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Abstract: The smart city concept has attracted high research attention in recent years within diverse
application domains, such as crime suspect identification, border security, transportation, aerospace,
and so on. Specific focus has been on increased automation using data driven approaches, while
leveraging remote sensing and real-time streaming of heterogenous data from various resources,
including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of
the core challenges in exploitation of such high temporal data streams, specifically videos, is the
trade-off between the quality of video streaming and limited transmission bandwidth. An optimal
compromise is needed between video quality and subsequently, recognition and understanding and
efficient processing of large amounts of video data. This research proposes a novel unified approach
to lossy and lossless video frame compression, which is beneficial for the autonomous processing
and enhanced representation of high-resolution video data in various domains. The proposed fast
block matching motion estimation technique, namely mean predictive block matching, is based on
the principle that general motion in any video frame is usually coherent. This coherent nature of
the video frames dictates a high probability of a macroblock having the same direction of motion as
the macroblocks surrounding it. The technique employs the partial distortion elimination algorithm
to condense the exploration time, where partial summation of the matching distortion between the
current macroblock and its contender ones will be used, when the matching distortion surpasses the
current lowest error. Experimental results demonstrate the superiority of the proposed approach
over state-of-the-art techniques, including the four step search, three step search, diamond search,
and new three step search.

Keywords: remote sensing; IOT; smart city; block-matching algorithm; macroblocks; video
compression; motion estimation

1. Introduction

Over 60% of the world’s population lives in urban areas, which indicates the exigency of smart
city developments across the globe, to overcome planning, social, and sustainability challenges [1,2] in
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urban areas. With recent advancements in the Internet of Things (loT), cyber-physical domains, and
cutting-edge wireless communication technologies, diverse applications have been enabled within
smart cities. Approximately 50 billion devices will be connected through the internet by 2020 [3],
which gives an indication of visual IoT significance as a need for future smart cities across the globe.
Visual sensors embedded within the devices have been used for various applications, including
mobile surveillance [4], health monitoring [5], and security applications [6]. Likewise, world leading
automotive industrial stakeholders anticipate the rise of driverless vehicles [7] based on adaptive
technologies in the context of dynamic environments. All of these innovations and future advancements
involve high temporal streaming of heterogeneous data (and in particular, video), which require the
use of automated methods in terms of efficient storage, representation, and processing.

Many countries across the globe (Australia for instance) have been rapidly focusing on the
expansion of closed-circuit television networks to monitor incidents and anti-social behavior in public
places. Moreover, smart technology produces improved outcomes, e.g., in China, where authorities
utilize facial recognition in automated teller machines in order to verify account owners in an attempt
to crack down on money laundering in Macau [8]. Since the initial installation of these ATMs in
2017, the Monetary Authority of Macao confirmed that the success rate of stopping illegitimate cash
withdrawals has reached 95%, which is a major success. Another application of video surveillance
and facial recognition cameras was introduced in Australian casinos to catch cheaters and thieves [9].
Sydney’s Star Casino invested AUD $10 million in a system that uses this technology to match faces
with known criminals stored in a database, in an attempt to deter foul play. Such systems may
be very useful in relevant application domains, such as delivering a better standard of service to
regular customers.

Despite increases in demand and the significance of intelligent video-based monitoring and
decision-making systems, there is a number of challenges which need to be addressed in terms of the
reliability of data-driven and machine intelligence technologies [10]. These interconnected devices
generate very high temporal resolution datasets, including large amounts of video data, which need
to be processed by efficient video processing and data analytics techniques to produce automated,
reliable, and robust outcomes. A special case, for instance, recently reported by the British Broadcasting
Corporation (BBC), is existing face matching tools, deployed by the UK police, which are reported as
staggeringly inaccurate [11]. Big Brother Watch, a campaign group, investigated the technology, and
reported that it produces extremely high numbers of false positives, thus identifying innocent people
as suspects. Likewise, the ‘INDEPENDENT’ newspaper [12] and ‘WIRED’magazine [13] reported
98% of the Metropolitan and South Wales Police facial recognition technology misidentify suspects.
These statistics indicate a major gap in existing technology, which needs to be investigated to deal
with challenges associated with the autonomous processing of high temporal video data for intelligent
decision making in smart city applications.

