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Abstract: In this article, a novel feature selection-based multi-scale superpixel-based guided
filter (FS-MSGF) method for classification of very-high-resolution (VHR) remotely sensed
imagery is proposed. Improved from the original guided filter (GF) algorithm used in the
classification, the guidance image in the proposed approach is constructed based on the
superpixel-level segmentation. By taking into account the object boundaries and the inner-homogeneity,
the superpixel-level guidance image leads to the geometrical information of land-cover objects in VHR
images being better depicted. High-dimensional multi-scale guided filter (MSGF) features are then
generated, where the multi-scale information of those land-cover classes is better modelled. In addition,
for improving the computational efficiency without the loss of accuracy, a subset of those MSGF features
is then automatically selected by using an unsupervised feature selection method, which contains
the most distinctive information in all constructed MSGF features. Quantitative and qualitative
classification results obtained on two QuickBird remotely sensed imagery datasets covering the
Zurich urban scene are provided and analyzed, which demonstrate that the proposed methods
outperform the state-of-the-art reference techniques in terms of higher classification accuracies and
higher computational efficiency.

Keywords: guided filter (GF); superpixel segmentation; multi-scale features; feature selection;
classification; VHR remote sensing images

1. Introduction

In the last few decades, the quick development of the advanced remote sensing satellite sensors
has enabled the acquisition of remotely sensed imageries with increasing higher spatial resolution.
The numerous VHR data lead to its successful utility in different practical applications. In particular,
this allows the land surface type classification at a very fine scale. VHR imageries are often characterized
by rich texture and structural information, but also by few relatively limited spectral bands. Although
small land-cover objects with more details might be detected more precisely owing to the abundant
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spatial descriptions, this may still lead to the existence of isolate noises (“salt and pepper” phenomenon)
during the classification process [1]. Besides, the insufficient spectral bands and uncertain spectral
variations may also result in poor results with low classification performance. This is because of the
spectral variability among or within land-covers with different types having similar spectra or the
same type having dissimilar object spectra [2,3].

In order to alleviate the aforementioned phenomenon and improve the VHR images’ classification
performance, many literature works are devoted to exploiting the image object geometrical and spatial
information in classification. Recent advances in object-oriented-based methods have provided an
efficient way to improve classification results. These methods usually group spatially adjacent pixels
into spectrally homogeneous small regions, where the classification is then directly carried out on the
segmented objects or they optimize the pixel level classification maps by constraining the segmented
object edges. Tarabalka et al. [4] utilized watershed transformation and clustering to generate segments
(individual objects). Features such as mean values of the spectral and spatial measurements of the
objects were extracted as the input of a classifier to implement object-based classification. Csillik [5]
implemented a fast image segmentation and classification of VHR remotely sensed imagery relying on
the segmented superpixels. However, as the final classification result depends on the segmentation
performance, which is sensitive to the scale selection [6–8], several literature were devoted to seeking
such a best segmentation scale. For instance, Drǎguţ et al. [9] estimated the scale parameter in the
object-based image analysis using the idea of the local variance of object heterogeneity in a scene. Hu et
al. [7] developed a stepwise evolution analysis framework to analyze the optimal scale parameter in
the region-merging segmentation. While such object-oriented-based methods can partly remove “salt
and pepper” noise, accurate object identification in VHR images is still a challenging problem due
to the variation of the features and the proper selection of an effective segmentation strategy. Rather
than an object-based method, pixel-by-pixel approaches with spatial features such as the gray level
co-occurrence matrix (GLCM), the wavelet transformation (WT), and the morphology profiles (MP)
represent another major family for addressing the classification problem in VHR images. For instance,
Monika et al. [10] explored the utility of the GLCM variance to discriminate slums and formal built-up
areas in VHR images. Chen et al. [11] used multi-resolution WT to achieve high-frequency information
for representing spatial characteristics of the built-up areas at different scales. MP is one of the
most popular methods as its capability of weakening some local spatial details and simultaneously
preserving the structural information of the other regions. Bellens et al. [12] extracted spatial features
with two MPs based on linear-shaped and disk-shaped structure elements to preserve the shape of
the objects. Samat et al. [13] introduced maximally stable extremal region-guided MPs to implement
spatial feature extraction by adaptively setting structure elements, which matched all image objects
with respect to their size and shape. Though the aforementioned approaches have been validated to be
effective in literature works, they still have some limitations. Features extracted by those methods are
always high-dimensional with the process of moving windows or a series of mathematical operations at
different scales, which inevitably produces redundancy and results in the increase of the computational
complexity [12,14–16].

