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Abstract: Image dense matching has become one of the widely used means for DSM generation due
to its good performance in both accuracy and efficiency. However, for water areas, the most common
ground object, accurate disparity estimation is always a challenge to excellent image dense matching
methods, as represented by semi-global matching (SGM), due to the poor texture. For this reason,
a great deal of manual editing is always inevitable before practical applications. The main reason
for this is the lack of uniqueness of matching primitives, with fixed size and shape, used by those
methods. In this paper, we propose a novel DSM generation method, namely semi-global and block
matching (SGBM), to achieve accurate disparity and height estimation in water areas by adaptive block
matching instead of pixel matching. First, the water blocks are extracted by seed point growth, and an
adaptive block matching strategy considering geometrical deformations, called end-block matching
(EBM), is adopted to achieve accurate disparity estimation. Then, the disparity of all other pixels
beyond these water blocks is obtained by SGM. Last, the median value of height of all pixels within
the same block is selected as the final height for this block after forward intersection. Experiments
are conducted on ZiYuan-3 (ZY-3) stereo images, and the results show that DSM generated by our
method in water areas has high accuracy and visual quality.

Keywords: stereo matching; block matching; DSM; water area; ZY-3

1. Introduction

1.1. Background and Related Works

DSM is a critical component of many physical description of the Earth’s surface, and provides the
surface structures required for myriad applications as diverse as mapping, navigation, military mission
and smart city. Shuttle radar topography mission (SRTM) with 30-m or 90-m resolution, has been one
of the most important and widely used publicly available spatial datasets in nearly ten years [1,2].
However, there is a mass of data voids in SRTM, and many of them appear in water regions.
Post-processes, including water detection, interpolation, and manual editing, are needed before
practical applications. Nevertheless, SRTM is no longer suitable for current various applications due to
relatively low resolution. Nowadays, with the continuous improvement of optical remote sensing
image resolution, DSM with meter and even sub-meter resolution generated by stereo matching is
available [3–5].

Stereo matching, the key step to obtain elevation or depth information from images, has always
been a research hotspot for decades in both realms of the digital photogrammetry and computer
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vision [6]. So far, excellent stereo matching algorithms can achieve almost the same accuracy as LIDAR
(light detection and ranging) in elevation estimation [7–11]. Given the good performance in terms of
accuracy, efficiency, and cost, they have been adopted by many well-known digital photogrammetry
software programs, such as Geomatica [12] and Inpho [13], for DSM generation. However, poor texture
is still a huge challenge for image matching. Additionally, the DSMs automatically extracted in poor
texture areas still require a lot of manual editing before practical applications [14–16]. Literature [17]
confirms that through-water image dense matching is feasibly for mapping shallow water bathymetry
under favorable conditions (clear water, calm water surface, bottom texture). This paper aims at
solving the stereo matching problem in water areas under poor texture further, and generating reliable
DSMs automatically.

The matching primitive lack of uniqueness due to relatively less intensity variation is the major
obstacle for reliable image matching in poor texture areas. There are obvious ambiguities between
matching candidates when using these primitives to calculate the matching cost. Efforts have been
made to address this problem, which could be divided into three categories in terms of the strategy
used: (1) improving the uniqueness of the matching primitive, (2) adopting geometrical constraints,
and (3) introducing neighbor smoothing constraints.

It is instinctive to improve the uniqueness of the matching primitive to attain reliable matching
results in poor texture areas. Usually, area-based matching methods are employed to handle these
areas, in which more intensity variations are involved by increasing the size of the matching template.
However, it is very likely that depth discontinuity and projective distortion will be introduced with the
size of the matching template growing large, which will instead reduce the reliability of the matching
result. In order to overcome this drawback, a matching strategy with a shape and size adaptive
template is proposed in [18], in which intensity and prior disparity information are used to minimize
the uncertainty of the matching template for each pixel with a higher calculation cost. In addition to this,
edge features are extracted and used to avoid incorporating depth discontinuity in other works [19,20].
Moreover, Gaussian filtering and bilateral filtering are also employed to improve the reliability of the
matching template through reducing the weight of pixels located at depth discontinuity areas [21].
Unfortunately, it is not enough to identify depth discontinuity based solely on edge features.

