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Abstract: Crop growth is an important parameter to monitor in order to obtain accurate remotely
sensed estimates of soil moisture, as well as assessments of crop health, productivity, and quality
commonly used in the agricultural industry. The Soil Moisture Active Passive (SMAP) mission has
been collecting Global Positioning System (GPS) signals as they reflect off the Earth’s surface since
August 2015. The L-band dual-polarization reflection measurements enable studies of the evolution
of geophysical parameters during seasonal transitions. In this paper, we examine the sensitivity of
SMAP-reflectometry signals to agricultural crop growth related characteristics: crop type, vegetation
water content (VWC), crop height, and vegetation opacity (VOP). The study presented here focuses
on the United States “Corn Belt,” where an extensive area is planted every year with mostly corn,
soybean, and wheat. We explore the potential to generate regularly an alternate source of crop growth
information independent of the data currently used in the soil moisture (SM) products developed with
the SMAP mission. Our analysis explores the variability of the polarimetric ratio (PR), computed from
the peak signals at V- and H-polarization, during the United States Corn Belt crop growing season in
2017. The approach facilitates the understanding of the evolution of the observed surfaces from bare
soil to peak growth and the maturation of the crops until harvesting. We investigate the impact of SM
on PR for low roughness scenes with low variability and considering each crop type independently.
We analyze the sensitivity of PR to the selected crop height, VWC, VOP, and Normalized Differential
Vegetation Index (NDVI) reference datasets. Finally, we discuss a possible path towards a retrieval
algorithm based on Global Navigation Satellite System-Reflectometry (GNSS-R) measurements that
could be used in combination with passive SMAP soil moisture algorithms to correct simultaneously
for the VWC and SM effects on the electromagnetic signals.

Keywords: GNSS-R; SMAP-R; VWC; vegetation opacity; crop type; crop height; soil moisture; crop
health; crop productivity; agriculture

1. Introduction

Sustaining and enhancing the economical production of crops continues to be an important focus
of agricultural research. Information and knowledge on crop vegetative growth and crop reproductive
development is vital to agricultural producers with the goal of more efficient production of high-quality
crops. Vegetative growth of crops is defined as the accumulation of dry matter, which is the weight
of the crops including all its constituents, excluding water. For example, the vegetative stage of corn
begins when the seedling emerges and continues until tasseling, when the reproductive stage begins.
During the vegetative stage, leaves develop and grow, the stalk forms, and reproductive structures
(ear and tassel) begin to form. The reproductive development of crops is related to the crop transition
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into the reproductive phase. Reproductive development stages begin with fertilization of the floret
(pollination) and end when the grain reaches its maximum dry weight. This later stage is called
physiological maturity. To ensure high productivity of the crops, there are certain requirements that
need to be met at the crop growth and development stages. By understanding how corn grows and
develops, producers can more confidently assess crop damage, estimate if it will recover, and apply
herbicides and other crop treatments at the best time. Information on soil conditions and crop growth
related parameters, such as the vegetation water content (VWC) at every stage, are the main factors
that can help understand the final crop’s production.

Missions like the Soil Moisture Active Passive (SMAP) [1] and the Soil Moisture Ocean Salinity
(SMOS) [2] are currently providing information on the soil moisture (SM) conditions at scales of
9 km × 9 km [3] in the case of SMAP and 25 km × 25 km [4] in the case of SMOS. Note that for the
SMAP product, event it is posted to the 9km × 9km grid, and the representative area of each grid
cell is 36 km. In [5], it was found that the performance of the enhanced 9 km SMAP SM product
was equivalent to that of the standard 33 km SMAP SM product, attaining a retrieval uncertainty
below 0.040 m3/m3 unbiased root-mean-squared error and a correlation coefficient above 0.800. Soil
moisture estimation remains a challenge due to the lack of validated VWC products at a global scale at
a temporal resolution that matches the speed of the crop growth. VWC impacts the electromagnetic
signals through volume scattering due to the leaves, branches, trunks, and attenuation due to the
dielectric constant of the vegetation. The transmissivity, computed as e(−VOP/cos(θ)), describes the
amount of soil emission passing through the vegetation layer. The transmissivity depends on both
the incidence angle θ and the vegetation opacity (VOP), computed as VOP = bpVWC, where bp is a
parameter describing the vegetation type [6]. Note that VOP and vegetation optical depth (VOD) are
synonymous. Therefore, VWC impacts the microwave emission received by SMAP such that under the
same soil moisture conditions, differences in VWC result in different microwave emissions from the
same surface. In trying to estimate soil moisture, the lack of VWC information results in an uncertainty
of the soil moisture retrievals. The availability of high spatial and temporal resolution global estimates
of VWC would therefore improve SM estimates. In particular, the SMAP mission has developed a
VWC dataset used in generating SMAP science data products, based on Moderate Resolution Imaging
Spectroradiometer (MODIS) [7] data. The drawback of the MODIS-based product is that it relies
on Normalized Differential Vegetation Index (NDVI) as a proxy to VWC; NDVI loses sensitivity to
VWC as the water content increases [8]. In addition, the SMAP VWC products are based on 10-day
NDVI climatology of 10 years (2000 to 2010), and this results in SM errors when vegetated areas
undergo dynamic changes, as is sometimes the case within agricultural landscapes. Other approaches
include large-scale mapping of VWC [9], but the validity is limited by the data used. Even so, VWC
datasets are not updated routinely. For agricultural areas characterized by very dynamic landscapes
in terms of SM, VWC, VOP, and vegetation height, a 10-day independent VWC product would have
a great impact on the soil moisture retrievals obtained by satellite missions as SMAP. Limited in
situ measurements are obtained, but those are usually sparse and cover only limited crop types. In
order to understand the impact of using products based on climatology, it is important to understand
first the dynamics of the vegetated landscapes: forest of any type, tundra, meadows, and in general,
the majority of natural spaces not used for the purpose of agriculture are less dynamic vegetated
landscapes, and therefore, their VWC signature changes less drastically in a seasonal regime. For most
natural spaces, the low-frequency nature of their VWC variations produces a high correlation between
VWC seasonal climatology and real-time VWC [10]. Equally, when considering VOP (dependent on
VWC) information, agricultural areas will show a bigger discrepancy between seasonal climatology and
daily estimates as compared to natural spaces. Another descriptor of the vegetation is the vegetation
height, i.e., the thickness of the vegetation layer. The vegetation height for agricultural landscapes is
very dynamic during the growing season and may change in scales of a few days. Therefore, some
vegetated landscapes are well represented with a static/seasonal information, while agricultural areas
need finer temporal scales.
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In August 2015, the SMAP mission started collecting GPS signals as they scatter off the Earth’s
surface [11–15]. These signals are measured by the SMAP radar receiver, whose band pass filter center
frequency was switched to the GPS L2C band (1227.6 MHz). These bistatic radar L-band signals are
measured at V-polarization and H-polarization simultaneously. Since bistatic radar and radiometer
measurements are impacted by vegetation cover differently [16,17], the combination of both active
(SMAP-R) and passive (SMAP radiometer) measurements could act to further constrain vegetation
effects for the SM retrieval. SMAP-R based vegetation parameters are independent of any NDVI
product and could improve SM estimation performance. There have been previous studies employing
left hand and right hand circularly polarized GNSS-R measurements to compute a polarimetric ratio,
such as [18,19] and a previous work using SMAP-R data [12].

This manuscript presents a sensitivity analysis of the SMAP-R signals to VWC, VOP, crop height,
and type, including corn and soybean. The impact of SM on the sensitivity to the crop growth parameters
is also assessed. The analysis is limited to an area characterized by low roughness: the United States
Corn Belt during the 2017 crop season. Section 2 describes the SMAP-R measurements and presents the
main observable used in this study, the polarimetric ratio (PR), as well as provides a discussion on the
spatial resolution of SMAP-R measurements. Section 3 explains the methodology and analyzes each
one of the datasets involved in the process. In Section 4, we investigate the variability of the PR through
the crop season and the sensitivity of the PR to crop growth parameters. Section 5 discusses a path
towards a retrieval algorithm based on Global Navigation Satellite System-Reflectometry (GNSS-R)
and on improvements and requirements for future research. Section 6 states the final conclusions of
this study.

