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Abstract: Quantifying information content in remote-sensing images is fundamental for
information-theoretic characterization of remote sensing information processes, with the images being
usually information sources. Information-theoretic methods, being complementary to conventional
statistical methods, enable images and their derivatives to be described and analyzed in terms
of information as defined in information theory rather than data per se. However, accurately
quantifying images’ information content is nontrivial, as information redundancy due to spectral
and spatial dependence needs to be properly handled. There has been little systematic research
on this, hampering wide applications of information theory. This paper seeks to fill this important
research niche by proposing a strategy for quantifying information content in multispectral images
based on information theory, geostatistics, and image transformations, by which interband spectral
dependence, intraband spatial dependence, and additive noise inherent to multispectral images
are effectively dealt with. Specifically, to handle spectral dependence, independent component
analysis (ICA) is performed to transform a multispectral image into one with statistically independent
image bands (not spectral bands of the original image). The ICA-transformed image is further
normal-transformed to facilitate computation of information content based on entropy formulas
for Gaussian distributions. Normal transform facilitates straightforward incorporation of spatial
dependence in entropy computation for the aforementioned double-transformed image bands with
inter-pixel spatial correlation modeled via variograms. Experiments were undertaken using Landsat
ETM+ and TM image subsets featuring different dominant land cover types (i.e., built-up, agricultural,
and hilly). The experimental results confirm that the proposed methods provide more objective
estimates of information content than otherwise when spectral dependence, spatial dependence, or
non-normality is not accommodated properly. The differences in information content between image
subsets obtained with ETM+ and TM were found to be about 3.6 bits/pixel, indicating the former’s
greater information content. The proposed methods can be adapted for information-theoretic analyses
of remote sensing information processes.

Keywords: information content; spectral dependence; spatial dependence; independent component
analysis; normal transform; variograms; additive noise

1. Introduction

Remote-sensing images have become major sources of spatial information. These images are
formed by recording the reflected radiance or energy from a scene. A typical digital image consists of a
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two-dimensional array of pixels, each representing the average reflectance, emittance, or backscattering
of the surface within the instantaneous field of view. The images are used, often in combination with
other images and ancillary data (e.g., maps), to detect the presence of certain phenomena, map their
spatial extents, and estimate certain biophysical variables, as reviewed by Zhang et al. [1]. Statistical
models and methods are conventionally employed for descriptions and analyses of source images,
ancillary data, and image or map derivatives (as intermediate or end results) in remote sensing
information processes. It is increasingly recognized that an information-theoretic perspective [2—4]
is complementary to conventional statistical methods for characterizing remote sensing information
processes (e.g., measurement, data fusion, feature selection, image classification, and information
retrievals) [5-11], because source images, data processing, information retrievals, and resultant
information products can then be described and analyzed based on a unifying norm of information
bits as formally defined in information theory [2,3], along with statistical measures of variability.
Performance limits of models and methods for remote sensing information processing can also be
usefully evaluated via information theory [12-16].

To build an information-theory-based framework for analyzing remote sensing information
processes, it is important to develop methods for quantifying information content in multispectral
images, which are usually starts of remote sensing information chains, and whose information content
sets the upper bounds [3,16] for the amount of information available in subsequent information
processes in remote sensing. Such methods should preferably be transferable for use in analyses of
subsequent information processes in remote sensing, such as image classification. Thus, the aim of this
paper is to develop suitable methods for quantifying information content in multispectral images as a
basis for information-theoretic analyses of remote sensing information processes systematically.

Remote-sensing images (optical ones, in particular) record reflectance measurements, which are
related to the surface’s geophysical properties but subject to atmospheric effects and other factors,
as mentioned above. To quantify information in multispectral images, we need to look into how
images are acquired from a (remote) measurement system and then analyze how information flows
through this measurement process (also an image formation process [6]) from the underlying surface
phenomenon (source or input) through the sensor (channel) to a resultant image (output).

As discussed in [12], a measurement system includes geospatial fields or objects to be measured, a
measurement mechanism, and an observer. Below, we adopt a geostatistical framework for describing
the quantities involved. Suppose that a vector-valued random field (RF) [17] S refers to parameters
characterizing what is measured over a problem domain D (e.g., the underlying multispectral
intensity field over D, denoted as S = {S(x), x € D}). The measurement mechanism maps S to
another vector-valued RF Z (e.g., the observed multispectral intensity image data (i.e., measurements),
Z = {Z(x), x € D}. When considering a specific location (i.e., a pixel x), Z(x) and S(x) are random
vectors. For a particular band b in the context of multispectral images, we will have either scalar RFs
Zy, and S, over D or random variables Z,(x) and Sp(x) at a specific pixel x. Due to inherent uncertainty
in the measurement mechanism, the measurements Z may contain errors (i.e., noises). These noises are
typically additive for optical images and often assumed to be Gaussian and independent of their signal
components [12,16]. The observer observes Z and determines the information about S from Z.

In languages of information theory, the aforementioned measurement process can be studied
via entropy, mutual information, and other information measures [3]. Entropy indicates how easily
images (as messages) can be compressed [18,19]. On the other hand, mutual information measures the
information about phenomena on the Earth’s surface from images [20,21], thus being more relevant
to the problem here. For a multispectral image Z of underlying signal S described above, mutual
information between Z and S (denoted by I(S,Z)) quantifies the amount of information that Z provides
about S. The greater this mutual information, the more information Z conveys about S, as discussed
also in the context of radar remote sensing by [12]. An information-theoretic framework for quantifying
information content in images thus lies in properly estimating mutual information between the images
and the underlying surface properties.
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However, quantifying information content in Z about S is far from straightforward, as we need
to consider inter-band spectral dependence (as Z and S are both multispectral), intra-band spatial
dependence (as Z and S are both considered over D as a whole, not just at a particular pixel x), and
noise (due to uncertainty in the measurement mechanism, as mentioned above). Spectral and spatial
dependence imply information redundancy and should be taken into account for objective evaluation
of image information content.

There have been research efforts to address these issues to some extent. To handle spectral
dependence (redundancy), principal component analysis (PCA) was used to decorrelate image bands
for estimating information content in image data [22,23]. However, PCA does not take image data’s
spatial structure into account, meaning that any permutation of image pixels would produce the same
principal components. As opposed to PCA, maximum noise fraction (MNF) may be used to decompose
multispectral satellite images into fraction image bands that are orthogonal linear transforms of the
original image bands and show decreasing image quality with increasing component number [24,25].