In addition to improving the uniqueness of the matching primitive, using geometrical constraints
is another useful strategy. An integrated point and edge matching method based on the self-adaptive
edge-constrained triangulations is carried out, in which the newly matched points and edges are
inserted into triangulations and the constrained triangulations are updated dynamically with matching
propagation [15]. Usually, this method is able to achieve reliable matching results from images with
poor texture but relatively favorable edge features.

Neighbor smoothing constraints have also been introduced to address this problem. The pixels
belonging to the same segment are approximately considered with an identical disparity after the
image segmentation have been finished. Then the disparity of one pixel which has been successfully
matched can propagate to its neighbors [19]. In addition, patch-based multi-view stereo (PMVS) is
another well-known stereo matching method, that generates high-quality point clouds by employing a
neighbor smoothing constraint but has high computational complexity [11,22,23].

In summary, the aforementioned stereo matching methods still have limits in both accuracy and
efficiency to some extent with poor texture areas. After a thorough analysis, a pixel-by-pixel match
pattern is the basic reason. Although various extra information and constraints are introduced, the lack
of uniqueness of the point matching primitive is still inevitable in relatively large poor texture areas.
Compared to point matching, block matching can avoid the influence of deformation while maintaining
high uniqueness. Thus, a flexible block matching strategy is necessary and effective for this issue.

1.2. The Proposed Approach

In our opinion, a proper matching primitive is the key to achieve reliable image matching in poor
texture areas. To be more specific, the matching primitive should have enough uniqueness and avoid
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the depth discontinuity, simultaneously. In conventional approaches, a fixed window centered at a
given pixel is widely adopted, which often cause mismatches because of lacking intensity variation
in poor texture areas (Figure 1). Simply increasing the size of the window to include more intensity
variation is a better choice, but there remain two problems: (1) An excessively large window may
incorporate depth discontinuity, so that it is very likely that the minimum matching cost represents
an incorrect matching result due to the projective distortion between the left and right images. (2)
The window with a fixed size and shape always has difficulty when handling different scenes in one
image. In order to obtain reliable matches in poor texture areas, an adaptive matching primitive
strategy tends to play a very important role.
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Figure 1. The comparison of “Fixed Window” and “Adaptive Window” as the matching primitive.
The matching cost curves were obtained with a disparity range (0,20) along epipolar line. For the “Fixed
Window”, there is no obvious minimum, while the “Adaptive Window” has an obvious minimum.

Based on the analysis above, we propose a novel stereo matching method for DSM generation from
images containing water areas. The significant difference between this method and other conventional
methods is that water areas and other areas are handled separately. First, water areas are extracted by
seed point growth. Then, an adaptive block matching strategy is employed to achieve accurate disparity
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estimation for pixels belonging to the water areas. Additionally, the disparity estimation for other
pixels is conducted with classical dense matching methods, such as SGM. After all pixels’ disparities
have been obtained, DSM is generated by forward intersection and a series of processing steps.

2. Method

Generally, most methods of extracting DSM from optical remote sensing images can be divided
into two parts: disparity estimation and DSM generation. The input and output of the former part
are a rectified image pair and a disparity map. The input for the later part is a disparity map and
rational polynomial coefficients (RPC) while the output is a DSM. A flowchart of the proposed method,
named SGBM, is presented in Figure 2. Disparity estimation is the focus of this method, which includes
three main stages: (1) water block extraction, (2) disparity range calculation, and (3) image matching
and refinement. For the first stage, a seed point detection and growth strategy is employed to identify
water blocks. In the second stage, a pyramid matching constraint is introduced to obtain reasonable
disparity ranges. The third stage involves block matching and dense matching, which is the main
process of this method. Specifically, the disparity estimation of pixels belonging to water blocks is
addressed by adaptive block matching, and the disparity estimation of other pixels is achieved by dense
matching. Then, disparity refinement is conducted to generate a disparity map. Finally, the disparity
map and RPCs are used to generate the DSM by forward intersection and a series of processing steps.
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2.1. Water Block Extraction