2. SMAP-R Measurements Description

The GPS signals reflected off the Earth’s surface are collected at the SMAP radar receiver in the
form of in-phase and quadrature (I/Q) samples. The I/Q samples are publicly available at the NASA
Earthdata website [20]. Using a modified version of the SMAP-R processor used in [11,12], data are
filtered for those geometries where there is potential to capture a specular point, i.e., within the -3
dB beam width of the SMAP antenna pointed to 40◦, which provides a range of incidence angles
between 37.3◦ and 42.7◦. This selection ensures that the measured specular points are not degraded
by the decay of SMAP antenna gain away from −3dB. Those selected I/Q samples are post-processed
into delay-Doppler maps (DDM) [21,22], with a 5 ms coherent time and 25 ms incoherent time (five
incoherent accumulation). A DDM is defined as the delay and Doppler power distribution of the
GPS signal scattered over the Earth’s surface. Since the SMAP antenna rotates, consecutive DDMs
integrated at 25 ms are spaced approximately 25 km apart. The DDMs are then calibrated to account
for GPS transmitter power and GPS antenna gain at the reflection angle and also for the filtering effect
of the SMAP high gain antenna, whose small footprint partially observes the scattering surface. The
next subsection provides more details on the calibration performed to the DDM and the observables
used in the assessment of VWC estimates.

2.1. SMAP-R Calibration

To calibrate the SMAP-R DDMs, we applied the modified equation presented in [15]. The equation
in [12] followed the CYclone Global Navigation Satellite System (CYGNSS) [23–25] mission calibration
procedure presented in [26], but adds the filtering effect of the SMAP antenna pattern. The equation
takes the form in eqn. (1):

σ0 =
(4π)3Y(τ, fd) R2

rxspR2
txsp

T2
i PtxGtxλ2Grxsp B(τ, fd)

(1)

where:

• Y(τ, fd) is the DDM received power distribution at each delay τ and Doppler fd bin.
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• Ti is the coherent integration time. Ti = 25 ms for SMAP-R data, instead of the typical value of
1000 ms used in other GNSS-R missions.

• Ptx is the GPS transmitted power.
• Gtx is the GPS transmitter antenna gain.
• λ is the GPS signal wavelength (at GPS-L2C is 24.42 cm).
• Rrxsp corresponds to the distance from the transmitter specular point.

• Rtxsp corresponds to the distance from the receiver to the specular point.

• Grxsp is the SMAP antenna gain value at the specular point incidence angle θi. It is computed from
eqn. (2), where we assume the gain presents a linear decay within the −3 dB beam width (2.7 deg.)
that goes from its maximum value (Gmax_dB = 36 dBi @ 40 deg. incidence angle pointing) to 33 dB.

Grx(θi) = Gmax_dB −
3 dB
2.7◦

∗ abs
(
40
◦

− θ
◦

i

)
[dB] (2)

• B(τ, fd) is the filtered effective surface scattering area. It is computed following the methodology
described in [15], where the size of the area corresponding to each τ and fd bin filtered by the SMAP
antenna is normalized to the size of the same τ and fd bin considering an omnidirectional antenna.

The calibration methodology developed in [15] and implemented in this study considers
two corrections:

• Calibration of the direct power information (PtxGtx). PtxGtx is calibrated by collocating CYGNSS
information for the same day of measurements.

• Calibration of the SMAP antenna filtering effect (B(τ, fd)).

SMAP-R measurements have a non-uniform spatial resolution. The variability on the spatial
resolution is linked to the nature of the SMAP-R signals, since the spatial resolution depends on the
characteristics of the scattering area. A rougher surface enlarges the scattering area, enlarging the
spatial resolution. The presence of vegetation also enlarges the spatial resolution as equally, it results
in the scattering coming from a more extensive area. To compute the approximate spatial resolution of
each measurement, we applied the methodology also explained in [15]. According to the results in [15],
a threshold of 70% was selected, and the delay gathering the 70% of the power was transformed to
an ellipse of constant delay on the surface (iso-delay line) [21]. The size of the scattering area was
set to the semi-major axis of the computed ellipse to represent the scattering area of that particular
measurement. Figure 1 shows the variability on the scattering area sizes computed for two extreme
scenarios: (1) bare soil, characterized by low VWC, low height, and low VOP; and (2) crop seasonal
growth peak, characterized by high VWC, high height, and high VOP. The two extreme scenarios were
selected as the reference states (RS1 and RS2, respectively) of our dataset and will be further explained
in Section 3.

The spatial resolutions observed in the measurements involved in this study were between 5 km
and 24 km, depending on the crop type and growth stage that characterize the scattering surface. The
mean of the bare soil conditions was ~12 km, while for the same area, after crop grew, the observed
spatial resolution increased to a mean of ~17 km. Our conclusions agreed with the results presented
in [15], where an expected spatial resolution between 5 km to 26 km was acceptable for none to high
vegetation, although roughness conditions and the surface topography had an impact on the final
spatial resolution. For the purpose of this study, analyzing the sensitivity, and in order to easily match
the spatial resolution of the reference products used in this study (SMAP SM and VWC), we used
a simplistic strategy of gridding the SMAP-R data to a 9 × 9 km where all specular points falling
within each grid cell were considered to contribute only to that grid cell and were averaged together.
Future research focused on generating products from this dataset will include the appropriate spatial
resolution gridding.
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VWC, low height, and low vegetation opacity (VOP) (reference state RS1) and (b) high VWC, high
height, and high VOP (reference state RS2).

2.2. The Observable: Polarimetric Ratio

We used an observable built from the DDM power information, in particular the power of the
peak. Due to the complexity of the filtering effect of the SMAP antenna, we decided not to include any
observable based on the shape of the DDMs. Therefore, the corrections described in Section 2.1 were
only applied to the τ and fd bin that corresponded to the peak of the DDM. The observable used in this
study was the polarimetric ratio (PR). PR was computed as in [27] using the formula:

PR
(
τpeak, fd_peak

)
=

YV
(
τpeak, fd_peak

)
−YH

(
τpeak, fd_peak

)
YV
(
τpeak, fd_peak

)
+ YH

(
τpeak, fd_peak

) (3)

where:

• τpeak is the delay at the bin of the DDM peak.

• fd_peak is the frequency Doppler at the bin of the DDM peak.

• YH
(
τpeak, fd_peak

)
is the DDM received power at H-polarization measured by SMAP-R at(

τpeak, fd_peak
)
.

• YV
(
τpeak, fd_peak

)
is the DDM received power at V-polarization measured by SMAP-R at(

τpeak, fd_peak
)
.

The sensitivity of SMAP-R signals to crop growth will therefore be evaluated through the variability
of the PR observable to changes on crop growth parameters (VWC, VOP, NDVI, and crop height), as
well as SM conditions.

3. Methodology

In order to analyze the sensitivity of SMAP-R signals to the crop growth parameters, we selected
data collected from the United States (U.S.) Corn Belt, an extensive agricultural area that is planted
with primarily corn, soybean, and wheat every year. Figure 2 shows information on the U.S. Corn Belt.