To solve this problem, a subset of a high-dimensional feature set can be selected to perform
classification in a more efficient way. Two major clusters including feature transformation approaches
(e.g., principal component analysis [17], independent component analysis [18], and minimum noise
fraction [19]) and feature selection approaches have been intensively investigated. The former is
able to reduce the original data dimensionality into a low-dimensional space via data transformation,
but with the loss of the physical meaning of the features. The latter can be implemented with a
selection of the most informative portion of the whole feature space with high dimensionality. This is
realized either in an unsupervised or supervised manner according to a certain criterion and a search
strategy. Supervised methods usually require the desired object to be known a priori. For instance,
statistical distance measurements like Bhattacharyya distance [20], Jeffries–Matusita (J-M) distance [21],
and transformed divergence measure [22] are often used as selection criteria to assess the separability
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of a given feature subset. Although these supervised approaches provide better performance in
classification or detection than unsupervised ones, the ground reference data are often unavailable in
practical cases. In this context, unsupervised methods mainly implement the feature selection in a
ranking, clustering, or optimization manner, which makes it more feasible in practical applications.
For example, Du et al. [23] employed the concept of endmember extraction in the band selection
algorithm based on bands’ similarity. Jia et al. [24] proposed an enhanced fast density-peak-based
clustering (E-FDPC) method in selecting bands by applying an exponential-based learning rule on the
original FDPC algorithm. Tschannerl et al. [25] used the criterion of “maximum information minimum
redundancy” to generate the subset with a modified discrete gravitational search method. All these
methods reduce the feature dimensionality and thus the computational time cost, while keeping the
performance of the classification or detection task to a great extent.

In the past decade, edge-preserving filtering such as the guided filter (GF) has proven to be
effective in different image processing applications, for example in image smoothing/enhancement,
image fusion [26], dehazing [27], image segmentation [28], saliency detection [29], etc. Theoretically,
considering the spatial representation of a guidance image, GF is capable of transferring the intrinsic
properties of the guidance image, especially its structures, to a filtered output, which can smooth
the noise probabilities, but also preserve the real object boundary in the filtered image [30]. In the
literature, GF is mainly introduced and applied in the classification of hyperspectral data. Kang et
al. [31] developed a single-scale GF method to investigate the output classification probabilities with
local optimization. Wang et al. [32] proposed a multi-scale classification approach by taking advantage
of the pixel-wise GF. Despite the aforementioned literature works, to the best of our knowledge, GF
and its modified versions have not been further analyzed in detail in the VHR image classification task.
In this case, the rich spatial feature information could better represent land-cover objects, whose class
boundaries and inner-homogeneity are both very important ingredients for producing an accurate
classification map. Motivated by this, a novel classification approach for VHR images by using
the feature selection-based multi-scale superpixel GF features is proposed in this study. The main
novelty and contributions of this work are summarized as follows: (1) we propose a novel feature
selection-based multi-scale superpixel-based guided filter (FS-MSGF) method for dealing with the
VHR imagery classification problem; (2) we modify and improve the original pixel-level GF into a
superpixel-level version, where a superpixel-level guidance image can provide more accurate boundary
information of the image objects and internal spectral homogenous information of each segment;
(3) we consider the multi-scale GF feature information in the classification rather than the single-scale
feature as in the GF literature works; (4) an unsupervised feature selection algorithm is utilized on the
high-dimensional multi-scale feature sets to extract the most informative features and largely reduce
the computational cost, but maintaining the accuracy at a high level.

The rest of the paper is organized as follows. Section 2 introduces the VHR datasets used and
describes in detail the proposed FS-MSGF method. Experimental results and discussions are provided
in Sections 3 and 4, respectively. Finally, in Section 5, we draw the conclusion.