As previously mentioned, conventional dense matching methods have difficulty with water areas
due to unobvious intensity variation. Actually, neither image dense matching nor interferometric
synthetic aperture radar (InSAR) can handle water areas well, and there is a high possibility of data
voids in the final DSM. Lots of efforts have been made to address these data voids, including water area
recognition and void interpolation strategy with auxiliary data and manual editing [24], the optimal
interpolation strategy considering terrain and area [25,26], and interpolation approach preserving first
and second moments of the slope area relationship [27]. However, all these methods can only be used
after the DSM has been generated. We prefer to generate reliable DSM in water areas automatically
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with an effective block matching and interpolation strategy. Water block extraction is a pre-step,
which directly affects the reliability of the subsequent block matching. Many water area detection
approaches have been put forward in the related researches, including a nonparametric expert system
based on multiple data sources [28], a water detection method based on multispectral images, terrain
data and water masks [29], threshold classification based on gray histogram of panchromatic image [24].
Considering that only panchromatic images are used in this study and the characteristic that the
intensity variation is usually very slight in water areas, a simple and effective water block extraction
strategy is employed, which consists of two steps: seed point detection and seed point growth.

Seed point detection is to identify pixel p located at water areas as a seed point, which is the input
for seed point growth. Thus, the reliability of seed point directly affects the water block extraction
result. To avoid misdetection of water blocks as possible, a robust seed point detection strategy is
carried out. As Figure 3a shows, a square template centered at pixel p with a certain size (set as 3) is
used to identify seed point. If all pixels’ grads within it are less than a certain value (set as 5), then p
is saved as a seed point. In order to further eliminate the influence of radiation change and noise,
the seed point detection is only conducted on the top pyramid image which is the least affected by
radiation change and noise. Moreover, the seed points on other pyramid images are obtained from the
seed points on the top pyramid image based on geometric relationship between different pyramids.
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After obtaining the seed points, the seed point growth [30] aims to obtain a water block, B,
which contains the current seed point p. Pixel q, one of p’ neighborhoods, will be accepted as a seed
point, if the difference between the gray value of p and q is smaller than a certain value (set as 3). When
seed point growth has been finished, the extracted blocks exceeding a certain size (set as 1000) will be
saved. Moreover, 4-neighborhood strategy (the left part of Figure 3b), which has been proven to have
better performance in avoiding overgrowth, is picked instead of 8-neighborhood strategy (the right
part of Figure 3b) in this study.

Based on the analysis mentioned above, an automatic water block extraction strategy is introduced
as below.

(1) Seed point detection is conducted on the whole image with a fixed sampling interval (set as 5),
and then all detected seed points are recorded.

(2) Seed point growth for all unprocessed seed points in turn to extract water blocks. If one seed
point has been processed or belongs to a water block already detected, it will be marked as
processed immediately.

2.2. Disparity Range Calculation

A reasonable disparity range is crucial for both block matching and dense matching. With a
pyramid matching strategy, the disparity range for each pixel on different pyramid images will be
calculated separately. For the top pyramid image, this is calculated based on the matching results of
scale-invariant feature transform (SIFT) [31] feature points with Equation (1).

Dp =
[

min(di) − ∆d max(di) + ∆d
]
i∈FL

(1)
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where Dp stands for the disparity range of all pixels, di is the disparity of pixel i, FL represents the set
of feature points, and ∆d is a constant, which is valued at 2.

For other pyramid images, the disparity range is determined by the dense matching result of the
upper pyramid image with Equation (2).