There has also been work done to address spatial dependence specifically. For example, in [21],
spatial redundancy was estimated by use of the difference operator which replaces each value except
the first of a sequence by its difference from the preceding value, while PCA was used to handle spectral
redundancy, as mentioned above. Razlighi et al. [26] proposed a new model, named quadrilateral
Markov random field (MRF), to compute spatial entropy for images (single-band) and spatial mutual
information for two images (again, single-band), in which spatial redundancy is accounted for.

To cope with both spectral and spatial redundancy, Wang et al. [27] described methods for spectral
and spatial decorrelation in lossless data compression of remote-sensing images whereby optimal
band combination and band ordering can be efficiently computed based on the statistical properties
of Landsat-TM data. Experiments on several Landsat-TM images show that using both the spectral
and the spatial nature of the remotely sensed data results in significant improvement (with higher
compression ratios) over spatial decorrelation alone. More recently, for decorrelation of multispectral
images, Aiazzi et al. [28] proposed a reversible compression method based on differential pulse code
modulation (DPCM). They extended a one-dimensional fixed DPCM to the case of a three-dimensional
adaptive prediction for reversible inter-band compression. The modeling of prediction errors from
DPCM was based on the generalized Gaussian density (GGD) function. The scatter plot method was
used for noise estimation. Both noise variance and entropy model parameter were used for estimating
the amount of “useful” information content in multispectral images.

However, decorrelation procedures implemented by Price [22], Wang et al. [27], and Aiazzi
et al. [28] may not lead to spectral or spatial independence, as uncorrelatedness is not equivalent to
independence [29]. Alternative methods that can effectively handle the issue of dependence (implying
information redundancy) are required for accurate estimation of information content. As will be
elaborated below, this paper proposes using independence component analysis (ICA) [29] to decompose
a multispectral image (observed, with inter-band spectral dependence) into independent components
(sources) whose mixtures recover the observed image. This allows for computing information content
(entropy) in the original image as a sum of information content in transformed image bands (though
with an offset term). With ICA transformation, there is no assurance that the resulting transformed data
pertain to spectral bands. Thus we denote transformed image bands in italic (i.e., bands) to differentiate
them from the original image bands. In the text, this should be noted in use of bands for transformed
image data. This method for handling spectral dependence is an improvement over existing methods
in theoretic terms, since the decomposed components are meant to be statistically independent. It is
interesting to note that informational criteria are employed for ICA decomposition [29]. Rationales for
using ICA lie also in its widening applications in image-based information processing, such as feature
selection and classifier optimization [30] and multivariate spatial analyses and modeling, especially
when in combination with geostatistics [31] and geospatial information [32,33].

As for spatial dependence modeling, the quadrilateral MRF model proposed by Razlighi et al. [26]
is not directly applicable for multispectral images. In addition, there are assumptions made in the
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proposed MRF model, which may become restrictive in certain cases. There seem to be merits in
modeling spatial correlation from a geostatistical perspective, which is less restrictive and can also
provide an approach to estimate noise variance in images by way of estimating variogram model
parameters, as magnitude of the nugget effect might be treated as an estimate of the noise variance.

To facilitate analytical computation of information content, the aforementioned ICA-decomposed
image bands are further normal-transformed. This also allows spatial dependence to be accommodated
easily without having to go through complicated modeling procedures as in [26].

Based on the review and reasoning above, this paper proposes a strategy based on image
transformations and geostatistics for quantifying information content in multispectral images. The
transformations are for generating independent components (i.e., bands) from an original image and
for transforming these independent band data to normal distributions. The double transformations
(i.e., independence- and normality-transformations) facilitate easy computation of the transformed
image’s (joint) entropy through evaluation of individual transformed image’s bands entropies followed
by summation, while the original image’s entropy value and those of the transformed images are
determined properly. Geostatistics is applied to quantify spatial correlation through variogram
modeling (estimating variogram model parameters, to be precise; this should be noted in the
remainder of the text) in the double-transformed image bands so that their entropies can be computed
using Gaussian models with spatial dependence explicitly accommodated. In addition, variogram
modeling provides estimates of nugget variance (in original image bands), which can be used for
estimating mutual information between the original image and its signal component. Thus, inter-band
spectral dependence, intra-band spatial dependence, and (additive) noise are well dealt with in the
proposed strategy.

The paper is organized as follows. In Section 2, the methods for estimating various information
measures concerning multispectral images are described. Experiments with Landsat TM+ and TM
image subsets are presented in Section 3 where experimental data and results are described along with
experimental procedures. This is followed by some discussion before the conclusions of the paper.

2. Methods

As mentioned in Section 1, the proposed strategy for estimating information content in
multispectral images consists of the following steps: (1) ICA transform for estimating statistically
independent bands from a given original multispectral image; (2) normal transform to acquire
independent and normal-distributed image bands, with proper adjustment for entropies before and
after the normality transform; (3) estimation of information content in ICA and normal-transformed
image bands with accommodation for spatial correlation, which is quantified through geostatistical
modeling; and (4) estimating noise variance in the original image bands as nugget effects in their
variograms so that mutual information between the original image and its signal component can be
computed. We describe the procedures in this section after a brief description of the assumed image
data model and, more fundamentally, the underlying assumptions concerning stationarity.

Remote-sensing images (optical ones, in particular) record reflectance measurements related
to the surface’s geophysical properties but are subject to atmospheric effects and other factors, as
mentioned in Section 1. We treat these factors of uncertainty as having generated, in the observed
spectral data, the component of noise, which is usually assumed additive and independent of the
signal component [5,12,16]. Consider a B X P x Q multispectral image (P is the number of columns, Q
is the number of rows, and B is the number of bands) with additive noise:

(x) @

Z x)=_ S (x)+ N
BxPxQ BxPxQ BxPxQ

where Z (x) = (Z1(x),...,Zg(x T, S (x) = (51 (x),..., Sg(x T, and N (x) =
wEg® = (A Zy @) 8 () = (50 S ), and | N ()

(N7 (x),..., Np (x))T represent the multispectral intensity measurements (i.e., the image data), their
PxQ PxQ
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signal components, and the noise components, respectively. In the remainder of this paper, we use Z,
S, and N, without indicating the pixel locator x, for compact notation.

