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Abstract: Hyperspectral (HS) images usually have high spectral resolution and low spatial resolution
(LSR). However, multispectral (MS) images have high spatial resolution (HSR) and low spectral resolution.
HS–MS image fusion technology can combine both advantages, which is beneficial for accurate feature
classification. Nevertheless, heterogeneous sensors always have temporal differences between LSR-HS
and HSR-MS images in the real cases, which means that the classical fusion methods cannot get effective
results. For this problem, we present a fusion method via spectral unmixing and image mask. Considering
the difference between the two images, we firstly extracted the endmembers and their corresponding
positions from the invariant regions of LSR-HS images. Then we can get the endmembers of HSR-MS
images based on the theory that HSR-MS images and LSR-HS images are the spectral and spatial
degradation from HSR-HS images, respectively. The fusion image is obtained by two result matrices.
Series experimental results on simulated and real datasets substantiated the effectiveness of our method
both quantitatively and visually.

Keywords: hyperspectral image; multispectral image; remote sensing; temporal difference; spectral
unmixing; endmember spatial information

1. Introduction

Hyperspectral (HS) images are playing important roles in agriculture, medical science, remote sensing,
and other fields because of its high spectral resolution [1]. The spectrum width of hyperspectral sensor
is narrow, resulting in insufficient energy. In order to maintain a certain signal-to-noise ratio (SNR),
the spatial resolution has to be sacrificed. Therefore, multispectral (MS) images often have higher spatial
resolution than HS images. High spatial resolution (HSR) information helps to obtain more accurate
locations and shapes of ground objects [2], and spectral information helps to identify types of features
from images [3]. Spectral information fusion of HS images and MS images is helpful for image retrieval [4],
classification [5,6], image analysis [7,8] and information extraction [2,9]. Fusing low spatial resolution
HS (LSR-HS) images and HSR-MS images can obtain HSR-HS images [10], which is very helpful for fine
mapping, ground objects identification, and so on.
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Pansharpening is a special case of HS–MS images fusion problem [11], which enhances the spatial
resolution of LSR-MS image by fusing it with the panchromatic image [12]. With the development of
hyperspectral imaging technology, these methods are gradually applied to hyperspectral images [13].
For instance, component substitution (CS)-based methods convert the LSR-HS image to another orthogonal
space and replace the decomposed spatial components with one of the multispectral bands [14,15],
including Gram–Schmidt adaptive (GSA) [16]. Another representative pansharpening method is
multi-resolution analysis (MRA), which utilizes the multiresolution decomposition way to obtain the
spatial information of panchromatic image and combine it into the resampled HS bands. The well-known
methods include generalized Laplacian pyramid (GLP) [17].

Another kind of HS–MS fusion method is to take HSR-MS image and LSR-HS image as degradation
results of HSR-HS image in spectrum and space, respectively, and then inversing two images to reconstruct
the target image. This category method mainly includes the Bayesian-based method and spectral
unmixing-based method. The Bayesian-based method uses the posterior probability distribution of
the target image for image fusion given LSR-HS and HSR-MS images [18–20]. For instance, Eismann et al.
proposed a Bayesian-based method under the maximum a posteriori (MAP) estimation, which estimated
the underlying spectral characteristics of the ground objects by a stochastic mixing model (SMM) and
optimized the estimated HS images relative to the input images by a cost function [21].

The spectral unmixing-based fusion method has been widely studied because of its physically
straightforward representation of the fusion process. Each pixel is a mixture of some endmember spectra
and corresponding fractional abundances [22]. The approach based on spectral unmixing is obtaining
endmember matrix and abundance matrix from LSR-HS image and HSR-MS image using spectral mixture
model, respectively. Then, two resulting matrices are reconstructed as the HSR-HS image. For instance,
coupled nonnegative matrix factorization (CNMF) [23] alternately using NMF unmixing the LSR-HS image
and HSR-MS image to get the endmember and abundance matrices, respectively. A method proposed by
Akhtar et al. [24] is to extract the endmember spectra as a spectral basis first, and then with the basis fixed
use a pursuit method reconstruct the image. The method proposed by Lanaras et al. [25] is to obtain the
endmembers by alternately updating method and use the projection gradient method to get abundance
matrix of HSR-MS image.