Dp =
[

dp − ∆d dp + ∆d
]

DL =
[

min
(
dp

)
− ∆d max

(
dp

)
+ ∆d

]
p∈BL

dp = dq × 2

(2)

where Dp refers to the disparity rang of pixel p, and DL represents the disparity range of block L, dp is
the disparity of pixel p, dq is the disparity of pixel q, q stands for the corresponding pixel of p on the
upper pyramid image, BL indicates the current water block, and ∆d is a constant, which is valued at 2.

2.3. Block Matching

Following water block extraction and disparity range calculation, block matching is the most
important step of disparity estimation for water blocks. The block matching results will directly
affect the reliability of disparity estimation. A novel block matching method, neither a feature-based
method [31,32] nor an area-based method [33,34], but between them, is proposed. On one hand, as
is similar to classical feature-based methods, features, which are water blocks in this study, will be
extracted at first. However, there are two different parts between them: (1) feature extraction is only
conducted on the reference image and (2) feature descriptors are not needed in our method. On the
other hand, as with area-based methods, a block is the matching primitive in our method. However,
different from those methods, in which the matching primitive is often a fixed window, our method
has matching primitives with adaptive shape and size, which is the key to obtain reliable matches.

Compared to general image matching issue, the water block matching in this study has some
unique characteristics which will be introduced below. By making full use of these characteristics,
this matching problem can be greatly simplified, and thus the reliability of the matching result can be
effectively improved.

(1) Considering that the water block should be a plane, it is reasonable to assume that all pixels
belonging to the same block share the same disparity with high probability. Thus, it is natural to
use the automatically detected blocks as the matching primitives in our method.

(2) The image pair in this study has been already geometrically rectified, so it is allowed that the
search space is limited to the one-dimension direction based on the epipolar constraint.

(3) In this study block matching strategy is embedded into dense matching processing. Thus, a
reasonable disparity range, which is crucial to low complexity and high accuracy, can be derived
from the dense matching result.

(4) Considering the two images of the image pair in this study are obtained by the same satellite
simultaneously, it can be accepted that there is no complex but only linear radiation difference
between them, which is very useful for reliable matching cost design.

Overall, water block matching consists of two stages: (1) matching cost calculation and disparity
estimation; and (2) mismatch elimination and interpolation. The two stages will be expanded in
detail below.

2.3.1. Matching Cost Calculation and Disparity Estimation

Matching cost directly depends on the similarity between the two primitives, the more reasonable
the matching cost, the more reliable the matching result. Given that there is only a linear radiation
difference between the left image and right image, the variance of the gray difference of corresponding
pixels should be relatively small when the block is matched correctly. Based on the above analysis,
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a simple but effective matching cost called variance of the gray difference (VGD) is designed, as
Equation (3) shows.  G =

∑
i∈BL , j∈IR(Gi−G j)

n

VGD =

∑
i∈BL , j∈IR((Gi−G j)−G)

2

n

(3)

where BL represents the water block on the left image, IR is the right image, pixel i and j are a couple of
corresponding points with a given disparity, n counts the number of corresponding points, and Gi and
Gj are the gray value of i and j, respectively.

According to the disparity range calculated in the former stage, a set of VGD will be calculated.
Then, the optimal disparity of the block is estimated by the winner takes all (WTA) principle.

2.3.2. Geometrical Deformation Process

In the above, we assume that the disparities of all pixels belonging to the same block should
be equal. In other words, the block is treated as a rigid body on both the left and right images.
However, this assumption may not hold when the size of the block exceeds a certain value. That is
because there are geometrical deformations between the left and right images due to different imaging
angles. To eliminate the influence of the geometrical deformations by controlling the size of the
matching primitive, two strategies are introduced to address the deformation along the epipolar line
and perpendicular to the epipolar line separately. As Figure 4 shows, we first divide the extracted
block (the red frame) into several sub-blocks along the horizontal direction (in this study, epipolar
line is assumed to be in the vertical direction). The width of each sub-block will not exceed a given
value TH (set as 50). More specifically, only the width of the right-most sub-block may be smaller
than TH, while the widths of other sub-blocks are all equal to TH. Then, these sub-blocks will be
processed one by one. Subsequently, two end-blocks (the yellow frames) are selected by extending the
up-edge and bottom-edge of the middle sub-block with a certain step (set as 5), respectively. The two
small-size end-blocks are used as the matching primitives instead of the middle sub-block. After all
these end-blocks have been matched, the matching results of all pixel belonging to the original block
can be obtained by interpolation.
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2.3.3. Mismatch Elimination and Interpolation

