
remote sensing  

Article

An Approach of Identifying and Extracting Urban
Commercial Areas Using the Nighttime Lights
Satellite Imagery

Xuzhe Duan , Qingwu Hu * , Pengcheng Zhao , Shaohua Wang and Mingyao Ai

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430070, China;
duanxz@whu.edu.cn (X.D.); pengcheng.zhao@whu.edu.cn (P.Z.); shwang@whu.edu.cn (S.W.);
aimingyao@whu.edu.cn (M.A.)
* Correspondence: huqw@whu.edu.cn

Received: 7 February 2020; Accepted: 21 March 2020; Published: 23 March 2020
����������
�������

Abstract: Urban commercial areas can reflect the spatial distribution of business activities. However,
the scope of urban commercial areas cannot be easily detected by traditional methods because
of difficulties in data collection. Considering the positive correlation between business scale and
nighttime lighting, this paper proposes a method of urban commercial areas detection based on
nighttime lights satellite imagery. First, an imagery preprocess model is proposed to correct imageries
and improve efficiency of cluster analysis. Then, an exploratory spatial data analysis and hotspots
clustering method is employed to detect commercial areas by geographic distribution metric with
urban commercial hotspots. Furthermore, four imageries of Wuhan City and Shenyang City are
selected as an example for urban commercial areas detection experiments. Finally, a comparison is
made to find out the time and space factors that affect the detection results of the commercial areas.
By comparing the results with the existing map data, we are convinced that the nighttime lights
satellite imagery can effectively detect the urban commercial areas. The time of image acquisition and
the vegetation coverage in the area are two important factors affecting the detection effect. Harsh
weather conditions and high vegetation coverage are conducive to the effective implementation of
this method. This approach can be integrated with traditional methods to form a fast commercial
areas detection model, which can then play a role in large-scale socio-economic surveys and dynamic
detection of commercial areas evolution. Hence, a conclusion can be reached that this study provides
a new method for the perception of urban socio-economic activities.

Keywords: urban commercial area; nighttime lights satellite imagery; exploratory spatial data
analysis; urban hot spots detection

1. Introduction

Commercial areas in a city are areas, districts, or neighborhoods primarily composed of commercial
buildings, such as a downtown, central business district, financial district, “Main Street”, commercial
strip, or shopping center. Fifth Avenue in Manhattan, Champs Elysees in Paris, and Causeway Bay in
Hong Kong can all be considered as typical commercial areas. The scale of urban commercial areas is
an objective reflection of a city’s economic development and an important part of its comprehensive
competitiveness. Rapid and accurate extraction of urban commercial areas can provide an important
basis for guiding urban economic layout, give full play to the social benefits and overall functions of
commercial areas, accelerate the urbanization process, and maintain the sustainable development of the
national economy [1]. To be specific, detecting the commercial areas accurately can help the government
to plan the distribution of city functions and effectively promote the diversified development of the
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city. It can help individual investors select the best position for business operation. It can also provide
good research samples for sociological research departments. However, the existing commercial area
extraction approach has many defects and shortcomings, which make it difficult to bring a commercial
area’s superiority into full play. This paper aims to explore an effective approach of identifying and
extracting urban commercial areas by using the nighttime lights satellite imagery.