2. Materials and Methods

2.1. VHR Remote Sensing Datasets

Experiments in this work were conducted on two VHR remotely sensed imageries acquired
by the QuickBird satellite covering an urban area in Zurich, Switzerland, in August 2002. Zurich
Dataset 1 and Zurich Dataset 2 (denoted as “Zh1” and “Zh2” in the following sections) had a size
of 833×881 pixels and 1025×1112 pixels, respectively. The Gram–Schmidt (G-S) pan-sharpening
fusing operation was performed to combine the panchromatic and multispectral bands to generate
four fused bands (visible red, green, blue, and also, near-infrared) having a spatial resolution of
approximately 0.62 meters. For more details about the Zurich dataset, the reader can refer to https:
//sites.google.com/site/michelevolpiresearch/data/zurich-dataset. Four land-cover types including

https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset
https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset
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buildings, grass, trees, and roads in Zh1 and seven classes (i.e., trees, buildings, roads, grass, bare soil,
water, and pool) in Zh2 are available in the reference maps. Figures 1a and 2a show the images of two
datasets and the corresponding available reference maps. Training and testing samples used in the
experiments are provided in detail in Table 1, where 1% and 0.5% of the whole available samples were
used as training samples and the rest for testing on the two datasets, respectively.
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Table 1. Detailed sample information used in the experiment (pixels).

Zh1 Zh2

Class Training Test Class Training Test

Roads 866 85,685 Roads 774 154,012
Buildings 1542 152,622 Buildings 753 149,874

Grass 72 6391 Grass 555 128,570
Trees 810 80,961 Trees 646 110,426

Bare Soil 53 10,566
Water 45 8995
Pools 30 6022
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2.2. Proposed Method

In this study, to complete the VHR image classification task over the complex urban
scene, a novel feature selection-based multi-scale superpixel guided filter (FS-MSGF) approach
is proposed. The proposed FS-MSGF method consisted of the following four main steps: 1O superpixel
segmentation for building the guidance image; 2Omulti-scale superpixel-guided filter feature generation;
3O unsupervised feature selection; and 4O classification relying on the selected MSGF feature subset.

The whole flowchart of the proposed classification technique in this work is illustrated in Figure 3.
More details are provided in the following subsections.
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2.2.1. Superpixel Segmentation for Building the Guidance Image

The aim of this step is to generate a suitable guidance image in the GF algorithm and use it
for guiding the feature extraction in the next operations. Since the context of the guidance image is
transferred to the filtering output by GF, we constructed a superpixel segmented map as the guidance
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image rather than the original pixel-wise one. By doing this, we expected that the geospatial land-cover
objects in VHR imagery and internal consistence information of each segment could be depicted
in a more precise manner. The SLIC (simple linear iterative clustering) algorithm was used [33] to
accomplish this task due to its advantages of simplicity, boundary adherence, and high computational
efficiency. The principle of the SLIC algorithm is to generate regional clusters using k-means, whose
local homogeneity is considered in the CIELAB color space. Note that the segmentation in this study
was conducted on the composite image with the near-infrared, red, and green bands. We selected them
as most informative bands by calculating the global entropy index on all four bands, where these ones
were the three having the highest entropy values in both datasets. The generated superpixel number,
K, is defined according to the sampling interval of the clustering centroids S:

S =
√

N/K (1)

N represents the total pixels in the image. m represents an optional parameter that controls the
compactness of the generated superpixels. The smaller m is, the more tightly superpixels adhere to the
image boundary, leading to a less regular size and shape. Every pixel is then clustered to its nearest
cluster center according to measurement D through the combination of two distances dc and ds:

dc =

√(
lβ − lα

)2
+

(
uβ − uα

)2
+

(
vβ − vα

)2
(2)

ds =

√(
xβ − xα

)2
+

(
yβ − yα

)2
(3)

D =

√(
dc

m

)2

+

(
ds

S

)2

(4)

where dc and ds are the color and the two spatial distances between pixel-pair α and β. (x, y), (l, u,
v) represent coordinates in the two spaces. Moreover, dc controls the spectral (color) homogeneity,
whereas ds focuses on the compactness of spatially neighboring pixels, respectively.

Superpixel segmentation map is then obtained after the equalization of sample values within
each segment. PCA is then performed on the segmented image. The final guidance image is built
from the first principal component (PC1), which represents the majority descriptions for the image
object information.