The end-block matching can be seen as a kind of feature matching, so RANSAC [35] can be used
to eliminate the mismatches. Moreover, if one end-block is considered wrongly-matched, it will be
interpolated linearly based on the two nearest valid end-block matches on both sides of it. In the
absence of valid end-block match on one side, the disparity of the nearest valid end-block match on the
other side will be selected as the disparity of this end-block. For each sub-block, the disparity of the
pixel between the up and bottom edges are interpolated linearly based on the two end-block matches.

Based on the analysis mentioned above, an automatic water block matching strategy, called
end-block matching (EBM), is introduced, as shown in Figure 5. There are three main steps: disparity
range calculation; matching cost calculation and disparity estimation; and mismatch elimination
and interpolation, which have been introduced in detail above. It is noteworthy that if the width of
one extracted block exceeds a given threshold, the block should be divided into several sub-blocks,
which will subsequently be processed, one by one.
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In addition, it is noted that our method can be seen as a variation of SGM, which integrates block
detection and matching. Like SGM, our method is symmetric, which means both the left image and
right image can be selected as the reference image. Literature [8] points that a more accurate result
can be obtained by fusing the two matching results with left image as the reference image and the
right image as the reference image respectively. This fusion strategy is also suitable for the end-block
matching. Our experiments indicate that more accurate and complete matching results can be obtained
with this fusion strategy, especially for the case where there are obvious differences between the water
block extraction results from the left image and that from the right image. In fact, for the sake of
efficiency, only the left image or right image is selected as reference image in most of stereo matching
algorithms. For comparison, only the left image is selected as the reference image for all experiments
in this paper.

2.4. Dense Matching

As mentioned above, for pixels belonging to water blocks, the disparity estimation is realized by
EBM, while for pixels beyond these blocks, the disparity estimation is accomplished by dense matching.
Dense matching usually consists of four steps, including matching cost computation, cost aggregation,
disparity computation and disparity refinement. In our method, census [36], for its high reliability and
efficiency, is adopted as matching cost measure. In addition, the boundary of the water blocks are also
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treated as the boundary of the reference image in the cost aggregation. As with SGM, more details
about these steps can be found in [8].

2.5. DSM Generation

After obtaining the disparity map, 3-dimension point clouds can be achieved based on the RPC
model by forward intersection [37]. Considering that the water block should be a plane, then for
each water block, the median of the elevation values of all points within it, which has the maximum
confidence, will be selected as the final height. To further improve the quality of the generated DSM, a
range of processes, including median filter, peak elimination, and interpolation, will be involved [9].

3. Results

3.1. The Experimental Platform and Data

The proposed algorithm is implemented in Visual C++ and a PC with Intel®CoreTM i7-5600U
CPU 2.6GHz processors, 8 GB RAM, and Microsoft Windows 2010.

To validate the effectiveness of the proposed method, image blocks, which contain water areas
with different sizes, from ZY-3 image pairs were used for evaluation. ZY-3, launched in January 09, 2012,
is equipped with three-line scanners (nadir (NAD), backward (BWD) and forward (FWD)) for stereo
mapping, the resolutions of the panchromatic (PAN) stereo mapping images are 2.1-m at nadir looking
and 3.5-m at tilt angles of ±22◦ forward and backward looking, respectively. The stereo base-height
ratio is 0.85-0.95 [5,38]. The actual heights of these areas are obtained by stereo measurement software.
Table 1 lists the information of ZY-3 image pairs. Figure 6 depicts the image pair blocks and Table 2 lists
the sizes and the heights of the water areas. We use ROI to represent the water area in the remainder of
Section 3 for simplification.