Most HS–MS fusion methods require a high correlation between LSR-HS images and HSR-MS images.
The correlation between the two images is affected by various factors such as sensor characteristics,
temporal difference, weather, imaging angle, etc., and the real data is often difficult to meet the
requirements [25]. To solve the problem, we propose a new HS–MS fusion method based on linear
spectral mixture model (LSMM), which investigates the endmember signatures’ spatial relationship
between LSR-HS image and HSR-MS image. First, in order to ensure the consistency of the endmembers
positions in two images, the mask is generated according to the differences between the two images.
Then, the proposed method eliminates the variation area by masking the large difference regions. After
that, we extract the endmembers and their corresponding positions from masked LSR-HS image and
locate them according to the endmember spatial information in HSR-MS image. Next, based on the
obtained endmember matrix, the abundance matrix is calculated by nonnegative linear regression. Finally,
the HSR-HS image is reconstructed by endmember matrix of LSR-HS image and abundance matrix of
HSR-MS image. Our fusion method is physical clear and has very simple model with less calculation, and
it is robust to the image temporal difference. Experimental results based on the simulated images and real
images indicate our method can effectively integrate the spatial and spectral information, and outperform
than other compared methods.
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2. Methodology

2.1. The Proposed Method Overview

LSMM is widely used to represent the observation images because of its effectiveness and
straightforward [22]. The LSMM considers the ground to be flat and assumes that incoming sunlight
radiation is reflected off the surface only in a single reflection, not multiple scattering [26]. Each pixel in
the scene can be modeled as a linear combination of all the spectra of the materials and the proportional
contribution of each spectra. Let X = [x1, . . . , xN ] ∈ <L×N denotes the observation image, L is the number
of bands, N is the number of all pixels. For the j-th pixel, xj =

[
x1j, . . . , xLj

]T ∈ <L, the LSMM models the
pixel as:

xj =
P

∑
i=1

si,jai + nj = Asj + nj (1)

where A = [a1, . . . , aP] ∈ <L×P is the mixing matrix that consists of P distinct endmember spectral
signiatures, P is the number of endmember signatures in the scene, sj =

[
s1j, . . . , sPj

]T ∈ <P is the
abundance vector of xj, and nj ∈ <L is the additive noise term. Because of the physical constraints,

the abundance is nonnegtive sij ≥ 0 and sum-to-one
P
∑

i=1
sij = 1. Correspondingly, the image has N pixels

can be modeled as:
X = AS + N (2)

Based on LSMM, the LSR-HS image Xh and HSR-MS image Xm can be modeled as:{
Xm = AmSm + Nm

Xh = AhSh + Nh
(3)

where Am ∈ <Lm×P is the endmember matrix of HSR-MS image Xm, Lm is the band number, P is the
endmember number. Sm ∈ <P×Nm denotes the abundance matrix, Nm denotes the number of pixels.
Nm ∈ <Lm×Nm denotes the additive noise term. For LSR-HS image Xh, Ah ∈ <Lh×P is the endmember
matrix, and Lh is the band number. Sh ∈ <P×Nh is the abundance matrix of Xh, Nh is the number of pixels.
Nh ∈ <Lh×Nh is the noise term of LSR-HS image. If we upsample the LSR-HS image to the same size as
the HSR-MS image, the number of pixels will be the same Nm=Nh = N. Based on the physical meaning of
abundance matrix and endmember matrix, all the matrices in Equation (3) are nonnegative.

Under the assumption that HSR-MS image and LSR-HS image is the spectral and spatial degradation
from HSR-HS image, respectively. We assume that Am and Ah denote the same endmember signatures,
and the difference between them is only in the spectral resolution. In this way, HSR-HS image Z can be
expressed as:

Z ≈ AhSm (4)

where Z ∈ <Lh×N has N pixels with Lh bands. Ah and Sm provides the spectral information and spatial
information for Z, respectively.

From Equation (4), we can see that the key of HS–MS fusion based on spectral unmixing is how to
ensure Am and Ah are the same endmembers. Many methods assume that HSR-MS image and LSR-HS
image are obtained from spatial and spectral degradation of HSR-HS image, respectively [27]. For this
reason, we propose a HS–MS fusion method based on endmember spatial information and regional mask.
Figure 1 shows the overall flowchart of the proposed method. This method consists of three main parts:
regional mask, LSR-HS image unmixing and HSR-MS image unmixing.