Figure 2a shows the selected site with information from the U.S. Department of Agriculture
(USDA) National Agricultural Statistics Service (NASS) database [28] showing the amount of planted
corn acres per county. The number of acres planted varies year-to-year as can be seen in Figure 2b.
SMAP-R data allowed for the temporal series analysis of the U.S. Corn Belt seasonal changes from
2016 to 2019. The maps shown are available at [28]. Figure 2c shows a sketch of the growth stages of a
corn plant. Figure 2d to Figure 2f show images of different stages of the corn, bare soil, plant growing,
and harvesting, respectively.
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Figure 2. Site selected: (a) U.S. Department of Agriculture (USDA) National Agricultural Statistics
Service (NASS) [28] map showing the corn for all purposes planted in 2017, the red box indicating the
specific area under study; (b) graph showing the total number of acres planted in consecutive years
(2017 and 2018 show similar numbers; 2019 shows an increase); (c) stages of growth of a corn plant
([29], University of Illinois Extension program); and three images illustrating the agricultural landscape
at different moments of the season; (d) terrain preparation for plantation (bare soil); (e) Vegetative-stage
soybean planted and growing (high VWC, increasing height, and VOP); (f) soybean at the end of
the season (low VWC, maximum height, medium VOP) being harvested (a layer of dried harvesting
leftovers, low VWC, low VOP).

The sensitivity analysis of SMAP-R measurements was therefore explored over the U.S. Corn Belt.
We used the observable, PR, described in Section 2.2. The methodology implemented is illustrated in
Figure 3.

Summarizing Figure 3, there are three main steps:

• SMAP-R data preparation: computing PR and gridding the data.
• Use of ancillary datasets: gathering information on roughness, SM, and crop type using it to filter

and bin the PR observable.
• Sensitivity analysis: Analyze PR observable against reference datasets; i.e., VWC, VOP, NDVI,

and crop height.

The next subsections provide detailed information on the key elements shown in Figure 3: the
two-state analysis strategy, the ancillary datasets employed to characterize the scattering area and
the resulting grouped the data, as well as the reference datasets used to explore the sensitivity of the
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SMAP-R signals to the crop growth parameters (VWC, VOP, NDVI, crop height). Sensitivity analysis
are provided in Section 4.
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Figure 3. Block diagram of the methodology implemented to assess the sensitivity of SMAP-R signals
to crop growth parameters. The methodology is divided into three steps: SMAP-R data preparation,
ancillary information use, and sensitivity analysis of SMAP-R signals to VWC, VOP, NDVI, and crop
height. All datasets are gridded to the same 9 km × 9 km resolution. DDM, delay-Doppler maps; PR,
polarimetric ratio; SM, soil moisture.

3.1. Two-State Analysis Strategy

SMAP-R measurements have low sampling and poor coverage, but those characteristics can be
overcome by implementing analysis strategies as using measurements over long periods of stability
in two extremes as the references and analyzing the variability of the measurements in transitional
periods. We refer to this as a two-state analysis strategy. We analyzed the mean variability of the
observable PR, described in Section 2.2, at these two states. Data between states could then be analyzed
at shorter times referencing them to the two extreme states and discarding samples that are out of the
limits marked by the two reference states.

In this study, we averaged the information from two months, March and April 2017, as one
reference state describing the bare soil conditions (no VWC, 0 VOP, 0 cm crop height: reference state
RS1). We used July and August 2017 as the other reference state describing the season peak of the
crops (high VWC, high VOP, high height: reference state RS2). The transitional periods from especially
April to July 2017 (growing period with increasing VWC, VOP, and height) and August to October
2017 (drying period with decreasing VWC, low height variability, and harvesting) would therefore be
referenced to the two reference states described. Data that did not fall within the PR ranges identified
for the reference states RS1 and RS2 were discarded. Figure 4 shows the PR observable for the two
reference states.

PR plots were computed using a fixed grid of 9 × 9 km to match current official SMAP products.
Both YH and YV were then computed and used to derive the PR values, as described in eqn. (1).
Note that PR values, computed from the forward scattered GPS signal after it interacted with the
vegetation, differed from those expected in the radiometry field. PR values were averaged together
using a drop in the box approach, i.e., measurements whose specular points fell within each grid cell
were averaged together (regardless of their true spatial resolution). Figure 4 shows the heterogeneity
of the PR observable; i.e., it shows the variability within the scene due to differences in the crop type
and growth stage during the selected period, as well as the variability of the soil moisture conditions.
For bare soil and constant roughness conditions (Figure 4a), the variability was due primarily to soil
moisture. During the peak season (Figure 4b), VWC, VOP, crop height, crop type, and soil moisture



Remote Sens. 2020, 12, 1007 8 of 31

played an important role. From Figure 4, a general drop in the levels of the PR observable can be
observed. In Section 4, we provide a deeper analysis of the SMAP-R signal sensitivity to the different
geophysical parameters that compose the scene.
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Figure 4. Two-state analysis strategy: (a) corresponds to the PR values for bare soil state, and (b)
corresponds to the PR values for the peak season state.

3.2. Ancillary Datasets

Below, we describe the ancillary information used to filter and bin our data as a part of the process
outlined in Figure 3: crop type, surface roughness, and monthly soil moisture variability.

The USDA NASS CropScape–Cropland Data [30] provides information on the type and quantity
of crops per county in the U.S. and is freely available at [30]. We used the information in the dataset to
assign the predominant crop type to a pixel of 9 km × 9 km, matching SMAP spatial resolution, for the
year 2017. The map is shown in Figure 5.
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Figure 5. Crop type map developed from the USDA NASS CropScape–Cropland Data database
showing the predominant corn type in pixels of 9 × 9 km, matching SMAP official product spatial
resolution [30].

Following the methodology described in Figure 3, the crop type information was used to analyze
the SMAP-R PR observable for the different crops separately avoiding the mix due to the different
scattering properties characteristic of each crop type and distinguishing effects of the different growth
stages of each crop type.

Roughness had a big impact on the variability of the strength of the SMAP-R signals, as well as
the variability of the spatial resolution of the measurements. The United States Corn Belt crop area
presented a low surface roughness with small variability. SMAP’s roughness ancillary product [31,32],
stored in the SMAP SM official product, corroborated this statement (see Figure 6).
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The SMAP roughness ancillary dataset is a static product. Even where the roughness as low
(orange areas) as compared to surrounding rougher (red) areas, the assumption that the roughness
was static was imperfect. We recognized that roughness varied throughout the year in the U.S. Corn
Belt, primarily due to tillage [33]. Tillage may occur after harvesting the previous season and before
the first snowfall—around November—or after the snow melts in spring—around March. In addition,
this tillage was spatially variable, as it depended on farm management practices. Additionally, rainfall
smooths the soil surface [33] until the crops grow and can shelter the surface. Therefore, both the
tillage and the rain smoothing affect the roughness of the area dynamically rather than statically—as
was assumed in this work. This assumption was one source of error in our analysis of the relationships
between observations and geophysical parameters explored in this study: SM, VWC, VOP, and
vegetation height. Given limited information on tilling and other dynamic variables, we utilized
the static product stored in the official SMAP SM product and acknowledged that this may limit the
robustness of the analysis herein.

Much of the central region shown in Figure 6 had a roughness value of around ~0.1 with
little variability in the surrounding agricultural areas. The roughness ancillary product is a static
product that has been modeled as the surface reflectivity of a rough surface (rp_rough) computed as the
surface reflectivity of a smooth surface (rp_smooth) multiplied by a factor dependent on a parameter
(h) linearly dependent on the root-mean-squared surface height [34,35] and the incidence angle (θ)
as: rp_rough = rp_smoothe−hcosx(θ), with x = 0, 1 or 2; see [36]. Fresnel equations were used to compute
rp_smooth at each polarization; see [36]. For SMAP, h values were obtained from a land cover-driven
lookup table, available in [37]. The roughness values corresponded to unitless values that were
indicative of bare soil roughness within SMAP 9 km grid cell (0 min, 1 max). For this study, we selected
those areas in the map that had a low roughness with low variability (orange area in Figure 6). Using
the roughness information, we generated a mask where roughness value remained between the range
[0.1–0.112], shown in Figure 7a, and we used this map to filter the crop information (Figure 7b).
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After using the roughness mask, there were only three types of crop to include potentially in our
study: great extensions of corn and soybean and some areas in the northern part of wheat. The next
important parameter to control in the area under study was the SM, whose variability would have an
impact on the reflected signal strength, and therefore on the PR. To isolate the impact of SM on the
sensitivity to crop growth parameters, we used the SMAP SM official product at 9 × 9 km [3]. Figure 8
shows the mean and standard deviation of the SM on a monthly basis for areas represented by each
crop type. In addition, in Appendix A, we included the monthly averaged SMAP SM maps from April
2017 to November 2017. SM values are expressed in units of % throughout the manuscript. The %
corresponds to the volumetric soil water content computed from the volume of water (cm3) over the
volume of soil (cm3) expressed in percentage.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 32 
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Figure 8. Monthly soil moisture information for the 2017 season in the U.S. Corn Belt.