The current research on commercial areas detection mainly includes three methods: the survey
method, the reference method, and the volunteered geographic information (VGI) method [2]. The
survey method is the most direct way to determine the scope of the commercial area. This method
determines the commercial area by making sample consumers fill out questionnaires and obtaining
spatial connections between their homes and the business centers that they regularly shop at [3]. As the
amount of sample data are large enough, the credibility of the results is relatively high. However, due
to the large amount of manpower, material resources, and time cost, the feasibility of this method is low.
The reference method determines the commercial area by referring to the existing commercial area of a
certain kind of market or region [4]. In order to get as close as possible to the actual situation of the area
where the unknown commercial area is located, the model can be modified according to the differences
in the operation scale of the market, as well as the differences in resident population distribution, urban
construction, traffic facilities, and other aspects. For instance, Reilly (1931) proposed the law of retail
gravitation, which stated that the number of customers that a city could attract from the surrounding
cities was directly proportional to the city’s population and was inversely proportional to the square
of the distance between the two cities [5]. Westbrook and Black (1985) proposed a multifactor model
for the determination of commercial areas based on the factors that are difficult to quantify, such
as goodwill and opportunity costs [6]. Ingene and Ghosh (1990) and McLafferty and Ghosh (2010)
proposed three methods to estimate commercial areas, including the spatial proportion approach, the
central region law, and the space sales law [7,8]. The reference method has high data availability and
does not need a lot of labor costs, so it is a feasible method for the commercial area detection. However,
the selection of the method variables and the construction of the model must fully refer to the reality,
thus the test of goodness for fit is needed to ensure the credibility of the model and its results [2]. The
VGI method uses the geographic information that is provided voluntarily by individuals to detect the
commercial area [9,10]. The main sources of VGI data include car GPS tracks, private mobile phone
signaling and social network check-in, and semantic information. For example, based on the “check-in”
information with the user’s location attributes, researchers performed exploratory spatial data analysis
and spatial clustering analysis on VGI, and then obtained the location and scope of the commercial
area [10–13]. However, the data owners often do not provide users’ location information in public
since the data involves personal privacy. Therefore, this method is limited by the acquisition of data,
and its research is still scarce [2].

In view of the defects and deficiencies of the existing detection methods for commercial areas, this
paper attempts to propose a more efficient and accurate approach to identify and extract commercial
areas by using the nighttime lights satellite data. There were two kinds of nighttime lights satellite data
sources that used to be applied in scientific research: Defense Meteorological Satellite Program/the
Operational Linescan System (DMSP/OLS) and National Polar-orbiting Partnership/Visible Infrared
Imaging Radiometer Suite (NPP/VIIRS). The spatial resolution of the former is usually about 2700 m
whereas the latter is higher and can reach 740 m [14]. Even so, such resolution is not sufficient to
provide adequate support for the detection and extraction of urban commercial areas. With the launch
of Luojia No.1 01 nighttime lights satellite in June 2018, huge breakthroughs have been made in
the spatial resolution—using complementary metal-oxide-semiconductor (CMOS) sensor, its spatial
resolution can reach 130 m. With a width of 250 km × 250 km, it can map a complete global luminous
image within 15 days under ideal conditions [15]. These characteristics not only meet the accuracy
requirements of urban commercial areas research but also provide strong support for the dynamic
detection and extraction of urban commercial areas updates.
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Different from daytime remote sensing, nighttime light remote sensing provides a unique
perspective on human social activities, thus it has been widely used for spatial data mining of
socioeconomic domains [14]. The nighttime lights satellite can observe the night lights from the
perspective of the whole city, and the brightness of the imagery reflects the illumination degree of
the corresponding area at night. The area with strong night lighting is usually accompanied by
large population distribution, and it is more likely to be the region with concentrated commercial
development, which is what we call the “urban commercial area”. With that guideline, from Luojia
No.1 nighttime lights satellite imageries, we select four good imageries with obvious light features,
few noise points, and high image quality as our research data source. Through data preprocessing,
exploratory spatial data analysis (ESDA), and spatial clustering analysis, we can obtain high-value
clustering hotspots of imagery brightness values, and by building standard ellipses on hotspots of
clusters, we can obtain the general spatial distribution of urban commercial areas. Furthermore, we
take the result of ESDA as a basis for evaluation, comparing the results of commercial areas detection
“at different periods” and “in different regions” to analyze the effectiveness of using nighttime lights
satellite imagery for commercial areas detection.

2. Materials and Methods

Firstly, for the imageries chosen to be the dataset, linear transformation of brightness values
is required to make each pixel’s brightness value within the range of 0–255 for the convenience of
subsequent processing. Secondly, exploratory spatial data analysis is used to measure the spatial
correlation, the spatial structure, and the global distribution pattern of each imagery’s brightness
values and to determine the optimal pattern of hotspot detection and commercial area clustering.
Thirdly, cluster analysis is applied to identify hot spots, cold spots, and spatial outliers with statistical
significance in each imagery. Finally, by measuring the geospatial distribution of clustering analysis
results, the spatial characteristics of statistically significant clustering geographic elements (commercial
areas’ range, central change trend, and direction development trend) are obtained. The specific
algorithm flowchart is shown in Figure 1.

