outlier identification were taken as equal to 0.8,
i.e., P̃CD = P̃CI = 0.8, respectively.

6.2.1. Geodetic Network with Low Correlation between Residuals

We start from network (a) with a low correlation between residuals. We observe that there is
a high degree of homogeneity for network (a). This can be explained by the redundancy numbers,
denoted by (ri). The redundancy numbers are the elements of the main diagonal of matrix R in
Equation (3). The redundancy number (ri) is an internal reliability measure that represents the ability
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of a measurement to project the measurement error in the least-squares residuals. Then, the higher the
number of redundancy, the higher the resistance of the measurement to outliers.

The redundancy numbers for the measurements constituting external connections are identical
and equal to ri = 0.519, whereas the measurements constituting external connections are also identical
but equal to ri = 0.681. Consequently, the probability levels associated with IDS are practically
identical for both external and internal connections. Thus, we subdivided our result into two parts:
mean values of the probability levels for external connections and mean values of the probability levels
for internal connections.

Figure 8 shows the probability of correct identification (PCI) and correct detection (PCD) in the
presence of an outlier for both external and internal connections. In general, we observe that the larger
the Type I Error α′ (or the lower the critical value k̂), the higher the rate of correct detection PCD. This is
not fully true for outlier identification PCI .

(a) (b) 

(c) (d) 

Figure 8. Probability of correct identification (PCI) and correct detection (PCD) for network (a): (a) PCI

for the measurements constituting external connections. (b) PCI for the measurements constituting
internal connections. (c) PCD for the measurements constituting external connections. (d) PCD for the
measurements constituting internal connections.

We observe that the probability of correct identification PCI becomes constant from a certain
outlier magnitude. Moreover, the larger the α′, the faster the success rate at which outlier identification
PCI stabilizes. In other words, the larger the α′, the higher the PCI , but only up to a certain limit of
outlier magnitude. After this bound, there is an inversion: the larger the α′, the lower the probability
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of correct identification PCI . This can be explained by the following: (i) the larger the α′, the larger
the critical region (or the smaller the acceptance region) of the working hypothesisH0; (ii) the larger
the critical region, the smaller the size of the test; (iii) the smaller the size of the test, the less likely
the hypothesis test will identify a small difference. In other words, there is no significant difference
among the probabilities of correct identification PCI for outliers lying within a certain location of
the critical region. Therefore, the probabilities of correct identification PCI for those outliers are
practically identical.

Let us take the probability of correct identification PCI for external connections in Figure 8 as an
example. If the user chooses α′ = 0.1, then the test will be limited to 90% of the acceptance region.
In this case, an outlier of 6.6σ will have a practically identical probability of correct identification of
PCI = 90% of an outlier of 8σ (or greater than 8σ). However, if one chooses an α′ = 0.001 (99.9%
of acceptance region), then a 6.6σ outlier would not be identified at the same rate as an 8σ outlier.
Therefore, in that case, the Type I decision error α′ (or the critical value k̂) restricts the maximum rate
of correct outlier identification PCI .

Note also that there are no significant differences between detection PCD and identification PCI
rates for small Type I decision errors (see, e.g., α′ = 0.001 and α′ = 0.0027).

Furthermore, the probabilities of correct detection PCD and identification PCI are greater for
internal than external connections. For an outlier of 4.5σ and α′ = 0.1, for instance, the probability of
correct identification is PCI = 67% for external connections, whereas, for internal connections, it is
PCI = 80%.

Next, we compared the sensitivity indicators MDB and MIB by considering a success rate
of 0.8 (80%) for both outlier identification and outlier detection, i.e., P̃CI = P̃CD = 80%
(see Equations (43) and (44). The user can also find the MDB and MIB for other success rates. The result
is displayed in Figure 9. We observe that the larger the Type I decision error α′, the more that the MDB
deviates from the MIB. In other words, the MIB stabilizes for a certain α′, whereas the MDB continues
to decrease. It is harder to identify than it is to detect an outlier. Therefore, the MIB will always be
greater than or equal to the MDB.