As mentioned in Section 1, we adopt a geostatistical framework for describing Z, S, and N. In
geostatistics, the data is assumed to be a nonrandom sample from one realization of a random function
(RF) [17,34]. Moreover, the RF is assumed to satisfy a stationarity assumption. For an RF, there are at
least three possible forms of stationarity; strong (meaning that the probability distribution is invariant
with respect to translation and rotation), second order (meaning that the covariance function exists and
is invariant with respect to translation), and intrinsic (order zero) (meaning the variance of first-order
increments exists and is invariant with respect to translation). Intrinsic is the weakest, second order the
next weakest, and strong the strongest [34]. For the RF, there is not just a single probability distribution
(except in the case of strong stationarity) but rather one for each point in the underlying space. Strong
stationarity does not imply the existence of either first or second-order moments.

For this research, we assumed strong stationarity for each band as well as for the transformed
bands and also the existence of second-order moments for first-order increments (which is implicit in the
use of transformations to normality described later on). This is necessary because estimation of entropy
for an image (band) requires knowledge of its probability distribution function being stationary across
the image domain (or subdomains if local stationarity is assumed, as is the case for this research). More
importantly, with limited experimental image datasets employed in this research, no statistical tests
would be possibly performed for stationarity; trying to use the data sets to discern whether strong
stationarity is a reasonable assumption is simply not possible [34].

Given the image data model and assumptions concerning stationarity and existence of second-order
moments above, we can compute mutual information I(S,Z), which, as mentioned previously, quantifies
the amount of information that image Z provides about signal S and can be computed as:

1(S,Z) = h(Z) - h(ZIS) = h(Z) - h(N) @)

where h represents (differential) entropy, h(Z) denotes the entropy of the image data, and h(Z|S)
represents the conditional entropy given the knowledge of signal S (which equals N’s entropy due to
independence between S and N) [2,3]. As noises in individual bands are Gaussian and independent,
their entropy can be easily computed as:

B 1 &

h(N) = ; h(Ny) = 5 ;[logz(det(ZneZNb))] ®)

1

where ZNb is band b’s noise variance.

Due to spectral dependence among image bands and spatial dependence among pixels, quantifying
of h(Z) and hence I(S,Z) (Equation (2)) is hardly trivial. A sensible strategy is to decompose a given
multispectral image into statistically independent bands, which can then be analyzed separately with
respect to quantifying information. Such decomposition can be based on ICA, which is developed
for blind signal separation [29]. The ICA-transformed image’s (joint) entropy can then be computed
as the sum of individual bands entropies, with the original image’s entropy evaluated easily, as
elaborated below.

Let us denote the B-dimensional ICA transform of an original multispectral image (B-band) by
zZ = [Zi,Zé, “ee ,Z;B]T (for a pixel at location x as in Equation (1)). In ICA, a weight matrix W is
determined so that the individual bands of the resulting ICA-transformed image Z’ are statistically
independent:

7 =WZ @)

Suppose that we have applied an ICA transform (with a weight matrix W) to Z and obtained
ICA-transformed image Z". For any nonsingular matrix W, according to information theory, we
have [2,3]:
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B
(Z) = W(Z' = WZ) - log,|det(W)| =} h(Z;) - log,|det(W)| ®)
b=1

where || indicates absolute value and det determinant, and - log, |det(W)| is the difference between joint
differential entropies h(Z) and h(Z’). In Equation (5), the joint entropy of Z' canbe computed as h(Z,) =

B ’
Y. h(Z}) [3], asindividual bands in the transformed image Z' are assumed to be statistically independent.
b=1

Estimation of individual bands entropy for ICA-transformed image data is not straightforward
except for Gaussian data [2,3]. To accommodate non-normal distribution, a sensible way is to transform
non-normal data to normal data with relations between entropy values before and after the transform
determined properly. For normality transform, Johnson transformation is recommended [35], as it is
able to transform a continuous univariate vector to a random vector from standard normal distribution.
The algorithm actually fits the data to one of the following three functional forms (S, S; and S,,):

Sp:Z, =y+n+in((2;—¢)/(A+e-2,))
S1:2Z) =y +n+In(Z;-¢) (6)
Su :Z'b' = y—i—n*asinh((Z;—e)/A)

where Z; is a normal-transformed image band, Z; is the corresponding non-normal image band
(ICA-transformed, Equation (4)), and y, 1, ¢, and A are the necessary parameters. The relationships
between Z; and Z; in Equation (6) can be summarized as Z; = G(Z}). The R package jtrans
(https://cran.r-project.org/web/packages/jtrans/) uses an Anderson-Darling test for normality after
these transforms. The fit with the largest p-value is accepted (normality is the Null Hypothesis, and a
large p-value implies a small Type II error probability).

We can derive the general expression relating entropy values before and after transformation
as [36]:

WZ3) = 1(Z) - [ 12 Yosas! (1), = 1(z;) - o ”

where h(Z]) and h(Z;) denote the entropy values (for band b) before and after normal transform,
respectively. In Equation (7), Ahy, is the difference between differential entropy values before and after
the transform and can be computed by noting that the relationship between the probability density
functions (PDFs) of Z," and Z, f(z, ) and f(z}), is f(z}) =] g’(z;)l f(z, ), for monotonic transformations.

Entropy of an ICA- and normal-transformed image single-band data Z; is i logz(det(ZneZZ// )), where
b

X~ is the covariance matrix of Z'b' [3]. Thus, the relation between h(Z') and h(Z") is:

Z,

WZ')=h(Z")- Ah = % i[logz(det(ZneZZ; ))] - i Ahy, (8)
b=1 b=1

While noise N, may well be assumed to be spatially independent as indicated in Equation (3),
there exists inter-pixel spatial dependence in ZZ. Variogram models describe spatial relationships in
spatial data including remote-sensing images [37-39]. Experimental variogram for the aforementioned
ICA- and normal-transformed image band data Z'b' can be written as:

N,
]- 4 1’
2 00 = g L1z (-2 e+ ol ©)

where Z;' (x) and Z (x + h) are Z; values at pixels x and x + h, respectively, / is the lag, and N}, is
the number of pairs of pixels at lag /. Variogram model parameters will then be used to build a
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covariance function to populate the variance and covariance matrix X, (for individual band data Z;)
b

for estimating h(Zg ) (Equation (8); if the variogram has a sill then sill - y (h) is a covariance function).
Since pixel data are not pure point-support data but are of finite areal support, locations x and x + h refer
actually to pixel centroids. Based on variogram model parameter estimation, we can also get estimates
for nugget effects, which can be used as estimated noise variances [40], allowing for evaluation of noise
entropy. It should be noted that, while one possible interpretation of the value of the sill of a nugget
component of a variogram is a noise variance, it is not the only possible interpretation, especially with
data on pixels. However, we restrict our discussion by treating pixel data as quasi-point data, since we
consider the information content of images with respect to their signal components (see Equation (1)),
which are themselves on finite areal support.