2.2.2. Multi-Scale Superpixel-Guided Filter Feature Generation

The main assumption of GF is given as follows: A local linear model can be assumed between
a guidance image G and a filtered output image O, where O is modelled as a linear transform of G
within a window ω having a size of (2r + 1) × (2r + 1). It can be described as [30]:

Oi = a jGi + b j, ∀i ∈ ω j (5)

where Gi and Oi are the values of the ith pixel in the guidance and output image and ωj is the window
around the central pixel j. Then, in each ωj, two linear coefficients aj and bj can be calculated by
minimizing a following cost function as:

E
(
a j, b j

)
=

∑
i∈ω j

[(
a jGi + b j − Ii

)2
+ εa2

j

]
(6)
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where ε is the regularization parameter penalizing large aj. Different aj and bj values estimated in
different windows are averaged as aj and bj. We can calculate the final Oi image as:

Oi = a jGi + b j (7)

where a j =
1
|ω|

∑
i∈ω j

ai and b j =
1
|ω|

∑
i∈ω j

bi. By applying the filtering with the guidance image, those abrupt

changes within local gradient regions are expected to be well preserved, whereas others are smoothed
under the effects of different sizes of pre-set windows. Such effects can be seen from an illustrated
example as shown in Figure 4 by using the QuickBird images.
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The original image bands were filtered by the generated superpixel-level guidance image with
different radius r to model the land-cover objects at multiple scales. Superpixel-guided filter (SGF)
features with a series of r were stacked to build multi-scale superpixel-guided filter (MSGF) features:

SGF(Xt) =
{
SGF1(Xt), SGF2(Xt), . . . , SGFR(Xt)

}
r=1,2,...,R (8)

MSGF =
{
SGF(X1), SGF(X2), . . . , SGF(Xt)

}
t=1,2,...,T (9)

where R is a given upper bound of the searching filtering radius range. MSGF is the stacking SGF
features from all bands in X (i.e., T). Accordingly, the dimension of MSGF comes to T × R in total,
which will be a large number after stacking all the multi-scale GF features.

It should be note that if multiple bands’ color information were taken into consideration, we could
also construct the color version of the superpixel-level guidance image. However, after intensive
experimental comparisons, we discovered that the final performance of the proposed approach by
using the gray or color guidance images did not make a significant difference, but the former was more
effective from the computational point of view. Therefore, the gray version of the superpixel-level
guidance image was used for all experiments presented in this article.

2.2.3. Unsupervised Feature Selection

Though features with multi-scale information were able to improve the representation of the
land objects and thus promote the classification performance, a mass of redundant information might
still simultaneously exist in the stacked high-dimensional MSGF features, which may bring about
the increase of computational cost. Therefore, an unsupervised similarity-based feature selection [23]
algorithm was adopted to find the most representative and distinctive subsets from the original features,
in order to lower the computational burden, as well as maintain the classification accuracy at a high
level. The basic concept of the approach came from linear prediction (LP)-based endmember extraction
algorithms [34] and the sequential forward search strategy, and the steps of could be characterized as
the following steps:

• Step 1: Initialize the band subset Φ = {Q1, Q2} by selecting a pair of bands Q1 and Q2.
• Step 2: Find the 3rd band Q3, which is the most dissimilar from those in Φ according to given

criteria. Then, update the selected band subset as Φ = Φ ∪ {Q3}.
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• Step 3: Repeat Step 2 until convergence is reach, i.e., in Φ, the number of bands meets the
pre-defined number in the experiment.

A similarity criterion based on LP was utilized in Step 2. It was capable of jointly estimating a
similarity between one band and multiple bands. In this algorithm, the desired third band Q could be
estimated through Q1 and Q2:

p0 + p1Q1 + p2Q2 = Q′ (10)

where Q’ is the linear prediction of Q and the vector p = (p0, p1, p2)T is the parameter that minimizes
the linear prediction error: e = ‖Q−Q′‖. It could be determined by a least squares solution:

p =
(
ZTZ

)−1
ZTh (11)

where Z is an H × 3 matrix whose first column is one and the second and third column include all the
H pixels in Q1 and Q2. h represents an H × 1 vector with all pixels in Q. Band Q3 bringing the largest
error e represents the most dissimilar band from Q1 and Q2, which was selected for Φ. More bands
were sequentially selected with a similar procedure.

As the number of image total pixels N might be very large in practical application, the process of
feature selection would be time consuming. Therefore, the original MSGF features were downsampled
by the nearest neighbor method with a scale size of 10 (i.e., H = 10% × N), which was able to reduce
the time cost without influencing the selection results. The subset of MSGF was then generated using
the LP algorithm with a given feature number F, which was denoted as MSGFsub (F).

2.2.4. Classification Relying on the Selected MSGF Feature Subset

The last step was the classification by using the constructed MSGFsub features. To this end, the SVM
classifier was considered due to its good generalization ability and high classification performance
with a small-sample and non-linear model, especially in those cases when relatively few training
data were available. The proposed FS-MSGF approach and the reference state-of-the-art methods
were also compared. The radial basis function (RBF) kernel was defined in SVM, where the five-fold
cross-validation was carried out to obtain the final classification output. In this work, both the training
and test samples were randomly selected from the available reference maps.