Figure 9. Minimal Detectable Bias (MDB) and Minimal Identifiable Bias (MIB) for both external and
internal connections and for each α′.

The standard deviations of estimated outlier σ∇i for external and internal connection
measurements are 2.7 mm and 3 mm, respectively. These σ∇i values were obtained by means of
the square-root in Equation (14). Note from Equations (45) and (46) that the higher the accuracy of the
outlier estimate, the lower the MDB and MIB, respectively. However, note from Equation (47) that
the relationship between the MIB and MDB does not depend on σ2

∇i
. This is true when the outlier

is treated as bias. In other words, if outliers are treated as bias, then they act like systematic errors
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by shifting the random error distribution by their own value [13]. The result for P̃CI = P̃CD = 0.8 is
summarised in Table 5.

As can be seen from Table 5, in general, the MIB does not deviate too much from the MDB. This is
because of a low correlation between residuals. The difference becomes larger when the Type I decision
error α′ is increased. Note, for instance, that the MDB and MIB are practically identical for Type I
decision errors of α′ = 0.001 and α′ = 0.0027. In other words, an outlier is detected and identified
with the same probability level when there is a low correlation between residuals and for small α′.
Therefore, we observe that the larger the α′, the greater the difference between the MIB and MDB.
In this case, the difference between the MIB and MDB is governed by the user-defined α′.

Table 5. Relationship between the MDB and MIB for network (a) by considering P̃CI = P̃CD = 0.8.

α′
(External Connections) (Internal Connections)

λ
(MDB)
q=1 λ

(MIB)
q=1 MIB/MDB λ

(MDB)
q=1 λ

(MIB)
q=1 MIB/MDB

0.001 22.27 22.61 1.01 22.36 22.52 1.00
0.0027 19.95 20.27 1.01 20.01 20.23 1.01

0.01 16.86 17.46 1.02 17.03 17.37 1.01
0.025 14.3 15.7 1.05 14.41 15.69 1.04
0.05 12.46 14.85 1.09 12.59 14.41 1.07
0.1 10.51 14.58 1.18 10.63 14.10 1.15

From Table 6, it can also be noted that the MIB is higher for internal than external connections.
This is because internal connections are less precise than external connections. Therefore, the effect on
the heights (model parameters) of an unidentified outlier is greater if the outlier magnitude is equal
to the MIB of the internal connections. However, from Figure 8, we observe that it would be easier
to identify an outlier if it occurred in the measurements that constitute internal connections than if it
occurred in external connections.

Table 6. MIBs for each α′ and for P̃CI = 80%.

α′
MIB (m) MIB (m)

(External Connections) (Internal Connections)

0.001 0.0129 0.0145
0.0027 0.0122 0.0138

0.01 0.0114 0.0128
0.025 0.0108 0.0121
0.05 0.0105 0.0116
0.1 0.0104 0.0115

It is important to mention that both the MDB and MIB are ’invariant’ with respect to the control
point position CP. This is a well-known fact and can already follow from the MDB and MIB definitions
in Equations (45) and (46), respectively, which show that both the MDB and MIB are driven by the
variance matrices of the measurements and adjusted residuals.

Figure 10 provides the result for the Type III decision error (PWE). In the worst case, we have
PWE = 0.12 (12%) for |3σ|. In general, PWE is larger for external than internal connections. This is
linked to the fact that the residual correlation ρwi ,wj in Table 2 is higher for external than internal
connections. Furthermore, the larger the Type I error rate α′, the larger the PWE for both internal and
external connections. Because of the low probability of PWE decision errors for network (a), the user
may opt for a larger α′ so that the Type II decision error PMD is as small as possible. Thus, it is possible
to guarantee a high outlier identification rate. This kind of analysis can be performed, for instance,
during the design stage of a geodetic network (see, e.g., [60]).