Table 1. Information of ZY-3 image pairs.

Satellite Image Pairs

Sensor ZY-3 FWD/BWD
Image size(pixel) 16281 × 16364

Principal distance(mm) 1700
Pixel size(um) 10
Resolution(m) 3.5

Overlap >90%
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Table 2. Sizes and heights of ROIs.

ROI Pixels Area (km2) Height (m)

1 34329 0.42 116.87
2 136791 1.68 115.11
3 484545 5.94 99.61

4 5376695 65.87 13.00

3.2. Experiment on Seed Point Extraction and ROI Extraction

Accurate ROI extraction result is crucial to accurate disparity estimation of pixels belonging to the
ROI. In order to verify the reliable of seed point extraction and ROI extraction. Figure 7 denotes the
extracted seed points on the top pyramid image and extracted ROIs on all pyramid images. As the seed
points on the lower pyramid image are located based on the seed points on the upper pyramid image,
only the seed points on the top pyramid image have been shown. As Figure 7 shows, the seed points
and ROIs are both reliable. There is no false seed point and missed seed point on the top pyramid
image, which ensures accurate ROI extraction. Furthermore, the consistency between ROIs on the
upper pyramid image and ROIs on the lower pyramid image ensures the rationality of the disparity
range transmission.
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The ROI extraction results also were compared with Finer Resolution Observation and Monitoring
of Global Land Cover (FROM-GLC) 10, a publicly available global land cover data with 10-m
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resolution [39,40]. As shown in Figures 8 and 9, the FROM-GLC10 water masks comparatively
accurately cover the water areas. However there are many local boundary mismatches between
FROM-GLC10 water masks and the water areas, while the boundaries of the ROIs and the water areas
match very well, such as the red frame 1 and red frame 2 in Figures 8 and 9, respectively. The imaging
time difference may be a reason for the former local boundary mismatch issue. Moreover, more details
similar to dams were saved in the ROIs, which may be related to the improvement of resolution, such
as the red frame 3 and red frame 4 in Figure 8 and the red frame 3 in Figure 9. In addition, there are
some small voids in the ROIs, which are inevitable in the process of seed point growth. Fortunately,
these small voids will be processed by subsequent interpolation and filtering, and have little effect on
the final DSM. Generally, publicly available water masks with relatively high accuracy will help to
identify water areas to some extent, but inevitably there will be local boundary mismatches which will
reduce the accuracy of DSM. Thus, we prefer to directly and automatically extract accurate water areas
with elegant strategies.
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There are geometrical deformations between the left and right images, and it becomes more and
more significant with the increase of size of the image. As shown in Figure 10, the ROIs on the left
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image were embedded into the right image with a certain disparity. In Figure 10a, the selected disparity
suits to the red frame 1, but does not suit to red frame 2 and 3. In Figure 8b, the selected disparity suits
red frame 1, but does not suit red frames 2, 3, and 4. Both results illustrate that there are geometrical
deformations in the horizontal direction between the left and right images. Therefore, it is necessary to
divide the extracted block into some small sub-blocks to eliminate the deformation. In Figure 10b,
the selected disparity suits red frame 5, but does not suit red frame 2. These results demonstrate that
there are geometrical deformations in the vertical direction between the left and right images. Thus,
the end-block matching strategy is necessary to compensate for the deformation.
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3.3. Experiment on ROI Matching

This section was designed to verify the effectiveness of the proposed block matching strategy and
the advantage of handling geometrical deformations. Figures 11 and 12 denote the image pair block 1
ROI matching results and image pair block 2 ROI matching results separately.
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It can be seen from Figures 11a and 12a that the block matching strategy cannot take good care of
the geometrical deformations between the left and right images. In Figure 11a, only red frame 2 was
matched correctly, while red frames 1 and 3 have obvious deviation. In Figure 12a, only the red frame
5 was matched correctly, all other frames have obvious deviation. Moreover, the sub-block matching
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strategy can handle the deformation in the horizontal direction well, as Figure 11b shows, red frames 1
and 2 and the top of red frame 3 were matched correctly.