Recent developments enabled visual IoT devices to be utilized in unmanned aerial (UAVs) and
ground vehicles (UGVs) [14,15] in remote sensing applications, i.e., capturing visual data in specific
context, which is typically not possible for humans. In contrast to satellites, UAVs have the ability
to capture heterogeneous high-resolution data, while flying at low altitudes. Low altitude UAVs,
which are well-known for remote sensing data transmission in low bandwidth, include DJI Phantom,
Parrot, and DJI Mavic Pro [16]. Moreover, some of the world leading industries, such as Amazon and
Alibaba, utilize UAVs for the optimal delivery of orders. Recently, [17] proposed UAVs as a useful
delivery platform in logistics. The size of the market for UAVs in remote sensing as a core technology,
will grow to more than US $11.2 billion by 2020 [2]. High stream remote sensing data, including
UAVs, needs to be transmitted to the target data storage/processing destination in real time, using
limited transmission bandwidth, which is a major challenge [18]. Reliable and time efficient video
data compression will significantly contribute towards minimizing the time-space resource needs,
while reducing redundant information, specifically from high temporal resolution remote sensing
data, and maintaining the quality of the representation, at the same time. This will ultimately improve
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the accuracy and reliability of machine intelligence based video data representation models, and
subsequently impact on automated monitoring, surveillance, and decision making applications.

Video Data Compression: A challenge for the aforementioned smart city innovations and data
driven technologies is to achieve acceptable video quality through the compression of digital video
images retrieved through remote sensing devices and other video sources, whilst still maintaining a
good level of video quality. There are many video compression algorithms proposed in the literature,
including those targeting mobile devices, e.g., smart phones and tablets [19,20]. Current compression
techniques aim at minimizing information redundancy in video sequences [21,22]. An example of such
techniques is motion compensated (MC) predictive coding. This coding approach reduces temporal
redundancy in video sequences, which, on average, is responsible for 50%–80% of the video encoding
intricacy [23–26]. Prevailing international video coding standards, for example H.26x and the Moving
Picture Experts Group (MPEG) series [27–33], use motion compensated predictive coding. In the MC
technique, current frames are locally modeled. In this case, MC utilizes reference frames to estimate
the current frame, and afterwards finds the residuals between the actual and predicted frames. This is
known as the residual prediction error (RPE) [23,24,34–36].

Fan et al., [10] indicated that there are three main approaches for the reduction of external
bandwidth for video encoding, including motion estimation, data reuse, and frame recompression.
Motion estimation (ME) is the approximation of the motion of moving objects, which needs to be
estimated prior to performing motion compensation predictive coding [23,24,37,38]. It should be
emphasized that an essential part of MC predictive coding is the block matching algorithm (BMA). In
this approach, video frames are split into a number of non-overlapping macroblocks (MBs). In the
current frame, the target MB is searched against a number of possible macroblocks in a predefined
search window in the reference frame so as to locate the best matching MB. Displacement vectors are
determined as the spatial differences between the two matching MBs, which determine the movement
of the MB from one location to another in the reference frame [39,40]. The difference between two
macroblocks can be expressed through various block distortion measures (BDMs), e.g., the sum of
absolute differences (SAD), the mean square error (MSE), and the mean absolute difference (MAD) [41].
For a maximum displacement of n pixels/frame, there are (2n + 1)2 locations to be considered for the
best match of the current MB. This method is called full search (FS) algorithm, and results in the best
match with the highest spatial resolution. The main issue with the use of FS is excessive computational
times, which led to the development of computationally efficient search approaches.

A number of fast block matching algorithms are proposed in the literature to address the limitations
of the FS algorithm [42]. Work in this field began as early as the 1980s, and the rapid progress in
the field resulted in some of these algorithms being implemented in a number of video coding
standards [3,27–29]. Variable block sizes and numerous reference frames are implemented in the
latest video coding standards, which resulted in considerable computational requirements. Therefore,
motion estimation has become problematic for several video applications. For example, in mobile
video applications, video coding for real time transmission is important. This further reinforces that
this is an immensely active area of research. It should be noted that the majority of fast block matching
algorithms are practically implemented to fixed block search ME and then applied to variable block
search ME [43]. Typically, the performance of fast BMA is compared against the FS algorithm, by
measuring reductions in the residual prediction error and computational times.

As with other video and image compression techniques, fast block matching algorithms can be
categorized into lossless and lossy. Lossy BMAs can achieve higher compression ratios and faster
implementation times than FS by sacrificing the quality of the compressed video, while lossless
BMAs have the specific requirement of preserving video quality at the expense of typically lower
compression ratios.