Remote Sens. 2020, 12, 860 26 of 41

(a) (b) 

Figure 10. Probability of committing a Type III decision error (PWE) for network (a): (a) PWE for
external connections. (b) PWE for internal connections.

Figure 10 gives only the overall rate of PWE. Figure 11, on the other hand, displays the individual
contributions to PWE according to Equation (40) for α′ = 0.1. As expected, the higher the correlation
coefficient between w-test statistics ρwi ,wj , the greater the contribution of the measurement to PWE
(see, e.g., [2]). In that case, we can also verify from Figure 12 that the larger the redundancy number ri,
the smaller the PWE. Moreover, the larger the outlier magnitude, the smaller the PWE. We also observe
from Figure 13 that the larger the ρwi ,wj , the larger the weighting factor pi(PWE)

. The weighting factors
pi(PWE)

for the highest correlations (i.e., ρwi ,wj = 0.415 for ri = 0.519 and ρwi ,wj = 0.346 for ri = 0.681)
increase as the outlier magnitude increases. However, this is not significant. While the weighting
factor pi(PWE)

for the highest correlation coefficient increases by around 1%, the overall PWE decreases
by around 20%. In general, the weighting factor pi(PWE)

is relatively constant. The weighting factor
pi(PWE)

was obtained by Equation (41).

(a) (b) 

Figure 11. Individual contribution of external and internal connections to the overall PWE and their
relationship with the correlation coefficient ρwi ,wj for network (a). (a) Individual contribution to PWE

by external connections. (b) Individual contribution to PWE by internal connections.
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Figure 12. Individual contributions to the overall PWE for network (a) and their relationship with the
redundancy number ri for residuals with the same correlation coefficient ρwi ,wj and α′ = 0.1.

(a) (b) 

Figure 13. Weighting factors pi(PWE)
for network (a) and for α′ = 0.1. (a) Weighting factors pi(PWE)

for
external connections. (b) Weighting factors pi(PWE)

for internal connections.

The over-identification cases Pover+ and Pover− are presented in Figure 14. In general, the larger
the Type I decision error α′, the larger the over-identification cases for that network. The larger the
magnitude of the outlier, the larger the Pover+ and smaller the Pover−. For small α′, we observe that
Pover− and Pover+ are practically null (see, e.g., for α′ = 0.001 and α′ = 0.0027). In general, the larger
the correlation coefficient ρwi ,wj , the smaller the Pover+ and the larger the Pover−. Moreover, we also
observe that the larger the redundancy number ri, the larger the Pover+ and the smaller the Pover−.

The probability of statistical overlap Pol is practically null for this network. This is because each
point of network (a) has at least four connections. This means that even with an exclusion, there are still
three measurement levels per point (i.e., three connections per point), which guarantees the minimum
redundancy necessary for the second round of IDS. The very low residual correlation of this network
also contributes to the non-occurrence of statistical overlap.

The results presented so far are valid for the case of a system with high redundancy and low
residual correlation. In the next section, we present the results for a system with low redundancy and
high residual correlation.
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(a) (b) 

(c) (d) 

Figure 14. Over-identification cases for network (a). (a) Pover+ for external connections. (b) Pover+ for
internal connections. (c) Pover− for external connections. (d) Pover− for internal connections.

6.2.2. Geodetic Network with High Correlation Between Residuals

Now, the correlation between residuals is very high. This is the case for network (b) detailed in
Figure 2. Since the measurements are correlated for network (b), instead of redundancy numbers,
reliability numbers (r̄i) should be given as an internal reliability measure, as follows [43]:

r̄i = cT
i QecicT

i WQêWci, ∀i = 1, · · · , n (61)

The reliability numbers (r̄i) in Equation (61) are equivalent to redundancy numbers when it
is assumed that the measurements are uncorrelated. Table 7 gives the reliability numbers (r̄i),
the standard deviation of each measurement σ∆hi−j

and the standard deviation of each estimated
outlier σ∇i for network (b).