3. Experiments

3.1. Parameter Settings

The parameter settings in the experiments are described as follows.

• Sampling interval of the clustering centroids S and compactness parameter m in SLIC:

In this study, the SLIC segmentation that achieved the best classification accuracy was selected as
the guidance image. In detail, the sampling interval of the clustering centroids S was set as [5,30] with
a step size equal to 5. Then, the superpixel-level segmented map that resulted in the highest overall
accuracy (OA) in classification output was utilized as a guidance map. Note that in the two datasets,
both of the optimal superpixel-level guidance images were constructed with S = 15 (K ≈ 3261 and
5065, respectively). The segmentation results of two datasets are shown in Figures 5a and 6a, and the
pixel-based and superpixel-based guidance images are also compared in Figure 5b,c and Figure 6b,c.
Since the parameter m was optional in SLIC and proved to have less influence on the segmentation
results than K, so in this study, we fixed it as m = 30 in both two datasets.
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• Filtering radius r and regularization parameter ε in GF:

For the proposed SGF method, in order to evaluate its performance at the single scale, in both
datasets, the radius r in GF was set within the range of [1,15]. Correspondingly, for generating the
MSGF, r was defined within the range of [1,30] and [1,25] in the two datasets, respectively. Therefore,
the final dimensionality of these two feature sets was 120 (i.e., 4 × 30 = 120) and 100 (i.e., 4 × 25 = 100),
respectively. Many previous research works found that the value of ε had little impact on the filtering
result [31,32], so it was defined as ε = 10−4, the same as in the literature paper.

• Number of selected bands F in feature selection:

To analyze the influence of selected feature number F for the final classification performance,
classification was implemented based on different selected MSGFsub with F ranging from T (i.e.,
the original image bands) to 1/3 of T × R (i.e., the number of total features in MSGF). Therefore, the
final numbers were: F = [4,40] in Zh1 and F = [4,30] in Zh2, respectively.

3.2. Performance Evaluation of the Proposed FS-MSGF Approach

3.2.1. Results of the MSGF

By visual comparison of the features extracted by the pixel-level guided filter (PGF) and SGF (both
with the scale of r = 6) in Zh1 (as shown in Figure 7), we can find that the spectral-spatial information
was better preserved in the SGF feature (Figure 7b) than that of PGF (Figure 7a). Figure 8 shows the
comparison of the classification accuracies obtained on PGF and SGF features at single scales on two
datasets. In the experiment of Zh1, one can see that in Figure 8a, the proposed SGF outperformed the
original PGF with overall higher OA values, where the highest OA value was equal to 87.75% when
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r = 7 and 86.80% when r = 2 in two compared approaches, respectively. Moreover, by increasing r,
the accuracy of the PGF decreased more significantly, whereas the proposed SGF achieved a gentler
descending trend. This confirmed the effectiveness of the proposed superpixel-based approach,
which generated single-level features having better representative potential for the complex image
objects. Experimental results obtained on Zh2 (as shown in Figure 8b) also indicated the effectiveness
of the superpixel-level guidance image. The highest OA obtained by SGF was 87.28% when r = 5,
which was higher than the one obtained by PGF with an increase of OA equal to 1.25%.Remote Sens. 2020, 1, x FOR PEER REVIEW 10 of 19 
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features with the scale of r = 6.
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Figure 8. Single-scale classification performance comparison between the proposed SGF and the
original PGF approaches obtained on: (a) Zh1 and (b) Zh2.

Results of both two datasets acquired by the multi-scale version of pixel-wise MPGF and the
proposed MSGF were also compared. As illustrated in Figure 9, the orange curve was almost always
higher than the blue curve, which indicated that at multiple stacked scales, the proposed MSGF
approach outperformed the MPGF approach with significant improvement on the overall accuracy.
Moreover, classification performances greatly improved with the increasing of the stacked multiple
scales. For Zh1 (see Figure 9a), OA values dramatically increased to 91.98% (4.96% increased from
87.02%) in MPGF and to 93.24% (6.29% increased from 86.95%) in the proposed MSGF technique,
respectively. Being similar to the first experiment, both OA values in MPGF and the proposed MSGF
techniques (see Figure 9b) improved dramatically from 85.65% to 88.28% and from 85.70% to 89.14% in
the experiment of the second dataset.
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Figure 9. Performance comparison for multiple scales’ classification between the proposed MSGF and
the reference MPGF techniques obtained on: (a) Zh1 and (b) Zh2.