The main contributions of this research are as follows:

1. A novel technique based on the mean predictive block value is proposed to manage computational
complexity in lossless and lossy BMAs.
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2. It is shown that the proposed method offers high resolution predicted frames for low, medium,
and high motion activity videos.

3. For lossless prediction, the proposed algorithm speeds up the search process and efficiently
reduces the computational complexity. In this case, the performance of the proposed technique is
evaluated using the mean value of two motion vectors for the above and left previous neighboring
macroblocks to determine the new search window. Therefore, there is a high probability that the
new search window will contain the global minimum, using the partial distortion elimination
(PDE) algorithm.

4. For lossy block matching, previous spatially neighboring macroblocks are utilized to determine
the initial search pattern step size. Seven positions are examined in the first step and five positions
later. To speed up the search process, the PDE algorithm is applied.

The reminder of this paper is organized as follows. Section 2 provides an overview of fast block
matching algorithms. The proposed framework, termed mean predictive block matching (MPBM)
algorithms for lossless and lossy compression, is illustrated in Section 3. In Section 6, the simulation
results of the proposed methods are presented. The conclusions of this work and avenues for further
research are described in Section 5.

2. Fast Block Matching Algorithms

A variety of fast block matching algorithms have been developed with the aim of improving
upon the computational complexity of FS. Some of these algorithms are utilized in video coding
standards [23–29].

There exist a variety of lossy and lossless BM algorithms. Lossy BMAs can be classified into
fixed set of search patterns, predictive search, subsampled pixels on matching error computation,
hierarchical or multiresolution search, and bit-width reduction. Lossless BMAs include the successive
elimination algorithm (SEA) and the partial distortion elimination (PDE) algorithm. A brief overview
and recent developments in fast BM algorithms are presented in the following sub-sections.

2.1. Fixed Set of Search Patterns

The most widely used category in lossy block matching algorithms is the fixed set of search
patterns or reduction in search positions. These algorithms reduce the search time and complexity by
selecting a reduced set of candidate search patterns, instead of searching all possible MBs. By and large,
they work on the premise that error reduces monotonically when the search location passes closer to
the best-match position. Thus, such algorithms start their search according to a certain pre-defined
uniform pattern at locations coarsely ranged near the search window. Then, the search is reiterated
around the location of the minimum error with a smaller step size. Each search pattern has a specific
shape (i.e., rectangular, hexagonal, cross, diamond, etc.) [24,44,45]. Examples of well-known fixed sets
of search pattern algorithms include three step search (TSS) [46], new three step search (NTSS) [47],
four step search (4SS) [48], diamond search (DS) [49], and simple and efficient search (SESTSS) [50].

This group of methods has received a great deal of attention due to their fast MB detection rates.
However, there is a considerable loss in visual quality, particularly when the actual motion does not
match the pattern, and thus, these algorithms may get stuck in local minima.

2.2. Predictive Search

Predictive search is a lossy block-matching algorithm that utilizes the connection among
neighboring and current MBs, where information in temporal or spatial neighboring MBs, or both,
is exploited. The algorithm attains the predicted motion vector (MV) by choosing one of the
earlier-coded neighboring MVs, e.g., left, top, top right, their median, or the MV of the encoded MB in
the previous frame. The MV predictor provides an initial prediction of the current MV, hence reducing
the search points, and associated computations, by anticipating that the target macroblock will likely
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belong to the area of the neighboring MVs. This method has memory requirements for storage of
the neighboring MVs. It has been widely used in the latest video coding standards [4,10,14], and in
various algorithms, e.g., adaptive rood pattern search (ARPS) [51], unsymmetrical multi-hexagon
search (UMHexagonS) [52], and others [53].

2.3. Partial Distortion Elimination Algorithm

The partial distortion elimination (PDE) algorithm has been widely utilized to reduce
computational times and is applied in the context of full search techniques, such as H.263 [54]
and H.264 [55]. It uses the halfway-stop method in the block distortion measure computation, by
stopping the search when the partial entirety of matching distortion between current and candidate
MBs exceeds the current minimum distortion.