Figure 1. The algorithm flowchart for the urban commercial area identification and extraction based on
the nighttime lights satellite imagery.
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2.1. Data Preprocessing

The data preprocessing include the cropping of imageries, the normalization of brightness values,
and the editing of imagery data.

Firstly, this paper uses the vector layer of the study area to crop the imageries, so as to remove the
water areas in the city and the parts that are outside the study area.

Next, in order to unify the brightness values of the three imageries into an identical range, this
paper uses the method of normalizing each imagery and stretching the brightness values linearly to
the range of 0–255 for the next step of imagery processing, as shown in Equation (1)

Gt(i, j) =
⌊
255×

G(i, j) −Gmin

Gmax −Gmin

⌋
, (1)

where G(i, j) represents the brightness value of location (i, j) of the original imagery; Gmin refers
to the minimum value of brightness in the original imagery; Gmax represents the maximum; Gt(i, j)
represents the brightness value of location (i, j) after linear transformation; and the b c symbol refers to
the rounding operation of the internal value to ensure that the brightness value obtained is an integer.

Last, we shave the “exception pixels” of the imagery. In nighttime light imagery, there are many
raster pixels with low brightness values or even close to 0. These raster pixels correspond to areas
without light in the imagery and should not participate in ESDA and cluster analysis. However,
these pixels will inevitably be calculated in the following processing. Therefore, we call these pixels
“exception pixels”. This paper uses the OTSU binarization method proposed by the Japanese scholar
OTSU to divide the image into two parts, with “exception pixels” marked as 0 and other pixels marked
as 1. The areas with the segmentation result of 1 are used as the study regions, whereas the ones of 0 as
the nonstudy regions.

The OTSU algorithm is a nonparametric and unsupervised method of automatic threshold
selection for picture segmentation that assumes that image pixels can be divided into the background
part and the foreground part according to the threshold [16]. The algorithm exhaustively searches for
the threshold that minimizes the intraclass variance, defined as a weighted sum of variances of the two
classes, as shown in Equation (2)

σ2
ω(t) = w0(t)σ2

0(t) + w1(t)σ2
1(t), (2)

where weights w0 and w1 are the probabilities of the two classes separated by a threshold t, and σ2
0 and

σ2
1 are variances of these two classes, respectively. The class probability w0,1(t) is computed from the

L(L = 256) bins of the histogram: w0(t) =
∑t−1

i=0 p(i) and w1(t) =
∑L−1

i=t p(i).
For two classes, minimizing the intraclass variance is equivalent to maximizing interclass variance,

as shown in Equation (3)
σ2

b(t) = w0(t)w1(t)[µ0(t) − µ1(t)]
2, (3)

which is expressed in terms of class probabilities ω and class means µ, where the class means µ0(t) and
µ1(t) are: µ0(t) =

∑t−1
i=0 ip(i)/w0(t) and µ1(t) =

∑L−1
i=t ip(i)/w1(t).

The larger the threshold value, the larger the proportion of the background in the segmentation
result, which will cause the brightness value of the image in some commercial areas to be assigned a
value of 0. On the contrary, the smaller the threshold, the larger the proportion of foreground in the
segmentation result, which will lead to poor clustering effect of image brightness value and make it
difficult to detect the center of commercial areas. Taking the imagery of the area inside the third ring
road of Wuhan on 14 June 2018 as an example, the threshold obtained by the OTSU algorithm is 16,
and the binarization result is shown in Figure 2.
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Figure 2. The binarization result of the imagery of the area inside the third ring road of Wuhan on
14 June 2018.