Table 7. Reliability numbers (r̄i), standard deviation σ∆hi−j
and standard deviation of estimated outlier

σ∇i for network (b).

∆hi−j r̄i σ∆hi−j (m) σ∇i (m)

∆h1 10.58 2.35 0.72
∆h2 0.62 1.97 2.50
∆h3 0.13 0.89 2.50
∆h4 13.68 2.32 0.63
∆h5 1.95 0.45 0.32
∆h6 3.56 1.18 0.63

The probabilities of correct identification (PCI) for this network are displayed in Figure 15.
The·critical values (k̂) for network (b) are those given in Table 4. The probability levels of correct
detection (PCD) are provided in Figure 16.
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(a) (b) 

(c) (d) 

Figure 15. Probability of correct identification (PCI) for network (b). (a) PCI for ∆h1. (b) PCI for ∆h4.
(c) PCI for ∆h5. (d) PCI for ∆h6.

In contrast to network (a), the probability of correct identification (PCI) for network (b) is different
for each measurement. It is also found that the larger the Type I decision error α′, the higher the
probability of correct identification (PCI). However, it is only true up to a certain level of outlier
magnitude. After this magnitude level, the larger the Type I decision error α′, the lower the probability
of correct identification (PCI).

The user-defined Type I error α′ has indeed become less significant at a certain outlier magnitude.
Note, for example, that the probability of correct identification for measurement ∆h1 for α′ = 0.1 is
higher than that for α′ = 0.001 when the outlier magnitude is between 1σ and 1.5σ. For a magnitude
greater than 1.5σ, we note that the larger the Type I decision error α′, the lower the probability of
correct identification PCI . The choice of Type I error α′, however, has no significant effect on the
probability of correct identification PCI for an outlier magnitude greater than 1.5σ. This analysis can
also be done with ∆h4, ∆h5 and ∆h6.

There is no probability of identification for both measurements ∆h2 and ∆h3. This is because the
residual correlation of these measurements is equal to exactly one (i.e., ρwi ,wj = 1.00). Furthermore,
the reliability numbers (r̄i) in Table 7 for those measurements are close to zero. However, if one of
those measurements were affected by a single outlier, then IDS would have the ability to detect it.
In other words, there is reliability in terms of outlier detection for ∆h2 and ∆h3.



Remote Sens. 2020, 12, 860 30 of 41

(a) (b) 

(c) (d) 

(e) (f) 

Figure 16. Probability of correct detection (PCD) for network (b). (a) PCD for ∆h1. (b) PCD for ∆h4.
(c) PCD for ∆h5. (d) PCD for ∆h6. (e) PCD for ∆h2. (f) PCD for ∆h3.

We observe that the higher the reliability numbers in Table 3, the higher the power of detection
PCD and identification PCI . In general, the larger the Type I decision error α′, the lower the probability
of missed detection PMD and, therefore, the higher the probability of correct detection PCD.

The sensitivity indicators MDB and MIB for ∆h1, ∆h4, ∆h5 and ∆h6 are shown in Tables 8–11,
respectively. Both MIBs and MDBs were computed for each α′ and for a success rate of 0.8 (80%) for
both outlier detection and identification, i.e., P̃CD = P̃CI = 80%. The non-centrality parameters for
outlier detection and identification were computed according to Equations (45) and (46), respectively.
In general, the larger the Type I decision error α′, the larger the MIB and the smaller the MDB. In other
words, the larger the Type I decision error α′, the greater the chances of outlier detection but the lower
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the chances of outlier identification. In that case, the larger the Type I Error α′, the larger the MIB/MDB
ratio. Therefore, an outlier with a size of the MDB should be enlarged in order to identify it [1,2,12,46].