To accelerate the process, PDE relies on both fast searching and fast matching. The former depends
on how quickly the global minimum is detected in a given search area, which was used in Telenor’s
H.263 codec [45], while the later speeds up the calculation process by determining the matching
error on a candidate MB, by reducing the average number of rows considered per MB. Similarly,
Kim et al., [55–57] suggested a variety of matching scans that rely on the association between the
spatial intricacy of the reference MB and the block-matching error, which is founded on the concept of
representative pixels.

3. Mean Predictive Block Matching Algorithms for Lossless (MPBMLS) and Lossy (MPBMLY)
Compression

In this section, the proposed mean predictive block-matching algorithm is introduced. In the
lossless block-matching algorithm (MPBMLS), the purpose of the method is to decrease the
computational time needed to detect the matching macroblock of the FS, while maintaining the
resolution of the predicted frames, similarly to full search. This is performed by using two predictors,
i.e., the motion vectors of the two previous neighboring MBs, specifically, the top (MVA) and the left
(MVL) as shown in Figure 1, and further illustrated in Algorithm 1.
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Algorithm 1 Neighboring Macroblocks.

1: Let MB represents the current macroblock, while MBSet = {S|S ∈ video frames}
2: ForEach MB in MBSet
3: Find A and L where
4: - A & L ∈MBSet
5: - A is the top motion vector (MVA)
6: - L is the left motion vector (MVL)
7: Compute the SI where
8: - SI is the size of MB = N × N (number of pixels)
9: End Loop

The aim of using two neighboring motion vectors for the prediction is to obtain the global
matching MB faster than when using a single previous neighbor. Furthermore, the selection of these
predictors will avoid unnecessary computations that derive from choosing three previous neighboring
MBs knowing that at each location (i, j), N ×N pixels are computed, where N ×N is the macroblock
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size. The neighbors may move in different directions; therefore, these MVs are used to determine the
new search window depending on the mean of its components. The search range of the new search
window will be the mean of x-components and y-components, respectively, as follows:

x = round
(
abs

(
MVA(x) + MVL(x)

2

))
y = round

(
abs

(
MVA(y) + MVL(y)

2

)) (1)

We have used the round and the absolute operations to get positive step size values for the search
window in both x and y directions. The current MBs are searched in the reference image using first the
search range of ±x in the x-axis and ±y in the y-axis instead of using the fixed search range of ±p for
both of them as shown in Figure 2 and Algorithm 2.
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Algorithm 2 Finding the new search window

1: Let MB represents cthe urrent macroblock in MBSet
2: ForEach MB in MBSet:
3: Find x, y as:

4: x = round
(
abs

(
MVA(x)+MVL(x)

2

))
5: y = round

(
abs

(
MVA(y)+MVL(y)

2

))
6: Such that x, y ≤ p, where p is the search window size for the Full Search algorithm
7: Find NW representing the set of all points at the corners of the new search window rectangle as:
8: NW =

{
(x, y), (x,−y), (−x, y), (−x,−y)

}
9: End Loop

Since there is high correlation between neighboring MBs, there is high likelihood that the global
matching MB will be inside the new search window. Hence applying the PDE algorithm will speed up
the search process. The search will stop when the error between the matching MB calculated from the
search window range and the current MB is less than a threshold value, resulting in the remainder of
the original search window to not being required to be checked. Otherwise, search will extend to the
remainder of the default search window. The threshold is computed as N, i.e., the number of pixels of
the MB. Figure 3 shows the block diagram of the proposed lossless MPBMLS algorithm.
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For the lossy block matching algorithm (MPBMLY), the proposed method improve the search
matching blocks by combining three types of fast block matching algorithms, i.e., predictive search,
fixed set of search patterns, and partial distortion elimination.

Predictive search utilizes the motion information of the two previous, left and top, spatial
neighboring MBs, as shown in Algorithm 3, in order to form an initial estimate of the current MV.
As shown in the MPBMLS algorithm, using these predictors will determine the global matching
MB faster than using only one previous neighbor, while reducing unnecessary computations. The
maximum of the mean x and y components for the two predictor MVs is used to determine the step size.