As Figure 12b shows, red frames 1, 5, 7, and 8 were matched correctly. However, the bottom
of the red frame 3 (Figure 11b) and red frames 3, 4, and 6 (Figure 12b) still have deviations. This is
because that the sub-block matching strategy cannot compensate the deformation in the vertical
direction. Eventually, the end-block matching strategy can effectively handle the deformation in both
the horizontal and vertical direction. Almost all red frames in Figures 11c and 12c were matched
correctly. Only the bottom of red frame 3 (Figure 11c) has some slight deviations, and this is because
this part is located at the image boundary and has not enough intensity variation. The proportion of
these mismatches to the whole block is small and they will be eliminated in DSM generation step by
the median strategy.

The right two ROIs in Figure 11 have relatively small sizes, and they are less affected by geometric
deformations. Thus, there is no obviously difference between the different matching strategies for them.

Figure 13 shows the ROI matching results of different block matching strategies and can be used
for a further analysis of the performance of them. All ROI matching results were sampled and scaled
for easy of drawing, however, the relationship between them has not changed. From Figure 13a,b,
the result of block matching strategy is significantly affected by geometrical deformations. Moreover,
the sub-block matching strategy performs much better in terms of the deformation in the horizontal
direction but still has difficulty with the deformation in the vertical direction. By comparing Figures
13a and 13b, we can conclude that the effect of the deformation in the vertical direction will get strong
when the height of ROI becomes larger. Fortunately, the end-block matching strategy can handle the
deformation in both the horizontal and vertical directions well, and is insensitive to the size of the ROI.
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3.4. DSM Quality Assessment

For quality assessment, the DSMs generated by our method were compared with the DSMs
generated by both SGM and the commercial software Geomatica2018. Geomatica2018 is one of
best performing softwares, in terms of DSM generation from satellite image pairs, and the core
algorithm is an improved SGM. The proposed method is somewhat similar to SGM, however employs
block matching instead of dense matching in ROIs. Therefore, a comparison with both SGM and
Geomatica2018 is necessary.

Figure 14 shows the DSMs generated by the three approaches. There are obvious errors in the
DSMs generated by SGM in ROIs. This is because the matching primitive used by SGM does not
has enough uniqueness. Although matching cost aggregation is adopted, these errors still cannot be
eliminated. Geomatica2018 has better performance in these ROIs, even better in the ROIs with small
size. However, the program still has difficult with the ROIs of large size, and the result is over-smooth.
The proposed SGBM has obviously better performance than the two other methods Benefiting from
the adaptive block matching strategy, it can obtain smooth elevation surface in ROIs and keep the
boundaries simultaneously. Experiments show that the DSMs in ROIs generated by SGBM almost do
not need extra manual editing.
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To quantitatively evaluate the performance of our method, three typical indicators were selected,
including root mean square error (RMSE), variance, and time consumption. RMSE represents the
difference between the DSM height and the actual height of all points in the ROI. Variance reflects
whether the height between pixels belonging to the same ROI are consistent. In fact, pixels belonging
to the same ROI should typically have the same height.
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The results are shown in Table 3. For the four ROIs in this experiment, SGM has the worst accuracy
ranging from tens of meters to hundreds of meters. Geomatica2018 has relatively good accuracy in
terms of meters in ROI1 and ROI2, which have small size, but has poor accuracy in terms of tens of
meters in ROI3 and ROI4, which have relatively large sizes. SGBM has the best accuracy in terms of
tens of centimeters, and the variance is always zero. Moreover, the accuracy of SGBM is insensitive to
the size of the ROI. In terms of efficiency, Geomatica2018 has the lowest time consumption. SGBM is
faster than SGM, as block detection and matching require less computation than dense matching in the
ROI, and even less when the size of the ROI is large.