Table 8. Relationship between the MDB and MIB for ∆h1 and for P̃CD = P̃CI = 80%.

α′ MIB MDB λ
(MIB)
q=1 λ

(MDB)
q=1 MIB/MDB

0.001 3.700σ 1.327σ 145.839 18.759 2.788
0.0027 3.700σ 1.240σ 145.839 16.380 2.984
0.010 3.750σ 1.109σ 149.807 13.102 3.381
0.025 3.840σ 1.009σ 157.084 10.846 3.806
0.050 3.980σ 0.930σ 168.747 9.214 4.280
0.100 4.320σ 0.830σ 198.810 7.339 5.205

Table 9. Relationship between the MDB and MIB for ∆h4 and for P̃CD = P̃CI = 80%.

α′ MIB MDB λ
(MIB)
q=1 λ

(MDB)
q=1 MIB/MDB

0.001 2.558σ 1.170σ 88.735 18.564 2.186
0.0027 2.566σ 1.093σ 89.291 16.201 2.348
0.010 2.598σ 0.982σ 91.532 13.077 2.646
0.025 2.659σ 0.895σ 95.902 10.863 2.971
0.050 2.784σ 0.820σ 105.107 9.118 3.395
0.100 3.082σ 0.738σ 128.771 7.390 4.174

Table 10. Relationship between the MDB and MIB for ∆h5 and for P̃CD = P̃CI = 80%.

α′ MIB MDB λ
(MIB)
q=1 λ

(MDB)
q=1 MIB/MDB

0.001 11.290σ 3.065σ 252.065 18.577 3.684
0.0027 11.260σ 2.863σ 250.727 16.209 3.933
0.010 11.315σ 2.565σ 253.183 13.011 4.411
0.025 11.360σ 2.328σ 255.201 10.717 4.880
0.050 11.530σ 2.127σ 262.896 8.947 5.421
0.100 11.940σ 1.906σ 281.925 7.184 6.264

Table 11. Relationship between the MDB and MIB for ∆h6 and for P̃CD = P̃CI = 80%.

α′ MIB MDB λ
(MIB)
q=1 λ

(MDB)
q=1 MIB/MDB

0.001 5.680σ 2.289σ 113.183 18.375 2.482
0.0027 5.700σ 2.134σ 113.981 15.976 2.671
0.010 5.695σ 1.908σ 113.781 12.769 2.985
0.025 5.825σ 1.729σ 119.035 10.492 3.368
0.050 6.021σ 1.579σ 127.180 8.747 3.813
0.100 6.394σ 1.409σ 143.426 6.965 4.538

The overall probabilities of wrong exclusion (PWE) for network (b) are provided in Figure 17.
In general, we observe that the wrong exclusion rate (PWE) increases up to a certain outlier magnitude
and, from this point on, the wrong exclusion rate (PWE) starts to decline, and the effect of the
user-defined Type 1 decision error (α′) on PWE becomes neutral in practical terms. This effect is
due to the residuals’ correlation. To see this effect more clearly, we also computed the individual
contribution of each measurement to the overall wrong exclusion PWE and their corresponding
weighting factors given by Equations (40) and (41), respectively.

The individual contributions to the overall PWE and their weighting factors for α′ = 0.1 are
displayed in Figures 18 and 19, respectively. It is important to mention that the behaviour shown
in Figures 18 and 19 is similar to that for other α′ values. We observe that the correlation coefficient
(ρwi ,wj ) only has a direct relationship with PWE for a certain outlier magnitude. Let us consider the



Remote Sens. 2020, 12, 860 32 of 41

case in which ∆h6 is set up as an outlier. In that case, the larger the correlation coefficient (ρwi ,wj ),
the higher the individual contribution to PWE. Of course, this only holds true if the outlier magnitude
is larger than 3.2σ. This is also evident from the results of the weighting factors in Figure 19.