Remote Sens. 2020, 12, 1009 4 of 17

Since it is difficult to obtain the simultaneous LSR-HS image and HSR-MS image of the same area in
the real case, our method proposes a regional mask prepossessing based on the ground objects variation
caused by temporal difference. The method masks the areas with large differences between two images
and extracts the endmembers from areas with small changes. In this way, endmembers of the fusion part
from two images are consistent. This part will be described in detail in Section 2.2.

In this paper, the proposed fusion method is based on the spectral unmixing model, and the most
classical and practical endmember extraction method Vertex Component Analysis (VCA) [28] is used to
obtain the LSR-HS image endmember signatures. Based on the convex geometry theory, the endmember
spectra and corresponding positions of the pure pixels can be obtained by VCA. This part will be described
in detail in Section 2.3.

Based on the principle of one-to-one match between LSR-HS image and HSR-MS image endmember
positions, we can obtain the pure pixels’ positions in HSR-MS image from LSR-HS image endmember
positions. Since LSR-HS image can be regarded as the spatial downsampling result of HSR-MS
image, the pixels’ mean value of the region is selected as the HSR-MS endmember results. We take
the endmembers’ pixels positions of LSR-HS image as the center of the region and the resolution
ratio of the two images as the diameter. Then, according to LSMM model and HSR-MS endmemebr
matrix, the corresponding abundance matrix is obtained by using nonnegative constrained least squares
(NCLS) [29]. This part will be described in detail in Section 2.4.

After obtaining Ah and Sm from LSR-HS image Xh and HSR-MS image Xm, respectively,
we reconstruct the HSR-HS image Ẑ according to Equation (4).
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Figure 1. Overall flowchart of the proposed hyperspectral–multispectral (HS–MS) fusion method (Image in
the flowchart has six endmembers).

2.2. Regional Mask of the LSR-HS Image and HSR-HS Image Variation Area

Under the premise of accurate registration, the image position and actual position of the two images
should correspond to each other. Due to the temporal difference, two images must have some variation
regions. Therefore, this paper uses the regional mask caused by temporal difference to preprocess the
image, which can eliminate the difference between LSR-HS and HSR-MS images.

Firstly, according to the band wavelength of Landsat8 (Blue: 450–515 nm, Green: 525–600 nm, Red:
630–680 nm, Near infrared (NIR): 845–885 nm), select the bands in the corresponding wavelength range
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in Xh, and obtain four matrices as the spectral patches, Blue band patches: XB
h =

[
XB1

h , . . . , XBn
h
]
, Green

band patches: XG
h =

[
XG1

h , . . . , XGn
h
]
, Red band patches: XR

h =
[
XR1

h , . . . , XRn
h
]

and NIR band patches:
XNIR

h =
[
XNIR1

h , . . . , XNIRn
h

]
. We integrate four spectral patches and simulate a new LSR-MS image

X′h = [X̄B
h , X̄G

h , X̄R
h , X̄NIR

h ] ∈ <Lm×N with four bands by averaging XB
h , XG

h , XR
h , XNIR

h , respectively.
Then, HSR-MS image Xm and simulated LSR-MS image X′h are normalized separately to eliminate

the spectral difference. Since the near infrared band is sensitive to vegetation information, we make
a subtraction between of the two images on the near infrared band to obtain regions with variation.
We assume that if the results larger than thresh1, the features in this region vary greatly, so we take this
area as the mask region, defined as Equation (5).

M(i,j) =

{
1, i f

(
X(i,j) − X′(i,j) ≤ thresh1

)
0, else

(5)

Xmask
h = Xh ·M (6)

Xmask
m = Xm ·M (7)

After determine the mask matrix M, we can get masked HSR-HS image Xmask
h and LSR-MS image

Xmask
m images via Equations (6) and (7), respectively. In Xmask

h and Xmask
m , we assume that the ground objects

are consistent in species and positions. In this paper, we focus on the spectrum of vegetation, rather than
specific plants. So, we use mask without considering the vegetation types, or seasonal changes.

2.3. LSR-HS Image Endmember Extracting

Hyperspectral images can be modeled as a collection of spectral signatures, called endmembers.
We use the commonly used VCA [28] to extract endmembers, becuase its accuracy is higher and it is easy
to implement.