The fixed set of search patterns method, as in the adaptive rood pattern searching technique
(ARPS) [51], uses two categories of fixed patterns, the small search pattern (SSP) and the large search
pattern (LSP), respectively. Moreover, the first step search includes the MVs of the two previous
neighboring MBs with the LSP. The step size is used to determine the LSP position in the first
step. Therefore, seven positions are examined in this step. To avoid unnecessary computations, this
technique uses a pre-selected threshold value to assess the error between the matching and the current
macroblocks, which is established from the first step. When the error is less than the threshold, the SSP
is not required, resulting in reduced computation requirements.
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Algorithm 3 Proposed MPBM technique

Step 1

1: Let s =
∑

SADcenter (i.e., midpoint of the current search) and Th a pre-defined threshold value.
2: IF s < Th:
3: No motion can be found
4: Process is completed.
5: END IF

Step 2

1: IF MB is in top left corner:
2: Search 5 LPS points
3: ELSE:
4: - MVA and MVL will be added to the search
5: - Use MVA and MVL for predicting the step size as:

Lx = round
(
abs

(
MVA(x) + MVL(x)

2

))

Ly = round
(
abs

(
MVA(y) + MVL(y)

2

))

where step size = max{ Lx, Ly}.
6: - Matching MB is explored within the LSP search values on the boundary of the step size
{(±step size, 0), (0, ±step size), (0,0)}
7: Set vectors {(MVA), (MVL)}, as illustrated in Figure 2.
8: END IFELSE

Step 3

Matching MB is then explored within the LSP search values on the boundary of the step size
{(±step size, 0), (0, ±step size), (0,0)} and the set vectors {(MVA), (MVL)}, as illustrated in Figure 2
The PDE algorithm is used to stop the partial sum matching distortion calculation between the
current macroblock and candidate macroblock as soon as the matching distortion exceeds the
current minimum distortion, resulting in the remaining computations to be avoided, hence,
speeding up the search.

Step 4

Let Er represent the error of the matching MB in step 3.
IF Er < Th:
The process is terminated and the matching MB provides the motion vector.
ELSE
- Location of the matching MB in Step 3 is used as the center of the search window
- SSP defined from the four points, i.e., {(±1, 0), (0, ±1)}, will be examined.
End IFELSE
IF matching MB stays in the center of the search window
-Computation is completed
ELSE
- Go to Step 1
- The matching center provides the parameters of the motion vector.

Partial distortion elimination is applied to improve computation times. The algorithm will stop
the calculation of the partial sum of the current distortion value of the matching distortion between
the current macroblock and the candidate macroblock once the matching distortion surpasses the
current minimum distortion. Since the initial search depends on two neighboring MBs, the first step
search window has a high probability to contain the globally optimal MB and hence computation times
should be reduced.

The SADcenter value represents the absolute difference between the current MB and its respective
value at the same location in the reference frame. MVA and MVL represent the motion vectors of
the top and left macroblocks. Algorithm 3 provides an overview of the main steps involved in the
proposed mean predictive block matching technique. Figure 4 shows the search pattern for the
proposed lossy algorithm, while Figure 5 illustrates the block diagram of the proposed block matching
algorithm, MPBMLY.
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4. Simulation Results

The performance of the proposed algorithms is evaluated using the criteria of the matching MB
search speed and efficiency in maintaining the residual prediction error between the current frame
and its prediction, at the same level as the full search technique. The results are benchmarked with
state-of-the-art fast block matching algorithms, including diamond search (DS) [49], new three-step
search (NTSS) [47], four step search (4SS) [48], simple and efficient search TSS (SESTSS) [50], and
adaptive rood pattern search (ARPS) [51].
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The simulations were performed using MATLAB running on Intel I CoreIi3 CPU M330@2.13
GHz processor. The experimental results of the proposed techniques are conducted on the luminance
components of 50 frames of six popular video sequences. Three of them are CIF format (common
intermediate format) video sequences (i.e., 352× 288 pixels, 30fps). These are the “News”, “Stefan”, and
“Coastguard” sequences. The remaining three are QCIF format (quarter common intermediate format)
video sequences (i.e., 176 × 144 pixels, 30 fps), namely, the “Claire”, “Akiyo”, “Carphone” sequences.

The selected video sequences have various motion activities. “Akiyo” and “Claire” have low
motion activity. “News” and “Carphone” have medium motion activity, while “Coastguard” and
“Stefan” have high motion activity. The size of each MB was set to 16 × 16 for all video sequences.
To avoid unreasonable results, which may arise due to high correlation between successive frames,
the proposed and benchmarking algorithms used the two-steps backward frames as reference frames,
which means that if the current frame is I then the reference frame is I-2.