Joint entropy of the original multispectral image Z can be computed by combining Equations (5)
and (8). To compute the amount of information transmitted by the original image data Z about its
signal component S (i.e., mutual information between Z and S), we rewrite Equation (2) as:

B
1(5,2) = b;[h(z;)] ~ log,|det(W)| - Ah — h(N) "
. 10
=1 5‘1 logz[Zne det():z;/ )] - logz)det(W)) — Ah—h(N)

where Equation (3) is used to estimate joint entropy of noise h(N).

A flowchart is presented in Figure 1. As shown in Figure 1, first, ICA transform is conducted
to decompose the original (multispectral) images into images with independent bands. This is done
separately for each of the original images. Second, normal transform is carried out to obtain ICA- and
normal-transformed images. Before doing this, normality test is needed to check the non-normality
of the individual ICA bands. This is also done separately for each band of each ICA-transformed
image. Third, for each band in each of the ICA- and normal-transformed (i.e., double-transformed)
images, variogram modelling is performed so that covariance matrices corresponding to the individual
double-transformed image bands can be built with estimated variogram model parameters. Finally,
information content in individual bands of the double-transformed image can be computed (by taking
advantages of multivariate normal distributions) with spectral and spatial dependences accounted for.
Joint entropy of the original multispectral image can be estimated based on Equations (5) and (8), with
mutual information I(S, Z) estimated using Equation (10).
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Remotely Sensed Imagery

Figure 1. The flowchart describing the methods for quantifying information content in multispectral
images.

3. Experiments
3.1. Experimental Datasets

Three sites labeled built-up, agricultural, and hilly were selected for this study, as shown in
Figure 2. In this research, two datasets (each with three multispectral remote-sensing image subsets
dimensioned 200 by 200 pixels each) were used to validate the performance of the proposed methods.
One dataset includes three Landsat ETM+ image subsets over three sites featuring different dominant
land cover types (i.e., built-up, agricultural, and hilly) to showcase differences between information
content in (subset) images of different broad cover types, as shown in Figure 3a—c, respectively, while
the other consists of three Landsat TM image subsets over the same three sites, as shown in Figure 4a—c,
respectively. Image subsets in Figures 3 and 4 are shown in standard false color, with bands 4, 3, and
2 displayed in red, green, and blue, respectively. These two datasets were used for comparing the
(estimated) amounts of information content obtained by the two different sensors. The reason why
data acquired from these two sensors were chosen is that they are both 8-bit, likely more comparable
for validating the proposed methods, with ETM+ improved upon TM [41].
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Figure 2. The three study sites: built-up, agricultural, and hilly.

(b)

Figure 3. Three Landsat ETM+ image subsets over sites with different dominant land cover types:
(a) built-up, (b) agricultural, and, (c) hilly.

(@) (b) ()

Figure 4. Three Landsat TM image subsets over the same sites as in Figure 3 with different dominant
land cover types: (a) built-up, (b) agricultural, and, (c) hilly.
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Specifically, the three Landsat ETM+ image subsets were selected from a Landsat ETM+ image
(path and row number P123R39), flown over Wuhan City and surrounding areas, Hubei Province,
China, on April 29, 2017. In these Landsat ETM+ image subsets (shown in Figure 3), bands 1-5 and
7 were actually used in the experiment, with band 6 excluded due to its different spatial resolution.
The three Landsat TM image subsets were selected from a Landsat TM image (again, path and row
number P123R39) acquired on March 14, 2009, as shown in Figure 4. Again, in these Landsat TM image
subsets (shown in Figure 4a—c, respectively), bands 1-5 and 7 with the same 30 m spatial resolution
were actually used.

3.2. Experiments with the Landsat ETM+ Dataset

The experiment procedures for the case study follow what is shown in Figure 1. With ICA
transformation, for each image subset Z, six image bands were used, resulting in six ICA-transformed
image subset Z' bands (i.e., Z| ~ Z;, note that these bands’ order of appearance and content do not
correspond to those of the original image subsets unless specially treated as in Falco et al. [30]). The
weight matrices concerned in ICA were used for computing the differences between joint entropies of
the original and ICA-transformed image subsets, as shown later.

For each of the six bands in each of the three ICA-transformed image subsets Z’, normal transform
was undertaken. This generated an ICA- and normal-transformed image subset Z” (with bands
denoted Z7 ~Z, corresponding to aforementioned ICA-transformed image bands Z; ~ Z;) for each
ICA-transformed image subset Z'. Table 1 shows the results of normal transform for three image
subsets. Each row represents the specific transform parameters for a Z' image band. For the S,
transform, there are four parameters to be evaluated as described in Equation (6).

Table 1. Normal transform parameters (see Equation (6)) and entropy difference values for the three
image subsets.

Image ICA- and Normal- Transform Parameters Al
Subsets Transformed Image Z” Bands Type y 1 € A

1 Sy 3.50 192 -073 051 0.13

2 Su 1.77 225 -197 153 0.09

Built-up 3 Su 0.60 110 -132 054 0.17

4 Sy -020 169 -514 136 0.24

5 Su 0.06 140 -094 1.03 0.05

6 Su -042 145 12.70 0.97 0.10

1 Su 0.73 1.04 0.59 0.50 0.09

2 Su -002 115 0.11 0.52 0.34

Agricultural 3 Su -071 115 0.11 0.52 0.49

4 Su -049 112 -040 056 0.19

5 Su 0.03 2.01 0.04 1.72 0.05

6 Sy 0.24 1.93 0.23 1.60 0.06

1 Su -042 050 -045 0.08 0.03

2 Su -030 271 -015 055 1.53

Hill 3 Su -056 277 0.54 2.45 0.05

1y

4 Su -0.16 1.22 - 0.09 0.72 0.19

5 Su -050 288 -042 240 0.14

6 Su -006 091 -005 043 0.11

Values of Al (Equation (7)) are also shown in Table 1 (the last column). As shown in Table 1, Ah
values are generally small, except for band Z; in the agricultural and hilly image subsets and band
Z; in the agricultural image subset, indicating largely modest effects of Z' image data skewedness.
Nevertheless, these differences should be accommodated for objectively quantifying information