Generally, the HSIs unmixing problem based on LSMM is solved by using the square Frobenius
norm of residual matrix as the cost function [30]. We use Equation (8) to extract endmembers from the
LSR-HS image.

min
Ah ,Sh

∥∥∥Xmask
h −AhSh

∥∥∥2

F

subject to Ah ≥ 0, Sh ≥ 0
(8)

where ‖·‖2
F indicates the Frobenius norm. Because of the physical constraints of endmember matrix and

abundance matrix, both of them should be non-negative. According to the convex geometry characteristic
of HSIs, hyperspectral points cloud will be located in the simplex after affine transformation. The mixed
pixels are locate interior the simplex and the endmembers are locate in the vertex of the simplex. VCA
algorithm utilizes the geometric characteristic of HSIs and extracts endmembers by finding the pure pixels
locate at the vertices of the simplex, which maximize the volume of the simplex and include all pixels.
In this paper, we obtain the endmembers Ah and corresponding positions Ph from the masked LSR-HS
image Xmask

h by VCA. All the endmembers are used to model the pixels in the dataset.

2.4. HSR-MS Image Unmixing

LSR-HS image can be regarded as the spatial downsampling result of LSR-HS image, in this way,
the locations of pure pixels in LSR-HS image, corresponding to a region in HSR-MS image [31]. In terms
of spectral information, LSR-HS image has a higher spectral resolution and a larger number of bands,
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HSR-MS image can be regarded as the spectral downsampling result of LSR-HS image [27]. Therefore,
we assume that the pixels of this region in HSR-MS image constitutes the corresponding pure pixels in
LSR-HS image.

In this paper, the spectral information of LSR-HS image and spatial information of HSR-MS image
are combined for HSR-HS image fusion. According to endmember positions Ph in LSR-HS image, we can
get the pixel position of each endmember in HSR-MS image (as shown in Figure 2). We take this position
as the center point, scale as the diameter to get the corresponding endmember region Pm. The size of each
endmember region in HSR-MS image is scale× scale. Then, by averaging the pixels in the corresponding
region, the result is taken as the endmember of the HSR-MS image.

LSR-HS Image

HSR-MS Image

scale

LSR-HS Image

HSR-MS Image

Figure 2. Pure pixel in low spatial resolution (LSR)-HS image and high spatial resolution (HSR)-MS image.

However, in the real case, each endmember corresponding region in HSR-MS image may have more
than one kind of ground objects. To solve this problem, we use spectral angle distance d to eliminate the
different pixels in the region, which defined in Equation (9).

d = cos−1
(

xm (i1, j1) xm (i2, j2)
‖xm (i1, j1)‖ ‖xm (i2, j2)‖

)
(9)

where xm (i1, j1) and xm (i2, j2) denote the pixels in the region. We calculate the distance between each
pixel in the region, select the pixels with closer distance value and take their mean value as the endmember
Am of HSR-MS image. In addition, in order to avoid the second type of objects in the region, we sort them
according to the distance between pixels, and select the first 90% as the candidate pixels.

After obtaining the endmember matrix Am of HSR-MS image, the corresponding abundance matrix
Sm can be calculated by Equation (10).

min
Sm
‖Xm −AmSm‖2

F

subject to Sm ≥ 0
(10)

According to Equation (10), we obtain the abundance matrix Sm of HSR-MS image by nonnegative
constrained least-squares (NCLS) algorithm.

3. Experiments and Results

In order to test the effectiveness of our method, we design the experiments by Wald’s protocol [13].
Then, the proposed method and other six fusion methods, including CNMF [23], fast fusion based on
Sylvester equation (FUSE) [18], GLP [17], GSA [16], HS Superresolution (HySure) [20] and MAPSMM [21]
are used to fuse and compare the results (The comparative methods’ codes are download from
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http://naotoyokoya.com/Download.html). Here, Z denotes the HSR-HS image as the reference image,
and Ẑ denotes the fused image as the estimated HSR-HS image. Some popular metrics are used to evaluate
the fused results, Peak-SNR, Spectral Angle Mapper (SAM) [32], Erreur Relative Globale Adimensionnelle
de synthèse (ERGAS) [33] and Q2n.

3.1. Performance Evaluation Metrics

1. PSNR

PSNR is for measuring the spatial quality of each band. It is the ratio between the maximum pixel
value and the mean square error of the reconstructed image in each band. The PSNR of the i-th band
is defined as:

PSNR (zi, ẑi) = 10 · log10

 max (zi)
2

‖zi − ẑi‖2
2

/
N

 (11)

where max (ẑi) is the maximum pixel value in the i th band of the reference image, N is the pixel
number of ẑ.