The monthly means of SM observed by the SMAP mission in our area under study showed
high variability. During May and June, SMAP soil moisture retrievals showed an increase in soil
moisture, most probably due to rain events since most part of the area under study was rain-fed. Rain
benefits the growth and health of the crops. During the months of July, August, and September, SM
variations seemed to decrease linearly in the mean. During October, variations in soil moisture were
also observed for most of the fields and were also probably due to rain events. We used these data
in order to understand what the impact of SM variation on the sensitivity of SMAP-R signals to the
crop growth parameters was. In order to do this and following the scheme presented in Figure 3, we
initially binned together areas with SM values in the range of 0% to 40% in steps of 5%, providing a
total of eight levels of SM, and then analyzed the sampling population of binned PR values to discard
those statistically poorly represented. We defined those statistically poorly represented SM ranges
with a number of samples below five for most of the PR bins. This analysis is presented in Section 4.

3.3. Reference Datasets

Following the scheme in Figure 3, in order to study the sensitivity of SMAP-R signals to the
different crop growth parameters, we selected a number of reference datasets: the VWC from the SMAP
ancillary dataset, the VOP from the SMAP ancillary dataset, and the crop height that was estimated
from information on typical growth values for the different crop types.

The NDVI reference dataset was obtained from the NDVI product from the USDA NASS
VegScape–Vegetation Condition Explorer [38], where MODIS measurements were employed to derive
the NDVI measurements. Appendix A shows the NDVI maps for the whole crop season (April to
November, 2017). Figure 9 shows the mean and standard deviation of the NDVI on a monthly basis for
areas represented by each crop type.
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The NDVI provides a numerical indicator used to assess whether the observed surface contains
live green vegetation or not. As can be seen in Figure 9, NDVI showed the highest values during July
and August 2019 for both corn and soybean crop types. In the case of wheat, the peak of the season
happened in June.

The selected VWC and VOP reference datasets were those stored as ancillary products in the
SMAP SM official product [3]. VWC and VOP products used in this study were therefore derived from
10 day NDVI climatology rather than obtained from actual 2017 data. We included monthly averaged
VWC and VOP maps in Appendix A. Because VWC and VOP were derived from NDVI climatology,
there would be a correlation between all three products; even the selected NDVI reference was derived
from actual measurements. Some differences were expected because VWC estimations considered
foliage and stem components adjusted for land cover types using the MODIS International Geosphere
Biosphere Programme (IGBP) classification scheme [39], and therefore, the analysis of the VWC could
add information that the NDVI dataset was missing. Equally, since VOP was computed from VWC
estimations, the two products would be correlated and would provide similar information. Because
VOP was computed as the VWC multiplied by a b-factor and this b-factor was dependent on the type
of vegetation and the measurement frequency, the VOP dataset may bring relevant information that
both NDVI and VWC were missing. Figure 10a,b respectively show the mean and standard deviation
of the VWC and VOP datasets in a monthly basis for areas represented by crop type.

As can be seen from Figure 10 and as expected, both VWC and VOP were very similar products
that showed a high dependency on NDVI (Figure 9). It is important to note that a comparison against
VWC and VOP based on real measurements, rather than climatology, would have been more accurate.
By using a climatological dataset, we would observe larger errors due to the real variability of the fields
not captured by the selected reference datasets. In [40], the authors compared SMAP VOP (based on
climatology) and SMOS VOP (based on real data) in the South Fork Network in Iowa day-to-day for
three seasons (in 2015, 2016, and 2017), and the general trends of both products were very similar. This
work intends to demonstrate that SMAP-R contains information related to crops and does not support
a geophysical model function derived from the selected VOP dataset. The average month-to-month
VOP changes were well represented by the selected reference VOP and therefore could be used to
determine SMAP-R sensitivity to crop growth. In the next sections, we will analyze the dependence of
SMAP-R signals on NDVI, VWC, and VOP.
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Each crop had a different associated growth rate. The crop height was therefore a function of the
crop type, which was represented by a particular growth speed and final height. In order to understand
if the thickness of the vegetation layer affected the SMAP-R signals, it was important to add the crop
height to our analysis. We were not able to find a monthly product of the vegetation height over
the U.S. Corn Belt during 2017, and for this reason, we developed an algorithm to estimate the crop
height evolution. The generated product may not be accurate at a daily rate, but it proved sufficient
information for monthly mean analysis. Characterizing agricultural fields is a difficult task since there
is a lack of seasonal ground-truth, such as yearly updated information on the specific variety of crops
of each field or the planting date. In addition, there are also many aspects that can be different not only
year-to-year, but also field-to-field, and even plant-to-plant. We made assumptions on the height of the
plants based on a few field studies, but we recognized these assumptions may not always be robust.
The algorithm was mainly based on standard knowledge for the growth stages of a specific crop type
and the initial time at which the crops started to grow. The initial growth time was obtained from
the NDVI dataset. For the crop growth (height vs. days from emergence), we employed information
available from previous studies and various resources ([41–43]). The values provided from those
studies were used as the representative means of the fields for each crop type. Although not accurate to
specific plants, the overall growth was expected to be robust enough for testing the monthly sensitivity
of SMAP-R to crop height. Since there were only three types of crops within our study area, we limited
the information to corn, soybean, and wheat. The information is shown in Tables 1–3.
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Table 1. Corn height based on growth stage. Based on the growth observed reported in [41] for the
ground-truth of corn field. Vx = Vegetative stages, Rx = Reproductive stages.

Growth Stage Height (cm) Days

Emergence (VE) 0 0

1 leaves (V1) 5 7

5 leaves (V5) 14 14

8 leaves (V8) 48 28

12 leaves (V12) 89 42

16 leaves (V16) 125 56

18/21 leaves (V18/V21)
Tassel and silk (VT) 250 66

Reproductive stages (R1-R5) 260–275 70–120

Maturity (R6) 275 126

Table 2. Wheat height based on growth stage. Based on the growth observed reported in [42] for the
ground-truth of wheat field.

Growth Stage Height (cm) Days

Emergence (1) 0 0

Tillering (2) 3 7

Tillers formed (3) 6 25

Tillers erect (4) 9 50

Tillers strong (5) 12 60

First node (6) 16 70

Second node (7) 21 75

Last leaf (8) 27 85

Ligule visible (9) 35 90

Boot, head swollen (10) 44 98

Heading (10.1) 47 105

Flowering (10.5) 51 110

Ripening (11) 55 125

Table 3. Soybean height based on growth stage. From VE to V5, soybean moves to a new V stage every
6 days and grows about 1.9 cm/day. From R1 to R6, soybean moves to a new stage every 4 days and
grows about 4 cm per day [43]. Vx = Vegetative stages, Rx = Reproductive stages.