content in remote-sensing images.
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When computing information content in a double-transformed image subset Z* (with bands
Z| ~ Z/), spatial dependence should be accommodated. In this experiment, spatial correlation
was quantified through variogram modeling. After computing the experimental variograms for
individual bands of double-transformed image subsets (three of them), theoretic models were fitted to
experimental variograms. For this, nested structure models combining nugget effect models, spherical
models, and exponential models were used because they provided the best fits among a standard set
of variogram models in a weighted least squares sense [37]. The experimental variograms and the
corresponding models fitted of the three land cover types are shown in Appendix A (Figures A1-A3)
due to space limitation. Resultant variogram parameters are shown in Tables 2—4, indicating variable
spatial correlation in terms of partial sills and ranges of spatial correlation. It should be noted that
ranges are actually effective ranges for exponential models (i.e., three times a (not a itself) in models like
exp(-h/a)). Nugget effects are quite small compared with the vertical axes of the variograms shown in
Figures A1-A3. Estimated variogram model parameters were then used to calculate spatial covariances
for Z" image bands (i.e., ZZ;/ in Equation (8)), allowing for computing entropy h(Z").

Entropies of double-transformed image data Z; were estimated using (1/2) log, [det(ZneZZg )]

(see Equation (8)), based on their variogram models. Joint entropies for z’ image subsets were
computed as sum of individual Z” bands’ entropies. Further, using results obtained previously
regarding the difference between h(Z) and h(Z’) (i.e., — 10g2|det(W)| in Equation (5)) and Ah (shown
in Table 1), joint entropies for original image subsets were estimated using Equations (5) and (8), as
shown in Table 5.

To estimate mutual information I(S, Z) for the original image data, we need to estimate original
image noise’s entropy h(N) (Equation (1)). For this, variogram modelling was also performed on
original image bands Z, ~ Z, for each image subset. Resultant estimates for nugget effects were then
input to Equation (3) as estimates of noise variance for computing #(N). Resultant estimates of noise
variance are shown in Table 4, with estimates for #(N) shown in Table 5. Given estimates of h(Z) and
h(N) shown in Table 5, mutual information I(S,Z) was then estimated for the three image subsets
(Equation (2)), as also shown in Table 5.

As shown in Table 5, information content for the “built-up” image subset is greater than that for
“agricultural” and “hilly” image subsets, while there is slight difference between the latter two image
subsets. This is consistent with our intuitive understanding: image scenes of built-up areas change
more rapidly (having finer textures) than other types of scenes, thus containing a greater amount of
information content.

For comparison, information content was also calculated by skipping one or more of the processing
steps (i.e., image transformations and geostatistical modeling) involved in arriving at the estimation of
I(S,Z) reported in Table 5. We describe relevant results below.

First, we may come up with estimation of information content without considering spectral
dependence, spatial dependence, and non-normality (thus becoming a naive method). This means that
we estimate information content simply by computing mutual information of original image subsets’
bands separately (using Gaussian distribution’s differential entropy formula and assuming spatial
independence) and summing up. Results are listed in Table 6 (Method 1, labeled for convenience),
where I(S, Z) estimates shown in Table 5 (i.e., labeled as Method 5) are duplicated for comparison.

Second, information content was estimated by considering spatial dependence only. For this,
variogram parameters estimated based on the original image (Table 4) were used to construct the
spatial covariance matrices (assuming existence of sill for a variogram model) for computing joint
entropies of the original image subsets and hence mutual information; the rest were the same as in
Method 1. Results are shown in Table 6 (Method 2).
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Table 2. Variogram model parameters (nug: nugget, exp: exponential, sph: spherical; units for ranges are number of pixels) for ICA- and normal-transformed image

bands (Z] ~ Z;).

Built-Up Agricultural Hilly
Bands Nug Exp Sph Nug Exp Sph Nug Exp Sph

Sill Range Sill Range Sill Range Sill Range Sill Range Sill Range
1 0.02 0.40 35.61 0.51 4.78 0.01 0.83 7.70 0.13 36.18 0.08 0.85 14.44 0.25 68.14
2 0.08 0.76 541 0.20 17.31 0.01 0.80 31.21 0.45 4.13 0.40 0.60 38.46 0.51 6.61
3 0.02 0.83 12.05 0.15 63.15 0.22 0.66 11.02 0.14 52.08 0.04 0.55 22.94 0.38 6.35
4 0.01 0.96 4.05 0.11 20.56 0.15 0.76 6.14 0.11 28.52 0.01 0.69 5.62 0.27 14.37
5 0.06 0.88 491 0.17 191.30 0.11 0.30 41.18 0.50 5.84 0.19 0.45 6.24 0.34 14.67
6 0.10 0.42 23.75 0.49 4.72 0.25 0.55 4.24 0.18 14.40 0.27 0.44 4.87 0.30 12.52

Table 3. Variogram model parameters (nug:

(Z] ~ Z}).
Built-Up Agricultural Hilly
Bands Nug Exp Sph Nug Exp Sph Nug Exp Sph

Sill Range Sill Range Sill Range Sill Range Sill Range Sill Range
1 0.04 0.69 21.62 0.23 4.74 0.02 0.68 24.80 0.24 4.34 0.01 0.46 83.57 0.63 9.24
2 0.01 0.38 31.86 0.56 4.60 0.03 0.35 40.94 0.53 5.92 0.04 0.52 98.35 0.23 6.42
3 0.01 0.90 512 0.08 22.71 0.01 0.58 7.69 0.30 17.93 0.07 0.49 25.26 0.40 6.16
4 0.14 0.25 20.66 0.59 3.83 0.06 0.29 26.17 0.59 4.95 0.02 0.44 2.55 0.53 9.29
5 0.13 0.82 7.06 0.07 0.28 0.18 0.29 19.80 0.47 4.34 0.11 0.60 4.75 0.20 14.46
6 0.04 0.82 5.18 0.12 18.85 0.27 0.50 5.02 0.18 16.22 0.25 0.36 4.34 0.32 14.65

Table 4. Variogram model parameters (nug: nugget, exp: exponential, sph: spherical; units for ranges are number of pixels) for original image bands (Z; ~ Z).