(a) (b) 

(c) (d) 

(e) (f) 

Figure 17. Probability of wrong exclusion (PWE) for network (b). (a) PWE for ∆h1. (b) PWE for ∆h4. (c)
PWE for ∆h5. (d) PWE for ∆h6. (e) PWE for ∆h2. (f) PWE for ∆h3.

An important highlight is the association between the MIB and the contribution of each
measurement to the probability of wrong exclusion PWE in Figure 18.

We observe that it is possible to find the value of the MIB at high success rates when the
individual contributions to the overall wrong exclusion PWE of a given outlier start to decrease
simultaneously. It is important to mention that this simultaneous decay occurs when there is a direct
relationship between the correlation coefficient (ρwi ,wj ) and the wrong exclusion rate PWE. In that case,
the identifiability of a given outlier can be verified for a given significance level α′ and probability of
correct identification PCI .

Figure 20 illustrates an example for measurements ∆h1 and ∆h4. The black dashed line
corresponds to the probability of correct identification PCI and the respective MIB for α′ = 0.001.
Note that when the effect of all measurements on PWE decreases, it is possible to find an outlier
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magnitude that can be identified. In other words, the effect of the correlation between residuals (ρwi ,wj )
becomes insignificant at a certain outlier magnitude, which increases the probability of identification.

(a) (b) 

(c) (d) 

(e) (f) 

Figure 18. Individual contribution of each measurement to the overall wrong exclusion probability
(PWE) for network (b) and for α′ = 0.1. (a) Individual contribution to PWE for ∆h1. (b) Individual
contribution to PWE for ∆h4. (c) Individual contribution to PWE for ∆h5. (d) Individual contribution to
PWE for ∆h6. (e) Individual contribution to PWE for ∆h2. (f) Individual contribution to PWE for ∆h3.

The probabilities of wrong exclusion for both ∆h2 and ∆h3 are smaller than those for the other
cases. This is because of the correlation between residuals (ρwi ,wj ). In fact, we also note that
although there is no reliability in terms of outlier identification for cases in which the correlation
is ρwi ,wj = 1.00 (i.e., 100%), there is reliability for outlier detection. In this case, outlier detection is
caused by overlapping w-test statistics. The result for statistical overlap (Pol) is displayed in Figure 21.
In general, the larger the Type 1 decision error α′, the larger the statistical overlap (Pol).

The over-identification cases (Pover+ and Pover−) are displayed in Figures 22 and 23, respectively.
We observe that the larger the Type I decision error (α′), the larger the over-identification cases.
It should be noted that Pover+ is always larger than Pover−. Over-identification Pover− is practically
null. The over-identification cases Pover+ for ∆h2, ∆h3 and ∆h6 and Pover− for ∆h1 are exactly null.
The over-identifications Pover− for ∆h2 and ∆h3 are less than 0.2% and are therefore not shown here.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 19. Weighting factors (pi(PWE)
) of each measurement’s contribution to the overall wrong

exclusion probability (PWE) for network (b) and for α′ = 0.1. (a) Weighting factors of contributions
to PWE for ∆h1. (b) Weighting factors of contributions to PWE for ∆h4. (c) Weighting factors of
contributions to PWE for ∆h5. (d) Weighting factors of contributions to PWE for ∆h6. (e) Weighting
factors of contributions to PWE for ∆h2. (f) Weighting factors of contributions to PWE for ∆h3.
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(a) (b) 

Figure 20. Relationship of the individual contributions to the overall probability of wrong exclusion
(PWE) with correct identification rate PCI and MIB for α′ = 0.001. (a) Example for measurement ∆h1.
(b) Example for measurement ∆h4.

(a) (b) 

(c) (d) 

(e) (f) 

Figure 21. Probability of statistical overlap (Pol) for network (b). (a) Pol for ∆h1. (b) Pol for ∆h4.
(c) Pol for ∆h5. (d) Pol for ∆h6. (e) Pol for ∆h2. (f) Pol for ∆h3.
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(a) (b) 

(c) 

Figure 22. Probability of over-identification (Pover+) for network (b). (a) Pover+ for ∆h1. (b) Pover+ for
∆h4. (c) Pover+ for ∆h5.