Table 3. Quantitative Evaluation.

Method Indicator

Image Pair Block1
Raster: 4010 × 1510 pix

Image Pair Block2
Raster: 5010 × 2510 pix

ROI1 ROI2 ROI3 ROI4

SGM
RMSE/m 25.31 125.85 51.26 84.65

Variance/m 19.14 86.42 37.92 83.05
Time/min 6 14

Geomatica2018
RMSE/m 2.13 2.87 11.68 79.71

Variance/m 1.36 2.34 10.09 73.92
Time/min 2 4

SGBM
RMSE/m 0.33 0.54 0.38 0.28

Variance/m 0 0 0 0
Time/min 4 9

4. Discussion

4.1. Advancements of The Proposed Method

In contrast to the traditional dense matching methods that obtain the elevation pixel by pixel, this
paper introduces a DSM generation approach SGBM, aiming at improving the elevation estimation
accuracy of water areas by adaptive block matching. The proposed SGBM was based on SGM. But an
effective strategy for water areas was performed and verified by the experimental results. To be more
specific, water areas were extracted, then an adaptive block matching strategy was employed to achieve
accurate disparity estimation for these areas. Disparity estimation for other pixels was conducted by
SGM. As analyzed in Section 1.2, for poor texture areas, the typical matching primitive, a window
centered at a selected pixel with a certain size, does not have enough uniqueness, leading to high
ambiguity between the candidates. Fortunately, the proposed EBM strategy can handle this problem
well and achieve accurate disparity estimation in water areas.

Our adaptive block matching strategy has three advantages: (1) The blocks only be extracted
in the left image. (2) The effect of geometrical deformations can be eliminated by EBM, which was
elaborated in Section 2.3.2. (3) The computation cost of disparity estimation by the block matching
strategy is much-lower than by dense matching in water areas. Consequently, the DSMs in water
areas generated by our method have high quality and subsequent laborious manual editing could be
significantly reduced.

4.2. Limitations of the Proposed Method

According to the analysis of block matching in Section 2.3 and the experimental results,
the proposed method is based on the assumption that the pixels belonging to the same block
have almost the same height, therefore, it is only applicable for water areas and other plain terrain
areas. Moreover, the DSMs in water areas generated by the proposed method depend on the block
extraction results, which are directly related to the seed point detection and growth strategy. With
different parameters, the corresponding results greatly vary from each other, thus, the parameters
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may need to be adjusted when it comes to different remote sensing stereo images, which potentially
impedes the applicability of our method. Nevertheless, the water block extraction module is designed
as a plug-in in this method, which means that other more effective water block extraction methods or
reliable water masks can be introduced conveniently.

5. Conclusions

This paper proposes a novel DSM generation approach called SGBM, which effectively solves
the height estimation problem in poor texture areas that have almost constant height, represented by
the water area. Different from conventional methods that fill the data voids by manual editing and
auxiliary data after DSM generation, our method directly acquires reliable DSM by handling water
areas and other areas separately and almost requires no manual editing. An adaptive block matching
strategy is employed instead of a dense matching strategy to achieve accurate disparity estimation in
water areas, and the computational redundancy is reduced. The experimental results demonstrate that
the precision of DSMs in these areas generated by SGBM have a significant improvement compared
with the DSMs generated by SGM and Geomatica2018, and that they can meet the requirements of
actual production. Moreover, SGBM is robust and insensitive to the size of the water area. It is an
alternative component to facilitate the quality of SGM for DSM generation.

For now, SGBM is only suitable to poor texture areas with almost constant height. In future
work, a more flexible block matching strategy for height fluctuation should be investigated, and more
different stereo images should also be tested. Additionally, other image knowledge, such as line
features, are worthy of more study to further improve the DSM quality.
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