Built-Up Agricultural Hilly
Bands Nug Exp Sph Nug Exp Sph Nug Exp Sph
Sill Range Sill Range Sill Range Sill Range Sill Range Sill Range
1 016  90.36 33.46 87.68 4.70 0.37 3.65 23.80 28.42 6.32 0.31 44.64 7213 23.15 6.60
2 022  106.70 35.34 113.48 4.81 026  35.54 29.33 46.23 6.00 013 4577 15.01 30.43 114.56

nugget, exp: exponential, sph: spherical; units for ranges are number of pixels) for ICA-transformed image bands
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Built-Up Agricultural Hilly
Bands Nug Exp Sph Nug Exp Sph Nug Exp Sph
Sill Range Sill Range Sill Range Sill Range Sill Range Sill Range
3 0.21 229.84 32.43 222.89 4.94 0.17 93.51 29.57 130.54 6.00 0.31 145.76 15.72 111.37 170.07
4 036  92.32 17.45 50.66 4.37 045  98.77 37.34 55.39 6.29 0.23  143.89 63.52 158.89 8.54
5 021 46329 7.85 60.80 36.81 0.10  207.50 18.55 105.67 5.01 011  136.79 33.07 135.10 7.50
6 0.16 574.04 7.65 12.34 36.02 0.44 218.71 19.61 151.30 5.57 0.30 142.89 87.95 204.42 8.94

Table 5. Estimates of information content in original image subsets with spectral dependence, spatial dependence, and non-normality accommodated (bits/pixel).

Image Subsets Built-Up Agricultural Hilly

Joint entropy W(Z") 9.88 9.73 9.84

Ah 0.78 1.22 1.94

Joint entropy h(Z') 9.10 8.51 7.90
Difference between h(Z) and h(Z) 14.68 13.79 14.11
Joint entropy h(Z) 23.78 22.30 22.01

Noise joint entropy h(N) 5.56 6.51 5.57
Mutual information 18.22 15.79 16.44

Table 6. Estimates of information content for the three image subsets using different methods (bits/pixel).

Experimental Image Subsets

Methods
Built-Up Agricultural Hilly
1. Not considering spectral and spatial dependences and non-normality 31.68 28.17 29.35
2. Considering spatial dependence only 27.62 23.08 22.69
3. Considering spectral dependence (via ICA) only 21.42 19.58 20.84
4. Considering spectral (via ICA) and spatial dependences 18.77 16.16 17.04
5. Considering spectral (via ICA) and spatial dependences and non-normality 18.22 15.79 16.44
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Third, information content was estimated by considering spectral dependence only. For this, sill
estimates as part of variogram parameters estimated for the ICA-transformed image subsets (Table 3)
were used for computing joint entropies of the ICA-transformed image subsets (hence those of the
original image subsets, using Equation (5), assuming spatial independence), with the rest of the steps
being the same as in Method 1. Results are shown in Table 6 (Method 3).

Fourth, information content was estimated by considering both spectral and spatial dependence.
This means that the processing steps were the same as those for Method 5, except for normal
transformation (and hence calculation for Al in Equation (7)). For this, variogram parameters
estimated based on the ICA-transformed image subsets (Table 3)) were used to construct the spatial
covariance matrices for computing joint entropies of the ICA-transformed image subset (hence those
of the original image subsets). Results are shown in Table 6 (Method 4).

As shown in Table 6, information redundancy due to spectral dependence is greater than that due
to spatial dependence, as results obtained by Method 3 are smaller than those by Method 2. In other
words, results obtained by Method 3 indicate substantial information redundancy due to inter-band
spectral dependence. Comparing results obtained by Method 4 and Method 5, over-estimation
of information content by assuming normality (i.e., no treatment for non-normality) is about 0.5
bits/pixel. Method 5 (representing a full treatment for spectral dependence, spatial dependence, and
non-normality) provides the most objective (and accurate) estimates of information content. The
differences between the results obtained by Method 5 and those by Method 1 are outstanding, being
about 12.9 bits/pixel.

3.3. Experiments with the Landsat TM Dataset and Comparisons Between Landsat ETM+ and TM Datasets

The experimental procedures for the TM dataset are the same as for the ETM+ dataset (see
Figure 1). Table 7 shows the results of information content estimation for ICA-based methods for the
three TM image subsets, with intermediate results not shown (nor in Appendix A). There are distinct
differences between the results obtained by Method 1 and Method 5, being about 8.9 bits/pixel.

Table 7. Estimates of information content for the three TM image subsets using different methods
labeled as in Table 6 (bits/pixel).

Methods Experimental Image Subsets

Built-Up Agricultural Hilly

1. Not considering spectral dependence, spatial

dependences, and non-normality 24.09 2117 21.06

2. Considering spatial dependence only 20.33 16.74 16.09

3. Considering spectral dependence (via ICA) only 17.12 15.66 14.82

4. Considering spectral (via ICA) and spatial 15.07 13.49 1250
dependences

5. Considering spectral (via ICA) and spatial 14.73 13.23 11.59

dependences and non-normality

The general patterns of information content estimates with respect to different land cover types
are similar to those in the Landsat ETM+ image subsets. Among the different methods for estimating
information content, Method 5 (full treatment) provides the most accurate estimates as it accounts
for information redundancy due to spectral and spatial dependences and over-estimation due to
non-normality. Comparing information content estimates for image subsets acquired with the two
sensors, as shown in Tables 6 and 7, information content estimates for Landsat ETM+ image subsets
are much greater than those for Landsat TM image subsets, especially for the “hilly” image subsets.

In order to clearly visualize the differences in information content between Landsat ETM+ and TM
image subsets, three bar charts are presented in Figure 5. As shown in Figure 5, for all three different
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land cover types, information content estimates for Landsat ETM+ image subsets are consistently
greater than those for Landsat TM image subsets. The differences in information content estimates
between the two sensors are calculated and shown in Figure 6 for convenience.

Estimated information content in Landsat ETM+ and Landsat TM

image subsets with built-up
35.00 31.68
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X
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2 25.00
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Figure 5. Estimated information content in Landsat ETM+ and Landsat TM image subsets over sites
with different dominant land cover types: (a) built-up, (b) agricultural, and, (c) hilly.
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Differences between estimated information content in
ETM+ image subsets and that in TM image subsets

8.50

Built-up

7.50 Agricultural

—te— Hilly
6.50

5.50

content (bits/pixel)

4.50

3.50

Differences between estimated information

2.50
Method 1 Method 2 Method 3 Method 4 Method 5

Figure 6. Differences in information content between Landsat ETM+ and Landsat TM image subsets,
estimated by different methods.