Growth Stage Height (cm) Days

Emergence (VE) 0 0

Unrolled unifoliate (VC) 3 7

1 trifoliate developed (V1) 8.65 13

2 trifoliate developed (V2) 18.18 19

3 trifoliate developed (V3) 27.71 25

4 trifoliate developed (V4) 37.23 31

5/6 trifoliate developed (V5/V6) 46.76 37

Flowering (R1-R2)
53.11–129 41–57Pod development (R3-R4)

Seed filling (R5-R6)

Maturity (R7-R8) 131 61–100

The methodology used to generate crop height information is shown in Figure 11.
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The information in Table 1 to Table 3 was used in combination with crop type information in
Figure 7b to identify which area of the surface corresponded to each crop type. Using NDVI change
information at a weekly rate, we determined the first phase of vegetation presence for each 9 × 9 km
pixel and assigned an estimated initial growth day. Following the methodology in Figure 11, we used
the 9 × 9 km grid initial day map, the crop type information, and the information in Table 1 to Table 3
to create the crop height maps showing the estimated mean height of the plants at a monthly rate.
Those are included in Appendix B. Figure 12 shows the mean and standard deviation of the crop height
on a monthly basis for areas represented by each crop type.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 32 
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Figure 12. Crop height information for the 2017 season in the U.S. Corn Belt. Note that the monthly
mean of the estimated crop height is already filtered using roughness information to the area of low
variability, low roughness area shown in Figure 4b.

The resulting crop mean height information represents an estimated height of the predominant
crops within each grid cell every month, from April to November 2017. Corn presented in general a
higher standard deviation. The higher standard deviation occurred in June and could be explained
through the height variability of corn plants growing from 50 cm to 250 cm in a matter of two months.
This period of high variability was directly linked to the initial day of growth at the pixel level found
through NDVI measurements using the methodology in Figure 11. Differences in the start day would
cause differences in growth, and because the plants grew ~150 cm in a short period of time, this
translated into dispersion. As mentioned at the beginning of this subsection, the validation of the
height maps was not feasible since we were not able to find ground-truth data for the U.S. Corn Belt
during the 2017 growing season. Nevertheless, since we were doing monthly averages of the typical
crop height values at 9 km × 9 km, we believe the approach was accurate for our purposes and that
the crop growth observed for all plants was reasonable. We wanted to observe if there was an overall
correlation between monthly averages of crop height and monthly averages of peak SNR; even though
there was a bias on the crop height or an incorrect final height assumption, correlation should still
show the sensitivity of SMAP-R signals to crop height. Since there was no validation of the height
maps, absolute relationships between the two variables would not be possible.
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4. Sensitivity Analysis

This section shows the results obtained following the methodology outlined in Figure 3. A
sensitivity analysis was performed using the SMAP-R gridded data, the roughness information, soil
moisture information, crop type information, and the reference datasets VWC, VOP, NDVI, and crop
height, following Steps 1, 2, and 3, as described in Figure 3. As a first step, we applied the roughness
mask (Figure 7b) to the PR observable, and we binned the data using the soil moisture information for
each crop type. Therefore, the resulting roughness-filtered data were binned into eight SM ranges,
from 0 to 40% in steps of 5%, and separated into different crops: corn, soybean, and wheat (the only
crop types present within our roughness mask). After grouping the data, we selected SM ranges with
enough samples to be statistically representative. We then analyzed the monthly variations of the
different observables and correlated those variations to crop growth parameters: VWC, VOP, NDVI,
and crop height.

4.1. PR Sample Distribution

First, the PR sample distribution for five different SM ranges and for each crop type is shown in
Figure 13.

As was shown in Figure 5, there was only a small area of wheat on the north-east part of the area
under study. Figure 13 proves that the crop type wheat was not well represented for any of the SM
ranges. We excluded wheat when analyzing the data, which stayed below five samples for all PR bins
and all SM ranges. Corn and soybean had a good representation of samples for SM ranges [15–20]%,
[20–25]%, and [25–30]%. Ranges [10–15]% and [30–35]% showed a reduced number of samples, and the
results would show a higher uncertainty over those ranges. There were no samples below SM = 10%
or over SM = 35%. Consequently, we performed the sensitivity analysis of the SMAP-R PR observable
to corn and soybean crop types within the SM ranges [10–15]%, [15–20]%, [20–25]%, [25–30]%, and
[30–35]%.

4.2. Variability of the PR during the Crop Season

In order to analyze the PR observable on a month-to-month basis, we performed a pre-calculation
of the minimum and maximum values expected for bare soil (reference state RS1) and high peak season
conditions (reference state RS2), using a two-month average. We observed the PR mean transitioning
from RS1 state to RS2 state and the as it dries and gets harvested transitions back to RS1 state. We
then analyzed the monthly mean and standard deviation of the PR observable through the season,
discarding values that were showed to be outliers based on RS1 and RS2 (~3% of the data). Figure 14
shows the temporal analysis of PR, for two of the SM ranges.

Figure 14 shows that PR showed a clear signature that decreased as crops grew and returned to
initial levels after harvesting (October-November). For each plot in Figure 14, SM variation was less
than or equal to 5%, roughness variation was minimal, and crop type is shown with different colors.
Note that the two selected SM ranges showed similar seasonal behavior, but the PR dynamic range of
the higher SM range was reduced. Figure 14a shows a PR drop for corn crop type. This drop could
be explained by the dynamic roughness effects since corn is usually tilled post-harvest, causing an
increase in roughness. Soybean is occasionally left on the surface with no tilling. An increase in the
surface roughness, especially after harvesting, could impact the PR together with SM variations. To
investigate this effect, Figure 15 shows the dependence of PR on SM. We selected April and November
as representative of bare soil condition and harvested fields, respectively, and June and August as
representative of growing season with two levels of growth, intermediate and peak.
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the results would show a higher uncertainty over those ranges. There were no samples below SM = 
10% or over SM = 35 %. Consequently, we performed the sensitivity analysis of the SMAP-R PR 
observable to corn and soybean crop types within the SM ranges [10–15]%, [15–20]%, [20–25]%, [25–
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4.2. Variability of the PR during the Crop Season 

Figure 13. Sample distribution for SM ranges of (a) [10–15]%, (b) [15–20]%, (c) [20–25]%, (d) [25–30]%,
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Under bare soil conditions, as April and November plots, the relationship between the polarimetric
ratio and the soil moisture showed a linear behavior. For the November plot (Figure 15d), the surface
was not actually bare soil as it was at the beginning of the season. After harvesting, the fields contained
residues and stalks that were left on the field. Those left-overs may retain moisture and act as a
homogenous layer of higher SM content and low surface roughness. This would explain the higher
PR values of November (Figure 15d) with respect to April (Figure 15a). The range of PR under bare
soil conditions was contained between −0.05 and −0.25. As the crops grew, the PR dynamic range
was increased. Figure 15b shows the mean values for June, during the growing phase with a height
variability of [90–260] cm for corn, a height variability of [63–131] cm for soybean, a VWC variability of
[2.2–2.5] kg/m2, a VOP variability of [0.3–0.4], and an NDVI variability of [0.55–0.6]. Figure 15c shows
the mean values for August, during the growing phase with a height of 274 cm for corn and height of
131 cm for soybean, a VWC variability of [2.8–4] kg/m2, a VOP variability of [0.4–0.6], and an NDVI
variability of [0.75–0.9].
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Comparing the mean PR values of Figure 15a to Figure 15c, for SM = 10%, PR decreased from
−0.25 to −0.3 and −0.45 as the crops grew. For SM = 25%, PR decreased from −0.18 to −0.25 and −0.28
as the crops grew. Finally, for SM = 40%, PR decreased from −0.08 to −0.15 and −0.16 as the crops
grew. The PR dependence on both SM and crop growth stage seemed to saturate as SM increased, but
it showed sensitivity even under season peak conditions. In summary, Figure 15 showed that both SM
and crop growth related parameters had an impact on the PR. Next, we individually analyzed the
dependence of PR on VWC, VOP, NDVI, and crop height for the different ranges of SM.

4.3. Sensitivity of the PR to the Crop Growth Parameters

In this subsection, we analyze the PR observable sensitivity to the different crop growth parameters
to better understand the effect of those parameters in the SMAP-R signal. PR describes the degree of
the de-polarization of the signal and was therefore expected to describe crop growth.