2.2. Exploratory Spatial Data Analysis

The spatial autocorrelation refers to the potential interdependence between observations of some
variables in the same distribution area. It is an indicator used to measure the degree of interdependence
between the data at a certain location and the data at other locations [17–20]. In this paper, the Global
Moran’s I statistical method is adopted to measure the global spatial autocorrelation of brightness
values in the study area. The Ripley’s K statistical method is used to explore the most characteristic
spatial distribution pattern of brightness values.

2.2.1. Exploration of Spatial Distribution Pattern

The Moran’s I statistical method is an algorithm that measures spatial autocorrelations based on
both the locations and values of elements. A Moran’s I that is higher than 0 reflects positive spatial
correlations. With the index growth, the spatial correlations will also become more evident. Instead, a
Moran’s I below 0 reveals negative spatial correlations. The lower the index, the greater the spatial
differences are. Positive spatial correlations mean that the data are spatially clustered, whereas negative
spatial correlations indicate that the data are spatially discrete. In this paper, the pixels with an OTSU
result of 1 in study imagery are used as the datasets to analyze the spatial distribution patterns. Global
Moran’s I statistics are evaluated according to Equation (4)

I =
[
n
∑n

i=1

∑n

j=1
ωi, jziz j

]
/
[
S0

∑n

i=1
z2

i

]
, (4)

where n is total number of pixels of the image after removing the 0 values of the OTSU result, zi is
the deviation between the brightness value of the pixel at location i and its mean, ωi, j is the spatial
weight between the pixels i and j, and S0 is the sum of all spatial weights where the expression is
S0 =

∑n
i=1

∑n
j=1 ωi, j. The scores (z1) are determined by z1 = (I − EI)/

√
VI, where EI = −1/(n− 1),

V[I] = E
[
I2
]
− EI2.

We use the spatial autocorrelation tool in ArcGIS 10.1 software (ArcGIS 10.1, 2012) to process
imagery brightness values. For conceptualization of spatial relationships, we use INVERSE_DISTANCE,
for the distance method, we use EUCLIDEAN_DISTANCE, and for standardization, we select NONE.
Figure 3 is the spatial distribution patterns of brightness values calculated based on Global Moran’s
I statistics on the Wuhan imagery of 14 June 2018. It may be observed that the z-score value used
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for the test is 28.116668 times the standard deviation and all significantly above 2.58, which means
that the p value of its null hypothesis (the likelihood value) is below 0.01, and the requirement for
p value is met at the confidence level of 99%. This indicates that the global spatial autocorrelation of
brightness values distribution pattern conforms to the statistical characteristics of typical clustering
models. Therefore, cluster analysis may be performed on urban commercial areas.

Figure 3. Results of global spatial autocorrelation analysis of the June imagery of Wuhan (generated by
ArcMap 10.1).

2.2.2. Exploration of Optimal Distribution Characteristics

The spatial distance is the most important concept for spatial analysis, and varying results can be
obtained when various analyses are performed on different spatial distances [21]. In this paper, Ripley’s
K function is used to explore the most statistically significant spatial autocorrelation of brightness
values, as shown in Equation (5)

L(d) =

√[
A

∑n

i=1

∑n

j=1, j,i
ki, j

]
/[πn(n− 1)], (5)

where d is the distance that determines the value within a certain distance, n is the total number of the
pixels whose OTSU result is 1, A is the pixel location or frequency, and the weight ki, j is the influence of
the elements within a certain distance d, when the factor i and factor j are in the distance d, the weight
ki, j is 1, or the weight ki, j is 0.

For example, take the nighttime lights satellite imagery obtained on 14 June 2018 within
the third ring road of Wuhan city and assess the optimal structure pattern of brightness values.
We use the multidistance spatial cluster analysis tool in ArcGIS 10.1 software (ArcGIS 10.1,
2012) to process the imagery brightness values. We use the default 10 times as the number
of distance changes, select 99_PERMUTATIONS as the compute confidence envelope, and use
MINIMUM_ENCLOSING_RECTANGLE as the study area method. The results are shown in Table 1
and Figure 4.
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Table 1. Results of Ripley’s K analysis of the imagery obtained on 14 June 2018 of Wuhan city.