As shown in Figure 6, the differences in information content estimates between the two sensors are
the biggest when considering none of spectral dependence, spatial dependences, and non-normality
(Method 1). The differences in estimates obtained by Method 2 (considering spectral dependence
only) are the second biggest. Comparing Method 2 with Method 3 (considering spatial dependence
only), we find that information redundancy due to spectral dependence is greater than that due to
spatial dependence. After considering all aspects (spectral dependence, spatial dependence, and
non-normality) as by Method 5, the differences in estimated information content in images obtained by
the two sensors are still quite outstanding, being about 3.6 bits/pixel on average. In terms of information
content, the results indicate that the quality of ETM+ images is better than that of TM images. The fact
that ETM+ image subsets contain more information content than TM ones was confirmed by noting
greater values of image DNs variance, a conventional statistical measure of image variability, in the
former than in the latter, although not reported here. We are not able to provide further explanations,
since there does not seem to be published work on formal comparisons of Landsat ETM+ and TM
sensor performances and/or image quality, let alone that based on information theory.

4. Discussion

This paper has proposed a strategy based on image transformations and geostatistical modeling
for quantifying information content in multispectral remote-sensing images. The proposed strategy
is expectedly valuable, with adaptations, for analyzing subsequent information processes in remote
sensing. Below, we compare ICA with MNF for handling spectral redundancy, address the issues of
stationarity and geostatistical modeling, and give an outlook about applicabilities of the proposed
methods, followed by some prospectives about further research.

4.1. Comparing ICA and MNF for Handling Spectral Redundancy

Although spectral redundancy, spatial redundancy, and non-normality are important factors when
quantifying information content in multispectral images, we focus on spectral redundancy here. This
is based on the understanding that the experiments carried out in this research were actually designed
both for testing the full-treatment method (e.g., Method 5 in Tables 6 and 7) and for comparing it
with alternatives in which inter-band spectral dependence, intra-band spatial dependence, and/or
non-normality is not accounted for (e.g., Methods 1 through 4 in Tables 6 and 7). The other reason is
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that comprehensive comparisons between the proposed methods and existing methods (e.g., those
reviewed in Section 1) are beyond the scope of this paper.

For handling spectral redundancy, de-correlation methods, such as PCA and MNE, may be used,
as reviewed in Section 1. PCA leads to linear orthogonalization of correlated multivariate data whereby
spatial structure is not taken into account. MNF transform [24,25], though similar to PCA in the sense
of orthogonalization, is better suited for spatial data than PCA, because MNF transform works in a
metric space defined by a noise covariance matrix estimated from the data, with noise estimated as the
difference between central and neighboring pixels. Thus, as a follow-up to the discussions above and
those in Section 1 concerning differences between spectral decorrelation and spectral independence,
we performed empirical comparisons between ICA and MNF with respect to spectral redundancy
handling, with results described below.

When estimating information content by considering spectral dependence (via MNF) only,
estimation was obtained for MNF-transformed image subsets (both ETM+ and TM) following
the procedures similar to Method 3 in Tables 6 and 7 except for using MNF rather than ICA for
decorrelation-oriented image transformation. Results are shown in Table 8 (Method 6). When
quantifying information content by considering both spectral dependence (via MNF) and spatial
dependence, experimental variograms were computed with corresponding models fitted. As an
example, results of model fitting for the three ETM+ image subsets (built-up, agricultural, and hilly)
are shown in Appendix A, Figure Alc, Figure A2c, and Figure A3c, due to space limitation. After
variogram modeling, information content was estimated following procedures similar to those of
Method 4 in Tables 6 and 7, leading to estimated information content by considering both spectral
dependence (via MNF) and spatial dependence. Results are also shown in Table 8 (Method 7).

Table 8. Estimates of information content for both ETM+ and TM image subsets using MNF-based

methods (bits/pixel).
Experimental Image Subsets
Methods Data
Built-Up Agricultural Hilly
6. Considering spectral dependence ETM+ 23.21 21.33 22.30
(via MNF) only ™ 19.90 1650 16.92
7. Considering spectral (via MNF) ETM+ 20.39 17.72 18.30
and spatial dependences ™ 17.96 14.07 14.23

As shown in Table 8 (Methods 6 and 7), for all these different land cover types, estimates of
information content obtained via MNF transform are bigger than those via ICA transform shown in
Tables 6 and 7 (Method 3 and 4). For instance, comparing results obtained from Method 6 (Table 8) and
Method 3 (Table 6) with ETM+ dataset reveals that over-estimation of information content by MNF
as opposed to ICA is 1.79, 1.75, and 1.46 (bits/pixel) for built-up, agricultural, and hilly cover types,
respectively. In other words, more spectral redundancy appears to remain in MNF-based estimates of
information content than in ICA-based ones, whether considering spectral redundancy only (Method 6)
or both spectral and spatial dependence (Method 7). This is because MNF transform can only be used
to generate uncorrelated variables, which are not necessarily independent, as mentioned in Section 1.
It (MNF) is thus less effective in handling spectral redundancy (and hence less accurate in quantifying
information content) in multispectral images than ICA, as shown by empirical evidence above.

4.2. The Issues of Stationarity Assumptions and Geostatistical Modeling

For quantifying information content in multispectral images, we assumed strong stationarity
(for each band as well as for the transformed bands) and the existence of second-order moments
for first-order increments. The stationarity assumption was paralleled in this research by use of
experimental image subsets, which were deliberately selected from sites of relative homogeneity
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(i.e., specific land-cover types) so that local stationarity may be assumed therein. This experimental
design was taken as a measure of ensuring the appropriateness of applying the proposed methods for
estimating information content in this research.

Although discerning whether strong stationarity is a reasonable assumption is not possible with
just a dataset or two, we should analyze the image data being assessed to discern whether intrinsic or
second-order stationarity are reasonable assumptions, especially when the image data are acquired
over large areas with outstanding spatial heterogeneity. For this, useful work has been done, which
utilizes hypothesis assumption [42]. With all the experimental image subsets, p-values more than 0.05
were registered, indicating that the stationarity assumption should be accepted. We should also try to
incorporate well-established methods and techniques for stationarity tests and for accommodating
non-stationarity in spatial dependence when working with images over large areas.