PR and Crop Height Dependency

The PR observable could be affected by the thickness of the vegetation layer, by its water content,
or by a combination of both. First, we investigated the direct dependency of the PR observable on crop
height alone. Figure 16 shows the mean variability of SMAP-R as the crops increased in height.

Figure 16 shows the PR observable analyzed for corn and soybean data in the range SM = [15–20]%.
The PR had an overall linear decreasing behavior with the increase of crop height, but Figure 16 shows
information that helped discard the dependency of the PR observable on crop height alone. If it was
only dependent on crop height, both crops should display same slope and PR values for the same
height. On the contrary, the slopes were different, indicating that the dielectric constant value of the
layers had an impact on the PR value. In addition, towards the last stage of growth, we could see that
the mean PR increased back to initial levels, even if the crops were at their maximum height. The
sudden increase in PR denoted that, as the crops reached their maximum height and started to dry,
the drying of the crop plant was the main factor. Corn exhibited higher VWC for most of the season,
peaking around the reproductive stages (R2/R3) [44]. Soybean did not exhibit a clear peak of VWC,
but it experienced a smooth transition between increasing VWC and the start of VWC decrease in the
reproductive stage R1, always below the VWC of corn plants [40]. These differences in VWC along the
season could explain the differences in the slopes for the two crops observed in Figure 16. Figure 16
indicates that the main drivers in the PR observable values were likely to be the VWC and/or the VOP
of the layer.
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Figure 15. Analysis of the dependence of PR on SM for (a) April (mostly bare soil, planting season),
(b) June (growing stage, variability of heights for the same crop type), (c) August (season peak, plants
at maximum height), and (d) November (after harvesting, the field contains residues and stalks from
both corn and soybean left on the field after harvesting).
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PR and VWC Dependency

Second, we investigated the direct dependency of PR observable on VWC alone. Since VWC was
derived from a 10-day NDVI climatology, we would observe errors associated with the discrepancies
between climatology and actual values. Figure 17 shows the mean variability of the SMAP-R PR
observable as the crops increased in VWC during the first crop growth stages and then decreased in
VWC during the last stages of the crop life. The VWC cycle is shown in Figure 10a.
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Figure 17. PR dependency on VWC. VWC information for the 2017 season in the U.S. Corn Belt
obtained from ancillary products stored in the SMAP SM official product [3]. SMAP-R data analyzed
for (a) corn and (b) soybean.

Figure 17 shows a linear decrease of the PR observable as the VWC increased. The range of VWC
for the data observed was between 1 kg/m2 and 4 kg/m2, typical of the crops analyzed. We observed a
consistent sensitivity for both crop types, with a PR variation of −0.0546 per kg/m2 of VWC for the
corn data and a PR variation of −0.0527 per kg/m2 of VWC for the soybean data. Figure 17 includes all
SM measurements, and as is shown in Figure 15, SM had a relevant impact on the dynamic range of
the PR and therefore was impacting the standard deviation of the average PR values in Figure 17. The
estimated uncertainty for the corn data was 30% in the case of corn and 29.28% in the case of soybean.
In order to reduce the uncertainty due to SM, we followed the approach in Figure 3, binning the data
into SM bins of 5%. Table 4 provides the PR sensitivity to changes in VWC and the uncertainty if we
were to use a linear approach to estimate VWC from PR. We provide results for each SM range for each
crop type.

Table 4. PR sensitivity to VWC, with the uncertainty of the estimations for corn and soybean crop type.
The green dashed box highlights the SM ranges with a statistically significant number of samples. R
is the correlation [45]; E is the probability of R being random [45]; S is the sensitivity; and U is the
uncertainty. The VWC maximum range is [0–4] kg/m2.
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Figure 18. PR dependency on VOP. VOP information for the 2017 season in the U.S. Corn Belt 
obtained from ancillary products within the SMAP SM official product [3]. SMAP-R data analyzed 
for (a) corn and (b) soybean. 

Figure 18 shows a linear decrease of the PR observable as the VOP increased. The range of VOP 
for the data observed was between 0.1 and 0.6 Nep.er (Np) We observed a consistent sensitivity for 
both crop types, with a PR variation of −0.3771 per unit of VOP for the corn data and a PR variation 
of -0.3630 per unit of VOP for the soybean data. Figure 18 includes all SM measurements, and as was 
shown in Figure 15, SM had a relevant impact on the dynamic range of the PR and therefore was 
impacting the standard deviation of the averaged PR values in Figure 17. The estimated uncertainty 
for the corn data was 17.44% in the case of corn and 17.01 % in the case of soybean. As we did with 
the VWC, to reduce the uncertainty due to SM, we followed the approach in Figure 3, binning the 
data into SM bins of 5%. Table 5 provides the PR sensitivity to changes in VOP and the uncertainty if 
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Note that ranges with low sampling had worse results. The green dashed box highlights the
most statistically significant results. As shown in Table 4, by binning the data, the VWC uncertainty
was generally reduced from ~30% to ~9%. The sensitivity S was obtained as the slope of the linear
approximation; the black dashed line in Figure 17a,b. The uncertainty U was computed as the mean
standard deviation in a retrieval based on the linear approximation, divided by the maximum range
of VWC.

PR and VOP Dependency

Third, we investigated the direct dependency of the PR observable to VOP. As in the case of VWC,
since VOP was derived from a 10 day NDVI climatology, we would observe errors associated with the
discrepancies between climatology and actual values. Similar to the VWC analysis, Figure 18 shows
the mean variability of SMAP-R PR observable as the crops increased in VOP during the first crop
growth stages and then decreased in VOP during the last stages of the crop life. The VWC cycle is
shown in Figure 10b.
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Figure 18. PR dependency on VOP. VOP information for the 2017 season in the U.S. Corn Belt obtained
from ancillary products within the SMAP SM official product [3]. SMAP-R data analyzed for (a) corn
and (b) soybean.

Figure 18 shows a linear decrease of the PR observable as the VOP increased. The range of VOP
for the data observed was between 0.1 and 0.6 Nep.er (Np) We observed a consistent sensitivity for
both crop types, with a PR variation of −0.3771 per unit of VOP for the corn data and a PR variation
of −0.3630 per unit of VOP for the soybean data. Figure 18 includes all SM measurements, and as
was shown in Figure 15, SM had a relevant impact on the dynamic range of the PR and therefore was
impacting the standard deviation of the averaged PR values in Figure 17. The estimated uncertainty
for the corn data was 17.44% in the case of corn and 17.01% in the case of soybean. As we did with the
VWC, to reduce the uncertainty due to SM, we followed the approach in Figure 3, binning the data
into SM bins of 5%. Table 5 provides the PR sensitivity to changes in VOP and the uncertainty if we
were to use a linear approach to estimate VOP from PR. We provide results for each SM range for each
crop type.

The same as Table 4, ranges with low sampling had worse results, and the green dashed box
highlights the most statistically significant results. As shown in Table 5, by binning the data, the VOP
uncertainty was generally reduced from ~17% to ~6%. The sensitivity S was obtained as the slope of
the linear approximation; the black dashed line in Figure 18a,b. The uncertainty U was computed as
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the mean standard deviation in a retrieval based on the linear approximation, divided by the maximum
range of VOP.

Table 5. PR sensitivity to VOP, with the uncertainty of the estimations for corn and soybean crop type.
The green dashed box highlights the SM ranges with a statistically significant number of samples R
is the correlation [45]; E is the probability of R being random [45]; S is the sensitivity; and U is the
uncertainty. The VOP maximum range is [0 to 1] Np.
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PR and NDVI Dependency

Finally, we investigated the direct dependency of PR observable on NDVI. In this case, the NDVI
reference product was obtained from actual weekly MODIS data rather than climatology. Similar to
the VWC and VOP analysis, Figure 19 shows the mean variability of the SMAP-R PR observable as the
crops increased in NDVI during the first crop growth stages and then decreased in NDVI during the
last stages of the crop life. The NDVI cycle is shown in Figure 9.
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Figure 19. PR dependency on NDVI. NDVI information for the 2017 season in the U.S. Corn Belt
obtained from [34]. SMAP-R data analyzed for (a) corn and (b) soybean.