3.2.2. Role of the Feature Selection

The constructed R2 correlation matrixes based on MSGF features in the two considered datasets
are illustrated in Figure 10a,b. It was clear that the blocks of those continuous bands were correlated
and highly similar to each other. This meant information redundancy in the features extracted by one
original band filtered with different scales.
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Figure 11 is the quantitative comparison of classification results combined with and without
the feature selection method. One can see that by increasing the selected number of features
F, the classification performance gradually improved with the increase of OA values. In both
datasets, OA values were finally close to and even exceeded the baseline. This meant that only
a small feature subset could still well represent the sufficient information of the whole feature
set. Furthermore, we compared the result based on feature selection with the result based on a classic
feature transformation method (i.e., PCA). The results indicated that the LP algorithm presented a
more stable performance superior to PCA in the classification with a reduced feature space.

The evaluation of computational efficiency in two datasets is shown in Figure 12. It can be seen
that with the increasing of F, although the time consumed increased, it was still much lower than the
baseline results by using the original feature set.
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[1,30] for Zh1 and r = [1,25] for Zh2) were defined to generate the results. 
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Figure 12. Comparison of the time efficiency with feature selection and without feature selection:
(a) results on Zh1 and (b) results on Zh2.

3.2.3. Component Analysis

In this subsection, additional statistics were done by combining each step of the proposed FS-MSGF
method. Four classification results were compared based on (1) the raw image, (2) features extracted
under the single scale (i.e., SGF), (3) multi-scale stacked features (i.e., MSGF), and (4) the proposed
FS-MSGF. Figure 13 is the analysis of OA values and the time efficiency of each step. Note that the
analysis was based on the result of SGF and MSGFsub. It is easy to find that in Figure 13a, each step in
the proposed method had a positive influence on the final classification output. As one can see from
Figure 13b, the time consumption increased dramatically with the step of high-dimensional multi-scale
feature stacking and obviously decreased through the process of feature selection.
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and (b) computational efficiency.

3.3. Results Comparison with Different State-of-the-Art Approaches

Furthermore, the quantitative evaluation was carried out by comparing the classification maps
achieved by the proposed FS-MSGF approach with those baseline classification results including by
using the original bands, the SLIC segmented original bands (SLICRaw), and also the ones obtained
by several popular approaches including (1) GF-based probabilities (GFProb) [31], PGF, and SGF at
single scales; and (2) the extended morphological profiles (EMPs) [35], multi-scale pixel-guided filter
(MPGF) [32], and multi-scale superpixel-guided filter (MSGF) at multiple scales. It is important to note
that all the reference single-scale methods were presented and compared when optimal scales were
reached in each method. For multi-scale reference methods, the same stacked scales (i.e., r = [1,30] for
Zh1 and r = [1,25] for Zh2) were defined to generate the results.

In the experiment of Zh1, the obtained classification maps are shown in Figure 14. As we can
see from both the global and local scales (see the red boxes in Figure 14), the proposed methods (see
Figure 14h,i) presented better classification result than the referenced methods (see Figure 14a–g).
The quantitative analysis results with accuracies are provided in Table 2. It illustrates that the proposed
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multi-scale FS-MSGF approach significantly improved the baseline results at single scales (i.e., original
bands and SLICRaw) according to the increase of overall accuracies (i.e., from 85.69%, to 88.13%, to
93.38%) and the Kappa coefficient (Kappa) (i.e., from 0.7809, to 0.8187, to 0.8960). The proposed FS-MSGF
method resulted in better performance than the single-scale state-of-the-art (SOA) approaches (i.e., PGF,
SGF, and GFProb by increasing 6.66%, 5.59%, and 2.92% in OA values, respectively). Simultaneously,
the proposed method achieved similar or even better classification performance with the multi-scale
methods for comparison, while it saved nearly two-thirds of the time (i.e., MPGF, EMPs, and MSGF by
decreasing 60.63%, 61.18%, and 53.56% of the total time cost, respectively), which showed potential
capabilities in practical applications.
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Figure 14. Classification maps obtained by: (a) original bands; (b) SLICRaw (when S = 15); (c) PGF
(with r = 2); (d) SGF (with r = 7); (e) GFProb (with r = 14); (f) MPGF (with r = [1,30]); (g) extended
morphological profiles (EMPs) (with r = [1,30]); (h) the proposed MSGF (with r = [1,30]); (i) the
proposed FS-MSGF (with r = [1,30] and F = 40) (Zh1).
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Table 2. Classification results of Zh1 obtained by the proposed and reference methods.