Anisotropy is an important aspect in geostatistical modeling. Although not reported in the
paper, we checked for possible anisotropy in variogram models fitted with the image data used in
this research. The directional variograms (with directions 0, 45, 90, 135, 180, 225, 270, and 315 degrees
counter-clockwise from positive direction of x-axis tested in experiments) appeared very similar. Thus,
we adopted omnidirectional variograms for the experiments.

Data support is yet another issue. The image data were assumed to be point values in this research.
However, image data are actually on finite areal support, as all images are subject to sensor’s point
spread function (PSF) convolution [16,38,39]. Thus, we should describe pixel-support data using
variogram models that accommodate their finite support. In turn, it is important to investigate methods
for quantifying information content while dealing with sensors” PSFs [16,38,39].

Geostatistical modeling in this research was limited to two-point variograms. However, one of the
shortcomings of variogram-based models lies in their lack of modeling complex spatial patterns, which
are often present in remote-sensing images, especially those over large areas and/or heterogeneous
landscapes. For modelling complex spatial (and spatio-temporal) patterns, multiple-point statistics
(MPS) [43,44] is advantageous over conventional two-point variogram-based geostatistics. Thus, MPS
is anticipated to contribute to improved estimation of information content in images over complex
landscapes where spatial correlation is not adequately described by two-point variograms. Further
research on extending the proposed methods with MPS is worthwhile.

4.3. Applicabilities of the Proposed Methods and Some Topics for Further Research

As information-theoretic description and analyses of images (source or derivative) will play
a greater role in remote sensing information engineering and consumption, accurately measuring
information content will become more and more important. The value of the work pursued here will
be well manifested in the contemporary information era.

In terms of applications, the proposed methods for information quantifying can be used, for
example, to select optimal features (for image classification) based on informational criteria (e.g.,
maximum mutual information and minimal information redundancy) [7,45]. Classifier performance
evaluation can also be undertaken based on information-theoretic analyses from source images through
feature selection to resultant classifications (e.g., Marinoni et al. [11]). This is particularly useful
when classifications are viewed as lossy compressions of images. As close relationships among ICA
and maximum autocorrelation factors (MAF) transform is well established [46], research efforts on
informational analyses of image and non-image datasets can be joined to improve our understanding
about information dynamics with respect to data fusion.

To promote future research, we highlight a few more aspects whereby the methods pursued here
may be improved. First, studies on quantifying information content based on combined use of the
proposed method and other methods would be usefully explored, although some comparisons were
done in this research, as shown in Section 4.1. In other words, synthesis of the methods proposed in
this paper and by other researchers likely sheds light on where further improvements may be made.
Second, uncertainty in the estimated amounts of information content should be evaluated. This is
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hardly an easy task, as there appears to be little literature on this matter. Third, the proposed methods
can be usefully extended for use in hyperspectral and time-series image analyses and applications. Last,
adaptations to the proposed methods are necessarily made to enhance efficiency in computing with
image datasets and to accommodate non-stationarity in spatial dependence, especially for large-area
applications, as mentioned in Section 4.2 above.

5. Conclusions

For quantifying information content in multispectral remote-sensing images, this paper has
proposed an integrated strategy based on image transformations and geostatistical modelling to account
for inter-band spectral dependence, intra-band spatial dependence, and non-normality systematically.
Specifically, ICA is applied to transform the original multispectral image subsets into ones consisting
of independent bands to allow for estimating joint entropy as the sum of individual transformed image
bands entropy. These image bands are further normal-transformed to facilitate analytical computing of
joint entropies. Spatial correlation in the aforementioned ICA- and normal-transformed image bands
is quantified via variogram parameters and can be easily accommodated when computing normal
distributions” entropy values. (Additive) noise can also be taken care of as noise variance is estimated
as nugget effects (in variograms). Theoretically speaking, information redundancy due to spectral and
spatial dependences is well handled through ICA transforms and geostatistical modeling, respectively,
while information overestimation due to non-normality is taken care of by normal-transform.

Results based on Landsat ETM+ and TM image datasets consistently confirmed the advantages
of the proposed methods for full treatment (Method 5, Tables 6 and 7) and for handling spectral
dependence (Method 3, Tables 6 and 7 as opposed to Method 6, Table 8). Specifically, differences
between information content estimated by full treatment (Method 5) and that by naive treatment
(Method 1) range from 7.9 to 13.5 (bits/pixel) (referring to Tables 6 and 7). Overestimation of information
content by MNF as opposed to ICA exceeds 1.4 (bits/pixel) (comparing Table 6 with Table 8). It was
also shown that information redundancy due to spectral dependence is greater than that due to spatial
dependence, with differences between spectral redundancy and spatial redundancy ranging from about
1.1 to 6.2 (bits/pixel). Differences in information content between image subsets obtained with ETM+
and TM were found to be about 3.6 bits/pixel, indicating the former’s greater information content.

The proposed method set (Method 5, Tables 6 and 7) for estimating information content in
multispectral images is highly recommendable for information-theoretic analyses of remote sensing and
geospatial information processes. This assertion is made on the grounds that it (the proposed strategy)
provides the most accurate measures of information content (of all methods experimented in this research)
and that it is easily implemented with all relevant computational procedures established or extensible.
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Appendix A

Empirical variograms and corresponding models fitted for the Landsat ETM+ image subsets
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Figure Al. The experimental variograms (blue cross) and the corresponding models fitted (red lines)
for the built-up image subset: (a) independent component analysis (ICA)- and normal-transformed
image bands (Z'l' ~ Z'6' ), (b) ICA-transformed image bands (Zi ~ Zé), (c) maximum noise fraction
(MNF)-transformed image bands (Z’1 ~ Z’6), and (d) original image bands (Z; ~ Z,).
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Figure A2. The experimental variograms (blue cross) and the corresponding models fitted (red

lines) for the agricultural image subset: (a) ICA- and normal-transformed image bands (Z'l/ ~ Z'6’ ),
(b) ICA-transformed image bands (Z] ~ Zj). (c) MNF-transformed image bands (Z] ~ Zj), and
(d) original image bands (Z, ~ Z).
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Figure A3. The experimental variograms (blue cross) and the corresponding models fitted (red lines) for

the hilly image subset: (a) ICA- and normal-transformed image bands (Z'l' ~ Zg ), (b) ICA-transformed

image bands (Z] ~ Z;), (c) MNF-transformed image bands (Z] ~ Z;), and (d) original image bands

(z, ~Z,).
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