Four performance measures are used to evaluate the performance of the proposed technique. Two
of the measures are used to estimate the search speed of the algorithms, i.e., the time required for
processing and the average number of search points required to obtain the motion vectors, respectively.
The remaining two quality measures are used to evaluate the performance of the proposed algorithms
in detecting the predicted frames, i.e., MSE and peak signal-to-noise ratio (PSNR), respectively.

The mean squared error is given by:

MSE =
1

M×N

M∑
i=1

N∑
j=1

(
f(i, j) − f̂(i, j)

)2
(2)

where M and N are the horizontal and vertical dimensions of the frame, respectively, and f (i, j) and
f̂ (i, j) are the pixel values at location (i, j) of the original and estimated frames, respectively.

The peak signal-to-noise ratio is given by:

PSNR = 10 log10

 (fmax)
2

MSE

 (3)

where fmax represents the highest possible pixel value. In our simulations, a value of 255 was used for
an image resolution of 8 bits. The MSE and PSNR between the original and the compensated frames
are measured by calculating the MSE and PSNR for each frame with their predicted frames, separately,
and then calculating their arithmetic means.

A. Lossless Predictive Mean Block Matching Algorithm
Simulations were performed to test the performance of the proposed lossless predictive block

matching algorithm. The SAD metric is used as the block distortion measure and determined as follows:

SAD =
N∑

i=1

N∑
j=1

∣∣∣∣C(i, j) −R
(
i + vx, j + vy

)∣∣∣∣ (4)

where C(i, j) is the pixel value of the current MB C of dimension N×N at position (i, j) and
R
(
i + vx, j + vy

)
is the pixel value of the reference frame of the candidate macroblock R with a

displacement of
(
vx, vy

)
.

The proposed lossless algorithm is benchmarked with the full search (FS) and the partial distortion
elimination (PDE) techniques. The results of the computational complexity were determined using:
(1) the average number of search points required to get each motion vector, and (2) the computational
times for each algorithm. Table 1 shows the average number of search points, while Table 2 shows
the processing times. The resolutions of the predicted frames using the MSE and PSNR are shown in
Tables 3 and 4, respectively.
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Table 1. Mean value of search points per MB of size 16 × 16. CIF and QCIF correspond to the common
intermediate format and quarter common intermediate format, respectively.

Sequence Format FS PDE MPBMLS

Claire QCIF 184.56 184.6 48.98
Akiyo QCIF 184.56 184.6 46.2

Carphone QCIF 184.56 184.6 170.2
News CIF 204.28 204.3 121.6
Stefan CIF 204.28 204.3 204.3

Coastguard CIF 204.28 204.3 204.3

Table 2. Computation time (in second) required to handle 50 frames.

Sequence Format FS PDE MPBMLS

Claire QCIF 0.351 0.18 0.06
Akiyo QCIF 0.334 0.11 0.01

Carphone QCIF 0.336 0.18 0.15
News CIF 1.492 0.65 0.38
Stefan CIF 1.464 1.09 0.88

Coastguard CIF 1.485 1.19 1.03

Table 3. Mean MSE with 50 frames.

Sequence Format FS PDE MPBMLS

Claire QCIF 9.287 9.287 9.29
Akiyo QCIF 9.399 9.399 9.399

Carphone QCIF 56.44 56.44 56.44
News CIF 30.33 30.33 30.33
Stefan CIF 556.1 556.1 556.1

Coastguard CIF 158.3 158.3 158.3

Table 4. Mean PSNR with 50 frames.

Sequence Format FS PDE MPBMLS

Claire QCIF 38.94 38.94 38.94
Akiyo QCIF 39.61 39.61 39.61

Carphone QCIF 30.82 30.82 30.81
News CIF 33.48 33.48 33.47
Stefan CIF 22.16 22.16 22.16