Classification Approaches Overall Accuracy
(OA) (%)

Kappa Coefficient
(Kappa)

Time
Cost (s)

Baseline
Original Bands 85.69 0.7809 15.82

SLICRaw (when S = 15) 88.13 0.8187 8.24

Single Scale
PGF (with r = 2) 86.72 0.7961 15.08
SGF (with r = 7) 87.75 0.8126 12.29

GFProb (with r = 14) 90.46 0.8529 17.72

Multiple Scales

MPGF (with r = [1,30]) 91.49 0.8687 189.45
EMPs (with r = [1,30]) 92.25 0.8802 192.10

proposed MSGF (with r = [1,30]) 93.24 0.8960 160.59
proposed FS-MSGF

(with r = [1,30] and F = 40) 93.38 0.8979 74.58

Figure 15 shows the comparison between different classification results obtained on Zh2.
The proposed approach (see Figure 15h,i) also resulted in a better classification performance than
other methods (see Figure 15a–g), both globally and locally, especially the close-up figures below the
whole classification maps. Classification accuracies are listed in Table 3. We can observe that the two
proposed MSGF approaches significantly increased the single-scale baseline results with respect to
the OA values (from 83.21% and 87.08% to 89.14% and 89.18%) and Kappa (from 0.7812 and 0.8317
to 0.8584 and 0.8589). FS-MSGF performed better than the single-scale SOA methods (i.e., PGF, SGF,
and GFProb) by increasing the OA values to 3.15%, 1.90%, and 1.60%, respectively. Similar performance
and computational cost improvements could be also found in this experiment (i.e., MPGF, EMPs,
and MSGF by decreasing the time cost by 58.92%, 72.47%, and 54.82%, respectively), which further
demonstrated the efficiency of the proposed techniques.

Table 3. Classification results of Zh2 obtained by the proposed and reference methods.

Classification Approaches Overall Accuracy
(OA) (%)

Kappa Coefficient
(Kappa)

Time
Cost (s)

Baseline
Original Bands 83.21 0.7812 25.67

SLICRaw (when S = 15) 87.08 0.8317 16.13

Single Scale
PGF (with r = 4) 86.03 0.8180 23.20
SGF (with r = 5) 87.28 0.8342 20.00

GFProb (with r = 6) 87.58 0.8378 28.62

Multiple Scales

MPGF (with r = [1,25]) 88.28 0.8472 176.11
EMPs (with r = [1,25]) 88.20 0.8460 262.78

Proposed MSGF (with r = [1,25]) 89.14 0.8584 160.11
proposed FS-MSGF

(with r = [1,25] and F = 30) 89.18 0.8589 72.34
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Figure 15. Classification maps (and the close-up figures in the red boxes) obtained by: (a) original
bands; (b) SLICRaw (when S = 15); (c) PGF (with r = 4); (d) SGF (with r = 5); (e) GFProb (with r = 6);
(f) MPGF (with r = [1,25]); (g) EMPs (with r = [1,25]); (h) the proposed MSGF (with r = [1,25]); (i) the
proposed FS-MSGF (with r = [1,25] and F = 30) (Zh2).

4. Discussion

The performance evaluation of the proposed approach itself and its comparison with different
methods demonstrated the effectiveness of the proposed FS-MSGF in terms of high classification
accuracy indices and less computational cost. In this section, we further analyze the experimental
results obtained on the local scales to show the superiority of the proposed approach, especially for
those land-cover classes whose gradient magnitudes were not clear. In addition, discussions and
suggestions are also provided for using the FS-MSGF in practical applications.