2. SAM

SAM [32] is for quantifying the spectral similarity between the estimated and reference spectra
in each pixel. The smaller of the SAM value indicates the higher spectral quality, the smaller
spectral distortion.

SAM =
1
Lh

∑ arccos
ẑT

i zi

‖zi‖2‖ẑi‖2
(12)

where ‖ · ‖2 denotes the l2 norm.
3. ERGAS

EGRAS index [33] describes the global statistical quality of the fused data, the smaller the better.

ERGAS = 100S

√√√√ 1
N ∑N

i=1

(∥∥Ẑi − Zi
∥∥2

2
1
L ∑L

i=1 Zi

)2

(13)

where S is the ground sampling distance (GSD) ratio between the HSR-MS and LSR-HS images.
4. Q2n

Q2n is a generalization of the universal image quality index (UIQI) [34] to measure the spatial and
spectral quality in monochromatic images. The UIQI between reference image Z and fused image Ẑ
is defined as:

Q2n =
4σẑ,z̄̂z · z̄(

σ2
ẑ + σ2

z
) (̄̂

z2
+ z̄2

)′ (14)

where ¯̂z = 1
N

N
∑

i=1
ẑi, z̄ = 1

N

N
∑

i=1
zi, σz =

√
1
N

N
∑

i=1
(zi − z̄)2, σẑ =

√
1
N

N
∑

i=1
(ẑi −¯̂z)2, σẑ,z =

1
N

N
∑

i=1
(ẑi −¯̂z) (zi − z̄).

http://naotoyokoya.com/Download.html
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3.2. Experiment Data Sets

We considered two sets of simulation data and one set of real data for experiments to evaluate the
performance of the proposed method. Simulation datasets are: 1. ROSIS Pavia center, 2. HYDICE Urban;
Real dataset: 3. LSR-HS data is from Orbita Hyper Spectral (OHS) and HSR-MS data is from worldview-3
(shown in Figure 3).

1. ROSIS Pavia center dataset

The city center scene in Pavia is in the northern Italy, and the image was obtained by the Reflective
Optics System Imaging Spectrometer (ROSIS-3) sensor with high spatial resolution (1.3 m) and the
spectrum range is 430–834 nm (http://www.ehu.eus/ccwintco/index.php). There are 102 effective
bands with a size of 1096× 715 pixels in the image, and in this experiment we use the 480× 480
pixels in the bottom right part the original image as the experiment data. The number of endmembers
in this dataset is six.

2. HYDICE Urban dataset

The Urban dataset was obtained by the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) over the urban in Copperas Cove (http://www.erdc.usace.army.mil/Media/FactSheets/
FactSheetArticleView/tabid/9254/Article/610433/hypercube.aspx). The image includes 210 bands
with high spatial resuolution (2 m) and the spectrum range is 400 to 2400 nm. After the removal of
low-SNR and water absorption bands (1–4, 76, 87, 101–111, 136–153 and 198–210), 162 bands remain.
The image size is 307× 307 pixels, and in order to get a integer scale, we subset the in image as
304× 304 pixels. The number of endmembers in this dataset is six.

We use the original datasets as reference images Z. To obtain the LSR-HS images Xh, the reference
images are first blurred by 9× 9 Gaussian kernel in the spatial domain and then downsampled by a
ratio of 4. As to obtain HSR-MS Xm, we directly select the bands whose center wavelengths are the
same as landsat 8 from the original reference images. We choose the blue, green, red and NIR channel
to simulate the HSR-MS images. For Pavia center dataset, we choose 478 nm, 558 nm, 658 nm and
830 nm, for Urban dataset, we choose 481 nm, 555 nm, 650 nm and 859 nm. Because an HS image
with lower spatial resolution contains more noise than an HSR-MS image, we add Gaussian white
noises with standard deviation 0.1 and 0.04, respectively [35].