Coastguard CIF 26.19 26.19 26.19

It should be noted that the experimental results indicate that the proposed lossless technique
reduces the search time of macroblock matching, while keeping the resolution of the predicted frames
exactly the same as the ones predicted using full search. Furthermore, the performance of the proposed
algorithm is more effective when the video sequences have lower motion activity and vice versa. This is
due to using the two previous neighbors to predict the dimension of the new search window, which has
a high probability to contain the global matching MB and subsequently, ignoring the remaining search
points. For high motion activity video sequences, including “Stefan” and “Coastguard”, the number of
search points in the proposed technique is exactly the same as in FS and PDE with enhancements in
processing times, which means that the proposed algorithm uses fast searching to detect the global
minimum in the new search window. Figure 6, Figure 7, and Figure 8 show the frame by frame
comparison of the average number of search points per MB, PSNR performance, and MSE for 23 frames
of “Claire”, “Carphone”, and “Stefan” sequences, respectively.
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B. Lossy Predictive Mean Block Matching Algorithm
For lossy compression, the performance of the proposed technique is evaluated by benchmarking

the results with state-of-the-art fast block matching algorithms. The SAD metric (Equation (4)) and
the MAD metric (Equation (5)) were used as the block distortion measures. The MAD error metric is
defined as as follows:

MAD =
1

N ×N

N∑
i=1

N∑
j=1

∣∣∣∣C(i, j) −R
(
i + vx, j + vy

)∣∣∣∣ (5)

where C(i, j) is the pixel value of the current MB C of dimension N×N at position (i, j) and
R
(
i + vx, j + vy

)
is the pixel value of the reference frame of the candidate macroblock R with a

displacement of
(
vx, vy

)
.

The computational complexity was measured using: (1) the average number of search points
required to obtain each motion vector, as shown in Table 5 and, (2) the processing times of each
algorithm, as shown in Table 6. The resolutions of the predicted frames using the mean of MSE and
mean PSNR are shown in Tables 7 and 8, respectively.
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Table 5. Mean number of search points per MB of size 16 × 16. FS, DS, NTSS, 4SS, SESTS, and ARPS
correspond to full search, diamond search, new three-step search, four step search, simple and efficient
search TSS, and adaptive rood pattern search, respectively.

Sequence FS DS NTSS 4SS SESTSS ARPS MPBMLY

Claire 184.6 11.63 15.09 14.77 16.13 5.191 2.128
Akiyo 184.6 11.46 14.76 14.67 16.2 4.958 1.938

Carphone 184.6 13.76 17.71 16.12 15.73 7.74 7.06
News 204.3 13.1 17.07 16.38 16.92 6.058 3.889
Stefan 204.3 17.69 22.56 19.05 16.11 9.641 9.619

Coastguard 204.3 19.08 27.26 19.91 16.52 9.474 8.952

Table 6. Time needed to process 50 frames (second).

Sequence FS DS NTSS 4SS SESTSS ARPS MPBMLY

Claire 0.351 0.037 0.031 0.031 0.037 0.025 0.015
Akiyo 0.354 0.036 0.031 0.031 0.037 0.023 0.006

Carphone 0.338 0.039 0.036 0.032 0.035 0.031 0.033
News 1.539 0.161 0.142 0.136 0.151 0.112 0.079
Stefan 1.537 0.267 0.232 0.174 0.15 0.158 0.139

Coastguard 1.551 0.263 0.235 0.178 0.15 0.152 0.14

Table 7. Mean MSE for 50 frames.

Sequence FS DS NTSS 4SS SESTSS ARPS MPBMLY

Claire 9.287 9.287 9.287 9.355 9.458 9.289 9.292
Akiyo 9.399 9.399 9.399 9.399 9.408 9.399 9.399

Carphone 56.44 58.16 57.56 62.12 69.62 60.02 59.08
News 27.29 29.41 28.2 29.6 31.22 29.81 28.64
Stefan 556.1 661.4 607.2 651.5 714.5 608 594

Coastguard 158.3 167.4 164.3 166 182.5 164.1 161.6

Table 8. Mean PSNR for 50 frames.

Sequence FS DS NTSS 4SS SESTSS ARPS MPBMLY

Claire 38.94 38.94 38.94 38.92 38.89 38.94 38.94
Akiyo 39.61 39.61 39.61 39.61 39.61 39.61 39.61

Carphone 30.82 30.69 30.7 30.4 30.1 30.58 30.6
News 33.77 33.45 33.63 33.42 33.19 33.39 33.56
Stefan 22.16 21.49 21.81 21.51 21.04 21.82 21.93

Coastguard 26.19 25.98 26.05 26.02 25.6 26.05 26.11

The simulation results indicate that the proposed algorithm (MPBM) outperformed the
state-of-the-art methods in terms of computational complexity. Moreover, it is shown that it also
preserves or reduces the error between the current and compensated frames. For low motion activity
videos, the resolution of the predicted frame is close to the ones predicted by the full search algorithm
with enhancements in computational complexity. For the medium and high motion activity videos,
improvements in computational complexity and resolution of the predicted frames are reasonable in
comparison with the other fast block matching algorithms. Moreover, it should be noted that the ratio
between the PSNR and the computational time of the proposed algorithm gives the best results in
comparison to the remaining benchmarking algorithms.