(a) (b) 

(c) 

Figure 23. Probability of over-identification (Pover−) for network (b). (a) Pover− for ∆h4. (b) Pover− for
∆h5. (c) Pover− for ∆h6.
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7. Conclusions and Outlook

In this paper, we propose a procedure to compute the probability levels associated with an
iterative outlier elimination procedure. This iterative outlier elimination procedure is known among
geodesists as iterative data snooping IDS. On the basis of the probability levels of IDS, the sensitivity
indicators—the Minimal Detectable Bias (MDB) and Minimal Identifiable Bias (MIB)—can also be
determined for a given measurement system.

We emphasize that the probability levels associated with IDS in the presence of an outlier
were analysed as a function of the user-defined Type I decision error (α′), outlier magnitude (∇i),
correlation between test statistics (ρwi ,wj ) and reliability indicators (i.e., redundancy number ri and
reliability number r̄i). It is important to highlight that these probability levels are based on critical
values that were optimized via Monte Carlo.

We highlight the main findings of the paper below:

1. If one adopts the Bonferroni correction to compute the critical value of the test statistic associated
with IDS, one does not have control over Type I decision errors. This is only true for small α′

values and for a measurement system with high redundancy and a low correlation between test
statistics.

2. If one maintains the condition of a measurement system with a low correlation between test
statistics, the probability of wrong exclusion PWE is too low. In that case, one should opt for
a larger α′ so that the probability of missed detection PMD is as small as possible. Thus, it is
possible to guarantee a high outlier identification rate. However, we verify that, under certain
circumstances, the larger the Type I decision error α′, the higher the probability of correct detection
PCD but the lower the probability of correct identification PCI . In that case, the larger the Type I
Error α′, the larger the ratio between the sensitivity indicators MIB/MDB.

3. The larger the Type I error (α′), the higher the probability of correct outlier identification (PCI).
However, it is valid only to a certain limit of outlier magnitude (threshold). There is an inversion
when the outlier magnitude is greater than this threshold: i.e., the larger the α′, the lower the PCI .
This is more critical in the case of a measurement system with a high correlation between test
statistics. Moreover, the Type I decision error α′ restricts the maximum rate of PCI .

4. We also observe that it is possible to find the value of the MIB when the contributions of each
measurement to the probability of wrong exclusion PWE start to decline simultaneously. In that
case, the identifiability of a given outlier can be verified for a given α′ and PCI . In other words,
for a certain outlier magnitude, the effect of the correlation between test statistics becomes
insignificant, which increases the probability of identification. Moreover, if a small outlier
magnitude (outlier with a magnitude close to the measurement uncertainty) were to arise for a
measurement system with a high correlation between test statistics, the alternative hypotheses
would not be distinguished; i.e., this outlier would never be identified.

5. The larger the Type I decision error α′, the larger the over-identification cases. The over-
identification case Pover+ is always larger than Pover−. We also note that the lower the correlation
between test statistics, the higher the probability of over-identification positive Pover+. For small
α′ (close to α′ = 0.001), Pover− is practically null.

6. When the correlation between two test statistics is equal to exactly 1.00, PCI does not exist,
but there is PCD, which is mainly caused by Pol .

The computation procedure presented in this paper was successfully applied to a practical
example of geodetic networks. Although the procedure was applied to geodetic networks, it is a
generally applicable method. The authors have been working on solutions to find a relationship
between the variables computed deterministically (e.g., local redundancy, residuals’ correlation) with
the probability levels computed by Monte Carlo. The use of Monte Carlo will no longer be needed to
find the MIB if a model is found. Moreover, further investigation is required to apply this analysis to
general problems with multiple outliers.
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