3. Worldview-3 and OHS Hengqin dataset

The third dataset is Hengqin island area of Guangdong Province, China. The HSR-MS image was
captured by worldview-3 on 15 January 2018. The data includes four bands: blue, green, red and
NIR, with a spatial resolution of 1.332 m. The LSR-MS image was captured by OHS sensor, which
commercial satellites launched by Zhuhai Orbita Aerospace Science and Technology Company in 28
April 2018 carry. The LSR-HS image has 32 bands with 2.5 nm spectral resolution, the spectrum range
is 400–1000 nm, and the spatial resolution is 10 m. We discard the 32-th band for the noise, so there
are 31 bands left. In this experiment, we choose the area with small change of surface features, which
includes water body, vegetation, residential area, highway, etc. The size of HSR-MS image and LSR-HS
image in the same experimental area is 500× 500 and 69× 69, respectively. For the convenience of
comparative experiment, LSR-HS image was resampled to 100× 100 (shown in Figure 3). In this
experiment, thresh1 is set as 1.3, and the number of endmembers in this dataset is six.

http://www.ehu.eus/ccwintco/index.php
http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetArticleView/tabid/9254/Article/610433/hypercube.aspx
http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetArticleView/tabid/9254/Article/610433/hypercube.aspx


Remote Sens. 2020, 12, 1009 9 of 17

HS–MS fusion technology obtains HSR-HS images by fusing LSR-HS images and HSR-MS images.
Experimental dataset 1 (spatial resolution is 1.3 m) and dataset 2 (spatial resolution is 2 m) are the airborne
hyperspectral data, the initial image is HSR-HS data. But for dataset 3, the LSR-HS image is from OHS
sensor (10 m), and the HSR-MS image is from worldview3 (1.332 m). We do not have the corresponding
area HSR-HS image. So, a ground truth image does not exist for this dataset. In this case, we use mean
gradient (MG) [36] to evaluate the fusion results. MG is defined as follows:

MG =
∣∣grdx

(
Ẑ
)∣∣+ ∣∣grdy

(
Ẑ
)∣∣ (15)

where | · | is the absolute value. grdx
(
Ẑ
)

and grdy
(
Ẑ
)

are the gradients of image Ẑ on the x- and y-axes,
respectively. MG can describe the change of texture gray level on the image. It reflects the rate of change
in the contrast of small details of the image. In general, the larger the MG is, the more detailed the
image information is. The fused HSR-HS image has high spatial resolution, we use MG to evaluate the
fusion results. Since MG is originally used to evaluate the accuracy of RGB image not HS image, so we
select three bands from fused result to form RGB image (B:3; G:7; R:13), and then evaluate the accuracy.
The comparison results of real images showed the applicability of the proposed method.

(b)  

(c)  

(d)  (f)  

(e)  (a)

0 130 260 390
M

0 130 260 390
M

0 100 200 300
M

Figure 3. Experiment datasets. ((a)Pavia HSR-MS image (B:13, G:33, R:58); (b) Pavia LSR-HS image
(downsampled ratio:4, add noise); (c) Urban HSR-MS image (B:17, G:37, R:50); (d) Urban LSR-HS image
(downsampled ratio:4, add scale); (e) Hengqin HSR-MS image (B:2, G:3, R:4); (f) Hengqin LSR-HS image
(B:8, G:13, R:27). Scale 4 is the downsampled ratio.)
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3.3. Experimental Results

To quantitatively evaluate the performance of our method, we compare it with the following methods:

• CNMF [23] is a well-known HS–MS fusion method based on the spectral unmixing theory.
• FUSE [18] is one of the Bayesian-based HS–MS fusion algorithms with lower computational cost.
• GLP [17] determines the difference between the high-resolution image and its low-pass version, and

multiplies the gain factor to obtain the spatial details of each low-resolution band.
• GSA [16] is an adaptive Gram–Schmidt algorithm, which better preserves the spectral information.
• HySure [20] preserves the edges of the fused image and uses total variation regularization to smooth

out noise in homogeneous regions.
• MAPSMM [21] is the classic baysein-based HS–MS fusion method.

3.3.1. Simulated Dataset Fusion Results

We use PSNR, SAM, ERGAS and Q2n to quantitative evaluate the performances of compared methods,
and the results are displayed in Table 1. Figures 4 and 5 show the performance of Pavia Center by fusion
results, SAM map, respectively. Figures 6 and 7 show the performance of Urban dataset by fusion results,
SAM map, respectively. Figure 8 shows the examples of reconstructed pixel values obtained by the seven
methods and the corresponding ground truth.