Figure 19 shows a linear decrease of the PR observable as the NDVI increased. The range of NDVI
for the data observed was between 0.2 and 0.9. We observed a consistent sensitivity for both crop
types, with a PR variation of −0.2840 per unit of NDVI for the corn data and a PR variation of −0.2668
per unit of VOP for the soybean data. Figure 18 includes all SM measurements, and as was shown in
Figure 15, SM had a relevant impact on the dynamic range of the PR and therefore was impacting the
standard deviation of the averaged PR values in Figure 17. The estimated uncertainty for the corn data
was 0.2315 in the case of corn and 0.2313 in the case of soybean. As we did with the VWC and VOP, in
order to reduce the uncertainty due to SM, we followed the approach in Figure 3, binning the data into
SM bins of 5%. Table 6 provides the PR sensitivity to changes in NDVI and the uncertainty if we were
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to use a linear approach to estimate NDVI from PR. We provide results for each SM range for each
crop type.

Table 6. PR sensitivity and NDVI uncertainty of the estimations for corn and soybean crop type. The
green dashed box highlights the SM ranges with a statistically significant number of samples. R is the
correlation [45]; E is the probability of R being random [45]; S is the sensitivity; and U is the uncertainty.
The NDVI maximum range is [0 to 1].
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Similar to Tables 4 and 5, ranges with low sampling had worse results, and the green dashed
box highlights the most statistically significant results. As shown in Table 6, by binning the data, the
NDVI uncertainty was generally reduced from ~23% to ~8.5%. The sensitivity S was obtained as
the slope of the linear approximation; the black dashed line in Figure 19a,b. The uncertainty U was
computed as the mean standard deviation in a retrieval based on the linear approximation, divided by
the maximum range of NDVI.

Conclusions on Sensitivity to Crop Growth Parameters

The assessment of the PR observable sensitivity indicated that all VWC, VOP, and NDVI datasets
had a similar impact. This result was expected since VWC and VOP were both derived from a
10-day NDVI climatology, which was expected to be correlated with NDVI data. Even though the
correlation between them was high, the analysis showed small sensitivity differences; VOP exhibited
the lowest uncertainty for all crop types. The PR observable and VOP showed a linear dependency
that produced a 6% uncertainty if we were to apply the linear relationship to estimate the VOP. Our
analysis indicated that SMAP-R data could be used as a proxy to obtain independent VOP estimations.
Overall, improved VOP estimates could produce better SM estimations. Uncertainty related to VWC
was ~9%, i.e., 0.36 kg/m2.

5. Discussion

Given our need to use CYGNSS data for calibration purposes, there was currently a total of 2.5
years of SMAP-R data overlapping with CYGNSS data that could be used to develop a GNSSR-based
SM/VWC/VOP retrieval algorithm. The explored dependency of the SMAP-R PR observable on SM and
vegetation descriptors (crop height, VWC, VOP, and NDVI) supported the potential of polarimetric
GNSS-R signals to be combined with radiometric measurements to produce more accurate SM and
VWC/VOP estimates. In order to develop a GNSS-R-based retrieval algorithm, it was important to
have multi-year measurements over a controlled area where there was availability of in situ and
independent information regarding SM and vegetation parameters. Furthermore, it was important that
the variability of the SM and the variability of the different vegetation parameters provided statistically
representative population of samples for all their values within their possible ranges.

SMAP calibration and validation (Cal/Val) activities were intended to verify and improve the
performance of the science algorithms, as well as validate the accuracies of the science data products.
The Cal/Val sites, given their overall range of vegetation and seasonal variability, would be an ideal
target to develop a GNSSR-based retrieval algorithm. The algorithm would use both SMAP official
product SM retrievals (or SMAP radiometric data directly) and GNSS-R polarimetric measurements
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to reduce the error on the estimations of both SM and vegetation related parameters. Since both
the radiometer and the GNSS-R receiver were sensitive to both the SM and vegetation parameters,
we would be able to resolve the two variables through a system of equations that was no longer ill
posed. Furthermore, having in situ data of VWC/VOP would help us build an algorithm that did
not rely on NDVI measurements, which would benefit the retrieval algorithm since NDVI saturated,
losing sensitivity to VWC as the water content increased [7]. In addition, using an alternate reference
product that relied on real measurements rather than climatology would allow for the development of
a geophysical model function that would link polarimetric GNSS-R measurements to VWC or VOP
estimates. If GNSS-R measurements could be used as a source of independent information to produce
better estimates, both SMAP SM and their ancillary VWC/VOP final products would result in more
accurate estimates.

The true spatial resolution of SMAP-R signals was not a fixed number. The spatial resolution
varied measurement-to-measurement given the surface characteristics. Surfaces such as rivers, lakes,
wetlands, and sea ice produce a highly coherent scattering of the GPS signals reflecting from them.
Surfaces such as the ocean or forests produce highly incoherent scattering. In our study, the scattered
GPS signals that SMAP-R observed were reflected off crop fields. Therefore, the spatial resolution,
which was calculated here based on the methodology developed in [15], varied as the crops grew.
The mean scattering area for the bare soil conditions was ~12 km. For the same area, post-growth,
the observed area increased to a mean of ~17 km. In our study, we implemented a drop in the box
approach, where all specular points within each grid cell were averaged together, and future research
will include the true spatial resolution information in the analysis.

Future research will utilize SMAP Cal/Val sites for in situ measurements of the relevant parameters
(SM and vegetation parameters). Additionally, we plan on selecting locations strategically, ensuring
we have a dataset spanning many years, with large geophysical variability. Given a large, diverse
dataset, it will be possible to develop an algorithm based on an ensemble of data that are statistically
representative. In addition, having validated crop height measurements facilitates a methodology
to link the size of the scattering area derived from SMAP-R to the incoherency related to the height
and type of the vegetation. Furthermore, future research will include the practical implementation
of a retrieval algorithm based on GNSS-R measurements combined with other sensors and ancillary
information, following the results in this paper.

6. Conclusions

This manuscript analyzed the polarimetric sensitivity of SMAP-R signals to crop growth descriptors
under different soil moisture conditions. The calibration methods described in [15] were applied,
achieving a calibrated dataset over the U.S. Corn Belt, where the sensitivity analysis of the SMAP-R
signals was performed. The sensitivity analysis performed in Section 4.2, considering SMAP-R PR
observable dependency on SM and Section 4.3 considering SMAP-R PR observable dependency on
crop growth parameters, can be summarized as follows:

• The SMAP-R PR observable showed a dependency on SM, regardless of the crop growth stage
(Figure 15).

# For bare soil conditions, we observed a linear behavior of the SMAP-R PR observable
(Figure 15a,d).

# The different crop growth stages had an impact on the dynamic range of the SMAP-R PR
observable.

� As crops grew, the SMAP-R PR observable showed a logarithmic behavior, with
more sensitivity to crop growth parameters at low SM values (Figure 15b,c, Table 4
to Table 6).
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� During the peak season (maximum height, VWC, VOP, and NDVI), we observed
the maximum dynamic range (Figure 15c).

• The SMAP-R PR observable showed a degree of correlation with crop height, but it was not the
main driver:

# As the crops reached their maximum height and started to dry, the crop height did not
have any impact.

# Different crops did not display the same slope and PR values for the same crop height.

• The SMAP-R PR observable showed a linear dependency on crop growth parameters:

# PR decayed at a mean rate of −0.054 per kg/m2 of VWC. Applying an SM binning of the
data, a 9% uncertainty was obtained (Section 4.3), i.e., 0.36 kg/m2.

# PR decayed at a mean rate of −0.37 per unit of VOP. Applying an SM binning of the data, a
6% uncertainty was obtained (Section 4.3).