Figure 9 gives the frame by frame comparison for the average number of search points per
MB, PSNR performance, and MSE of the proposed algorithm in comparison to the state-of-the-art
algorithms for 23 frames of the “Carphone”, and “Stefan” video sequences.
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5. Discussion

This manuscript presented a number of research contributions related to fast block matching
algorithms in video motion estimation. Specifically, methods were proposed to reduce the
computational complexity of lossless and lossy block matching algorithms, which is crucial for
the effective processing of remote sensing data [58]. The proposed algorithm will enable faster yet
quality transmission of video data, specifically, acquired by UAVs and surveillance cameras for remote
monitoring and intelligent decision making in the context of multidisciplinary smart city applications

The extensive simulation results presented in this contribution indicated that the proposed
techniques take advantage of the fact that motion in any video frame is usually coherent, hence
dictating a high probability of a macroblock having the same direction of motion as the macroblocks
surrounding it. Two previous neighboring MBs (above and left) have been utilized to find the first step
of the search process. The aim of using these neighboring MBs is to improve the process of finding the
global matching MB and to reduce unnecessary computations by selecting three previous neighboring
MBs. To speed up the initial calculations, the proposed algorithms utilize mean value of motion vectors
of these neighboring macroblocks.

The use of MVs predictors led to enhancing the probability of finding the global minimum in
the first search. Therefore, we used partial distortion elimination algorithm to enhance and reduce
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processing times. For lossless block matching algorithm, the performance of the proposed algorithm is
assessed using the initial calculation to determine the new search window. The new search window
will contain the global minimum; hence, applying the PDE algorithm improves the search process.
Moreover, investigating the remaining macroblocks of the search windows is not be needed when the
error of the matching macroblock from this search is smaller than the previous determined minimum
error value. The proposed technique makes use of three types of fast block matching algorithms:
predictive search, fixed set of search patterns, and partial distortion elimination to further improve
quality and reduce computational requirements. As discussed in [59], one of the major challenges
associated with the high temporal satellite or UAVs video data processing is the trade-off between
the limited transmission bandwidth and high rate data streaming. An optimal video compression
algorithm is essential in reducing the transmission load and simultaneously maintaining video quality,
which is important in enhancing the quality of the data representation model and the reliability of
intelligent monitoring and decision-making systems. A typical example of such a scenario is the
previously described video surveillance-based identification of crime suspects (in the context of the
smart city system) [12,13,60] producing staggeringly inaccurate and dramatically high false positive
rates (around 98%). One of the main reasons for such a failure is most probably the poor quality of
transmitted data needed by face matching algorithms.

In our experiments, we utilized a number of video sequence types and the simulation
results indicated that the proposed techniques demonstrate improved results in comparison to
the state-of-the-art lossless and lossy block matching algorithms. These improvements were measured
in terms of processing times for lossless block matching algorithm. While for the lossy block matching
algorithm, the average number of search points required per macroblock, and the residual prediction
errors in comparison to the standard fixed set of the search pattern of block matching algorithms, were
used, and demonstrated significant improvements.

6. Conclusions

In this work, a novel block matching video compression technique is proposed for lossless
and lossy compression. The simulation results indicate that the proposed algorithm, when used
as a lossless block matching algorithm, reduces the search times in macroblock matching, while
preserving the resolution of the predicted frames. Moreover, the simulation results for the lossy
block matching algorithm show improvements in computational complexity, and enhanced resolution,
when compared with the benchmarked algorithms which is vital for maintaining the high quality
representations of remote sensing data. The proposed algorithm can be utilized in interdisciplinary
innovative technologies, specifically related to future smart city applications, where high-resolution
remote sensing data, specifically temporal video data, is needed to be transmitted and processed
automatically for reliable representation, analysis and intelligent decision making. In future work, we
aim to explore the use of the proposed algorithm in autonomous outdoor mobility assistance system
for visually impaired people, based on live streaming data from multiple sensors and video devices,
and compare its performance with state-of-the-art techniques.
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