(a) CNMF (b) FUSE (c) GLP (d) GSA

(e) HySure (f) MAPSMM (g) Proposed (h) Ground Truth

0 130 260 390
M

Figure 4. HS–MS fusion results among seven compared methods and ground truth on ROSIS Pavia Center
dataset with one demarcated areas zoomed in 1.5 times for easy observation. The composite HSIs are
shown with bands 58-33-13 as R-G-B. (a) Coupled nonnegative matrix factorization (CNMF). (b) Fast fusion
based on Sylvester equation (FUSE). (c) Generalized Laplacian pyramid (GLP). (d) Gram–Schmidt (GS).
(e) HS Superresolution (HySure). (f) MAPSMM. (g) Proposed method. (h) Ground truth.
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(e) HySure (f) MAPSMM (g) Proposed

0 130 260 390
M

Figure 5. HS–MS fusion Spectral Angle Mapper (SAM) map results among seven compared methods on
ROSIS Pavia Center dataset. (a) CNMF. (b) FUSE. (c) GLP. (d) GS. (e) HySure. (f) MAPSMM. (g) Proposed
method. The color scale denotes the spectral angle difference of each pixel between the ground truth to the
fused image (from 0 to 1).

(a) CNMF (b) FUSE (c) GLP (d) GSA

(e) HySure (f) MAPSMM (g) Proposed (h) Ground Truth

0 100 200 300
M

Figure 6. HS–MS fusion results among seven compared methods and ground truth on HYDICE Urban
dataset with one demarcated areas zoomed in 1.5 times for easy observation. The composite HSIs are
shown with bands 50-37-17 as R-G-B. (a) CNMF. (b) FUSE. (c) GLP. (d) GS. (e) HySure. (f) MAPSMM.
(g) Proposed method. (h) Ground truth.
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Figure 7. HS–MS fusion SAM map results among seven compared methods on HYDICE Urban dataset.
(a) CNMF. (b) FUSE. (c) GLP. (d) GS. (e) HySure. (f) MAPSMM. (g) Proposed method. The color scale
denotes the spectral angle difference of each pixel between the ground truth to the fused image (from 0
to 1).
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(a)  Spectral curve of pixel (45,98) in shadow of  Pavia data set. (b) Spectral curve of pixel (88,16) in shadow of  Urban data set.

Figure 8. Spectral value curves of the pixel in (45, 98) pixel of Pavia dataset and (88, 16) pixel of Urban
dataset, respectively, using the seven compared methods compared to the ground truth.

Table 1. Experimental evaluation metrics among seven compared methods on two simulated Dataset (Bold
numbers indicate the best performance).

Data Index
Method

CNMF FUSE GLP GSA HySure MAPSMM Proposed

Pavia

PSNR 31.747 26.766 27.838 30.636 28.061 26.255 32.860
SAM 6.357 13.646 8.643 11.774 11.876 9.629 5.700

ERGAS 4.973 8.667 7.448 5.460 7.334 8.922 4.799
Q2n 0.929 0.836 0.852 0.935 0.888 0.792 0.942

Urban

PSNR 25.890 23.223 25.370 27.235 24.183 24.002 29.083
SAM 8.665 15.190 8.689 11.307 13.946 9.546 8.827

ERGAS 7.361 10.240 7.715 6.180 9.008 9.028 5.745
Q2n 0.863 0.772 0.817 0.886 0.802 0.772 0.933
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3.3.2. Real Dataset Fusion Results

Table 2 shows the performance of seven compared methods on the real hengqin dataset. MG and
SAM evaluates the sharpness and the spectral distortion of the fusion results, respectively. Figure 9 shows
the worldview-3 and OHS data fusion results.

Table 2. MG and SAM of HS–MS fusion results among seven compared methods on Hengqin dataset (Bold
numbers indicate the best performance).

Method
Hengqin

CNMF FUSE GLP GSA HySure MAPSMM Proposed

MG 57.743 6.852 7.791 14.812 57.570 9.996 69.575
SAM 4.407 80.276 1.546 4.589 8.239 2.435 4.849

(a) CNMF (b) FUSE (c) GLP

(d) GSA (e) HySure (f) MAPSMM

(h) HSR-MS image(g) Proposed (i) LSR-HS image

±

0 130 260 390
M

Figure 9. HS–MS fusion results among seven compared methods on Hengqin dataset with one demarcated
areas zoomed in 1.5 times for easy observation. The composite HSIs are shown with bands 27-13-8 as R-G-B.
(a) CNMF. (b) FUSE. (c) GLP. (d) GS. (e) HySure. (f) MAPSMM. (g) Proposed method. (h) HSR-MS image.
(i) LSR-HS image.
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4. Discussion

4.1. Results Discussion

From Table 1, we can see that for two dataset, the proposed method achieves largest PSNR and
smallest SAM (except Urban dataset), this means the fused results have the best spatial quality and spectral
shape preservation capability, respectively. Moreover, the proposed method also gets the smallest ERGAS
value and largest Q2n, this means the result has the overall best quality. For Urban dataset, the SAM of
our method result is 8.827, and the smallest SAM 8.665 is from CNMF, it is only a little larger than the best
result of the SAM. In addition, the results of the proposed method and CNMF are better than others, this
indicates the spectral unmixing-based methods are very promising.