# PR decayed at a mean rate of −0.23 per unit of NDVI. Applying an SM binning of the data,
an 8.5% uncertainty was obtained (Section 4.3).

As previously discussed, this work has implications for SM retrieval algorithm work in the future.
GNSS-R polarimetric measurements could be used synergistically with passive radiometric observations
for improved estimates of soil moisture under dynamic vegetation. Bistatic radar measurements from
the GPS constellation complement those from radiometers by providing an independent source of
vegetation and soil moisture information. Both SMAP and SMAP-R measurements are dependent on
crop growth stage and SM. Therefore, a combined radiometer-reflection-based retrieval will constrain
and improve estimates of vegetation parameters and SM.
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Appendix A

This Appendix shows the monthly maps for the different products used within our study: SM,
NDVI, VWC, and VOP. Note that NDVI was obtained from actual 2017 MODIS data as opposed to
VWC and VOP datasets, which were derived from 10 day NDVI climatology. These products are
provided in Equal-Area Scalable Earth (EASE) grid.

SM Maps

Generated maps of the SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil
Moisture Version 2 product [3] for the area under study during the 2017 season.
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reflection-based retrieval will constrain and improve estimates of vegetation parameters and SM. 
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Appendix A 

This Appendix shows the monthly maps for the different products used within our study: SM, 
NDVI, VWC, and VOP. Note that NDVI was obtained from actual 2017 MODIS data as opposed to 
VWC and VOP datasets, which were derived from 10 day NDVI climatology. These products are 
provided in Equal-Area Scalable Earth (EASE) grid. 

SM Maps 

Generated maps of the SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil 
Moisture Version 2 product [3] for the area under study during the 2017 season. 
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Figure A1. Soil moisture maps from the SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-
Grid Soil Moisture Version 2 [3]: (a) to (h) corresponds to April to November 2017. 
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at a bi-weekly rate. Data are freely available at https://nassgeodata.gmu.edu/VegScape/. The crop 
NDVI information corresponds to the 2017 production and was gridded to match the 9 km × 9 km 
SMAP spatial resolution, assigning the monthly mean NDVI value to each grid cell for a period. 
Figure 9 shows the NDVI maps used in this study [38]. 

The Surface Reflectance Daily L2G Global 250m of MODIS is selected as the input for generating 
normalized difference vegetation index (NDVI). The L2G product has two bands–Band1 (620–670 nm) 
and Band2 (841–876 nm) that represent respectively red and near-infrared band. Therefore, the 
equation for computing daily NDVI is as follows: 
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Figure A1. Soil moisture maps from the SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid
Soil Moisture Version 2 [3]: (a) to (h) corresponds to April to November 2017.

NDVI Maps

The USDA NASS VegScape [38]–Vegetation Condition Explorer offers information on the NDVI at
a bi-weekly rate. Data are freely available at https://nassgeodata.gmu.edu/VegScape/. The crop NDVI
information corresponds to the 2017 production and was gridded to match the 9 km × 9 km SMAP
spatial resolution, assigning the monthly mean NDVI value to each grid cell for a period. Figure 9
shows the NDVI maps used in this study [38].

The Surface Reflectance Daily L2G Global 250m of MODIS is selected as the input for generating
normalized difference vegetation index (NDVI). The L2G product has two bands–Band1 (620–670
nm) and Band2 (841–876 nm) that represent respectively red and near-infrared band. Therefore, the
equation for computing daily NDVI is as follows:

NDVI =
Band2− Band1
Band2 + Band1

(A1)

https://nassgeodata.gmu.edu/VegScape/
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Figure A2. NDVI map developed from the USDA NASS VegScape – Vegetation Condition Explorer 
database showing the monthly mean NDVI values gridded to 9 km × 9 km, matching SMAP official 
product spatial resolution, from April to November 2017, respectively from (a) to (h) [38]. Note: These 
data were obtained from NDVI from actual MODIS data. 

VWC Maps 

The SMAP mission employed the Terra/MODIS Vegetation Indices (MOD13Q1) [46] Version 6 
product and the stem factor values for different MODIS International Geosphere Biosphere 
Programme (IGBP) land cover types to obtain their VWC ancillary dataset [37]. MOD13Q1 is 
provided every 16 days at 250 meter spatial resolution, and it is available from 2000-02-18 to the 
present. The equation applied is: 
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where 𝑁𝐷𝑉𝐼  is the Normalized Difference Vegetation Index, 𝑁𝐷𝑉𝐼  is the maximum annual 
value, 𝑁𝐷𝑉𝐼  is the minimum annual value, and 𝑠𝑓 is the steam factor whose values for different 
land cover type were shown in [37]. 

Figure A2. NDVI map developed from the USDA NASS VegScape–Vegetation Condition Explorer
database showing the monthly mean NDVI values gridded to 9 km × 9 km, matching SMAP official
product spatial resolution, from April to November 2017, respectively from (a) to (h) [38]. Note: These
data were obtained from NDVI from actual MODIS data.

VWC Maps

The SMAP mission employed the Terra/MODIS Vegetation Indices (MOD13Q1) [46] Version 6
product and the stem factor values for different MODIS International Geosphere Biosphere Programme
(IGBP) land cover types to obtain their VWC ancillary dataset [37]. MOD13Q1 is provided every
16 days at 250 m spatial resolution, and it is available from 2000-02-18 to the present. The equation
applied is:

VWC =
(
1.9134×NDVI2

− 0.3215×NDVI
)
+ s f ×

NDVImax −NDVImin
1−NDVImin

(A2)

where NDVI is the Normalized Difference Vegetation Index, NDVImax is the maximum annual value,
NDVImin is the minimum annual value, and s f is the steam factor whose values for different land cover
type were shown in [37].
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Figure A3. VWC maps from the SMAP ancillary products: (a) to (h) correspond to April to November 
2017. Units of kg/m2. Note: This product was derived from 10 day NDVI climatology. 

VOP Maps 

The SMAP mission also provides information on the VOP, and it is available in the SMAP SM 
official product [3]. The VOP is defined as the VWC multiplied by a parameter that depends on the 
frequency and the vegetation type [36], in this case, the crop type. We gathered the VOP as a reference 
dataset to study the sensitivity of the SMAP-R signals to this crop type dependent dataset. 

Figure A3. VWC maps from the SMAP ancillary products: (a) to (h) correspond to April to November
2017. Units of kg/m2. Note: This product was derived from 10 day NDVI climatology.

VOP Maps

The SMAP mission also provides information on the VOP, and it is available in the SMAP SM
official product [3]. The VOP is defined as the VWC multiplied by a parameter that depends on the
frequency and the vegetation type [36], in this case, the crop type. We gathered the VOP as a reference
dataset to study the sensitivity of the SMAP-R signals to this crop type dependent dataset.
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Figure A4. VOP maps from the SMAP ancillary products: (a) to (h) corresponds to April to November 
2017. Units in nepers (Np). Note: This product was derived from 10 day NDVI climatology. 
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The algorithm was mainly based on standard knowledge for the growth stages of a specific crop 
type and the initial time at which the crops started to grow. The initial time was obtained from the 
NDVI dataset. The methodology is explained through Figure 11. 

  

Figure A4. VOP maps from the SMAP ancillary products: (a) to (h) corresponds to April to November
2017. Units in nepers (Np). Note: This product was derived from 10 day NDVI climatology.

Appendix B

This Appendix shows the monthly maps for crop height maps used within our study. This product
was originally from this work.

Crop Height Maps

The algorithm was mainly based on standard knowledge for the growth stages of a specific crop
type and the initial time at which the crops started to grow. The initial time was obtained from the
NDVI dataset. The methodology is explained through Figure 11.
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Figure B1. Height map developed from crop type information, NDVI information, and typical growth 
values for the different crop types: corn, wheat, and soybean from April to November 2017, 
respectively from (a) to (h). 
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