Subsets that highlighted the whole obtained classification maps (see the red rectangular regions
in Figures 14 and 15) are extracted and further compared in Figures 16 and 17, respectively. In general,
comparing with the reference map (Column j), it was clear that the proposed MSGF and FS-MSGF
(Columns h and i) outperformed all other methods (Columns a–g). The resulting land-cover classes
were more inner-homogenous and spatially regular, whereas either in the baseline results or in the
SOA methods, more false alarms were produced, which were mainly wrongly classified pixels inside
of a local region. The results of the proposed MSGF and FS-MSGF approaches were similar (this could
be also confirmed from their accuracies), but note that from the efficiency point of view, FS-MSGF
could save more than half of the computational time cost. Moreover, we can also observe that the
multi-scale-based approaches (Columns f–i) achieved better results than single-scale-based ones
(Columns c–e). This shows that the overall classification performance could be enhanced by taking
advantage of the object multi-scale information in VHR images, whereas the single-scale modelling
may lead to more false alarms.
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S = 15); (c) PGF (with r = 2); (d) SGF (with r = 7); (e) GFProb (with r = 14); (f) MPGF (with r = [1,30]); (g) 
EMPs (with r = [1,30]); (h) the proposed MSGF (with r = [1,30]); (i) the proposed FS-MSGF (with r = 
[1,30] and F = 40); (j) the reference map, where the four rows correspond to the four sub-regions 
highlighted in Figure 14 (Zh1). 

Figure 16. Comparison of local classification results obtained by: (a) original bands; (b) SLICRaw (when
S = 15); (c) PGF (with r = 2); (d) SGF (with r = 7); (e) GFProb (with r = 14); (f) MPGF (with r = [1,30]);
(g) EMPs (with r = [1,30]); (h) the proposed MSGF (with r = [1,30]); (i) the proposed FS-MSGF (with r
= [1,30] and F = 40); (j) the reference map, where the four rows correspond to the four sub-regions
highlighted in Figure 14 (Zh1).Remote Sens. 2020, 1, x FOR PEER REVIEW 17 of 19 
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Figure 17. Comparison of local classification results obtained by: (a) original bands; (b) SLICRaw (when
S = 15); (c) PGF (with r = 4); (d) SGF (with r = 5); (e) GFProb (with r = 6); (f) MPGF (with r = [1,25]);
(g) EMPs (with r = [1,25]); (h) the proposed MSGF (with r = [1,25]); (i) the proposed FS-MSGF (with
r = [1,25] and F = 30); (j) the reference map, where four rows correspond to four sub-regions highlighted
in Figure 15 (Zh2).

In addition, for those land-cover classes whose gradient magnitudes were not clear, the proposed
MSGF and FS-MSGF approaches identified their class boundaries and shapes better than other methods.
This can be observed from the local results as shown in Figure 16 Row 3 and Row 4, and also in
Figure 17 Row 1 and Row 3. The grass and trees classes were very similar from the spectral point of
view; however, in the proposed approaches, these two classes were successfully classified with their
class boundaries and superior to all other compared methods.

In practical applications, the proposed method showed its strong potential in VHR remote sensing
image classification due to its high classification accuracy and high cost efficiency. The success in
using the approach depended on the good superpixel guidance information and the multi-scale
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information extraction. At this stage of study, we considered the proposed method to have an overall
high performance based on all classes, and its accuracy might be further improved when modifying it
into a class-specific version, where the multi-scale features are constructed by using GF.

5. Conclusions

We presented a novel feature selection-based multi-scale superpixel-guided filter (FS-MSGF)
approach for addressing the classification task in VHR remotely sensed imagery in this work.
Experiments were implemented on two QuickBird VHR datasets over the complex Zurich urban scene.
From the obtained experimental results and with both qualitative and quantitative analysis, we could
conclude the following:

1. Instead of using the original pixel-level guidance image, the idea of using superpixel-level
guidance image significantly improved the classification performance. More accurate boundaries
and homogenous context information of local objects were well preserved in the extracted
multi-scale GF features.

2. Compared with the single-scale GF feature, use of multi-scale stacked features helped to model
the image objects better spatially from the viewpoint of different scales. Note that such generated
features could increase the land-cover class discriminability, but in the meantime, would inevitably
lead to the increasing of feature dimensionality.

3. The feature subset generated by a certain feature selection technique maintained the classification
performance at a high level while only using a portion of the original features. This could
effectively reduce the overall computational cost without losing the overall accuracy, which is
very valuable in practical applications.

This work proposed a solution for the challenging VHR image classification problem over a
complex urban scene. It utilized abundant scale information of the geospatial objects in a reduced
feature space, which was able to reduce the computational cost without losing the representative and
refined feature in the process of classification. It also showed potential applicability for solving other
similar challenging classification problems in very-high-resolution hyperspectral or thermal images.
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