From Figures 4–7 the fusion results and SAM map both indicate our method outperforms than other
methods. From the fusion results in Figures 4 and 6, we can see there are some spots and mottled textures
in the fused images, except our method. Especially from the enlarged part of the fused image (a)–(f), there
is some error texture and spectral distortion.

Figures 5 and 7 is the SAM map of Pavia and Urban dataset, respectively. SAM map shows the
spectral distortion distribution and degree of the fusion results. We can see from (a)–(f) that the spectral
error is mainly distributed in the shadow casted by trees and buildings, which shows that the proposed
method can better preserve the spectrum of the shadow part of the LSR-HS images among the comparative
methods. In Figure 8, (a) is a pixel value curve in shadow (45, 98), the fusion result of the proposed method
better preserves the spectral details of the ground objects in the image. (b) shows the curves are the spectral
value of a pixel (88, 16), which is the vegetation in shadow. The result curve of proposed method is the
closest one to the ground truth among other compared methods. In addition, fusion results of CNMF are
also good, which indicates the methods based on spectral unmixing are very promising.

For the real dataset from worldview3 and OHS Hengqin area, we can see from Table 2 that the
proposed method has the largest MG. As we introduced before, the larger the MG value, the finer the fused
image quality in detail. Because the HSR-HSI image does not exist in the real case, we use the LSR-HSI
image as the reference image for evaluating the spectral accurate of the fusion image. Our method ensures
the spectral reliability and improves the spatial resolution of the image. Figure 9 shows the HS–MS fusion
results among seven compared methods on the Henqin dataset. From the results, fused images in (a)–(f)
cannot achieve good results and produce the spectral distortion. Although (a) and (e) reconstructed the
spatial detail, the water body (enlarged part) still have some unsmooth textures and the whole image have
spectral distortions. From (c) and (f), the results keep the spectral information of the LSR-HS image, but
the reconstructed edges are blurred. The proposed method outperforms the other approaches in that it
keeps the spatial and spectral information to a large extent.

4.2. Time Complexity

Figure 10 shows the running time of all algorithms. The running time of HySure and MAPSMM
algorithms are much longer than the rest of MS–HS fusion methods. Although CNMF has a better running
time performance of Pavia dataset, its PSNR is lower than that of our method. For Urban dataset, GSA has
the smallest time consumption but the PSNR is still smaller than the proposed method. In the Hengqin
dataset, our method has the highest MG with moderate running time. In conclusion, our method is
slightly slower than some methods but with the best performance. We implemented all algorithms in the
experiments under the same hardware configuration: Intel Core i7-8565 U CPU @ 2.00 GHz.
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(a) Pavia (b) Urban (c) Hengqin

Figure 10. Running time (seconds) of three datasets for different MS–HS fusion algorithms.

5. Conclusions

This paper proposes a new fusion method based on spectral unmixing by reconstructing HSR-HS
images from LSR-MS images and HSR-HS images with a temporal difference. The method is very
simple with small computation cost. Considering the temporal difference of two input images, we mask
the ground feature changed areas, and then obtain consistent endmembers and corresponding pixels’
positions from the remaining area in LSR-HS images. According to the LSR-HS image endmember spatial
information, we can obtain the abundance matrix of an HSR-MS image. Finally, the HS–MS image is
generated by the endmember matrix from the LSR-HS image and abundance matrix from the HSR-MS
image. The most important thing is this method works well with the images which have a time difference.
Furthermore, experimental results of our method in both simulated and real datasets achieve good visual
effect, with the best accuracy among the compared methods.

In future work, we plan to apply the endmember spatial information idea to other real datasets from
different sensors to improve the universality of this method. From the real image fusion experiment, our
method still needs to improve the ability to reduce the spectral distortion while enhancing the spatial
resolution of reconstructed images. Therefore, we also plan to further study the correlation between the
spatial structure and spectral characteristics of the details by considering the segmentation of the images.
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