OBJECT ID Expected K Observed K Diff K

1 0.006979 0.008704 0.001728
2 0.013953 0.016967 0.003014
3 0.020929 0.024651 0.003722
4 0.027905 0.032208 0.004303
5 0.034881 0.039444 0.004563
6 0.041858 0.046294 0.004436
7 0.048834 0.052962 0.004128
8 0.055810 0.059453 0.003643
9 0.062786 0.065545 0.002759
10 0.069763 0.071415 0.001653

Figure 4. Ripley’s K multidistance mode analysis result with nighttime lights satellite imagery.

In Table 1, ExpectedK is the expected K value, which refers to the expected value that is calculated
through the random hypothesis. ObservedK represents the observed K value, which is determined by
the actual data. DiffK reveals the difference between the observed K value and expected K value. It can
be concluded that the data is clustered if DiffK is positive; whereasthe data is discrete. In Figure 4, the
blue line is the expected value of K value, whereas the red line is the observed value of K value. As can
be seen, the blue line is always above the red line, indicating that under the spatial distribution mode
(distance mode) participating in the analysis, elements in the study area are always distributed in the
clustering mode, which verifies the analysis results based on the Global Moran’s I statistical method of
global autocorrelation of brightness values.

It can be found from Figure 4 that the difference between the observed value and the expected value
reaches the maximum in the distance modes numbered 5 and 6, and the distance characteristic value
of the most obvious spatial clustering mode is determined to be 0.004563. Thus, the exploratory spatial
cluster analysis can be performed according to the value of the optimal spatial distribution characteristic.

2.2.3. Local Spatial Autocorrelation Clustering and Hot Spot Detection

As the global spatial autocorrelation only uses a single value to reflect global autocorrelation, it
is not easy to find spatial correlation patterns in different regions. The local spatial autocorrelation
can analyze the distribution characteristics of the local spatial system and better explore the local
characteristics of spatial data [22]. The local spatial autocorrelation is often expressed in the form of
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Moran Scatter Plot, Local Indicators of Spatial Association (LISA), and Anselin Local Moran’s I [17,23].
In this paper, the Anselin Local Moran’s I method is adopted to explore the local spatial autocorrelation
characteristics of brightness values, as shown in Equation (6)

Ii =
xi −X

S2
i

∑n

j=1, j,i
ωi, j

(
xi −X

)
, (6)

where n is the total number of the pixels whose OTSU result is 1, (xi −X) is the difference between
the brightness value of the pixel and its mean, ωi, j is the spatial weight between location i and j, and

S2
i = [

∑n
j=1, j,i ωi, j]/[n− 1] −X

2
. The scores (z) are determined by Equation (7) as follows:

zIi = [Ii − E[Ii]]/[
√

V[Ii]], (7)

where E[Ii] = −[
∑n

j=1, j,i ωi, j]/[n− 1] and V[Ii] = E[I2
i ] − E[Ii]

2. If the z of an element is a relatively
high positive value, it means that surrounding elements assume similar values that are high or low.
In the calculations, statistically significant (0.05 indicates significance level) high-value clustering is
represented by HH, whereas statistically significant low-value clustering is denoted by LL.

We use the cluster and outlier analysis tool in ArcGIS 10.1 software (ArcGIS 10.1, 2012) to identify
statistically significant hotspots, cold spots, and spatial outliers. The local autocorrelation clustering is
carried out on the data in the area within Wuhan’s third ring road according to the method in this paper,
and 321 pixels with high value clustering characteristics are obtained. Figure 5 shows the high-value
clustering feature points of the June imagery of Wuhan.

Figure 5. Results of clustering of the June imagery of Wuhan.

2.2.4. Geographical Distribution Measure of Commercial Areas

The high-value hotspots obtained by local autocorrelation cluster detection can be regarded as the
center of urban commercial areas. This paper uses the method of constructing standard deviation ellipse
to further determine the scope, center change, and development trend of the urban commercial area.

The standard deviation ellipse can summarize the spatial characteristics of geographic features,
which include the central tendency, the dispersion, and the directional trends. The generated result is
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an ellipse with three key parameters, namely, the center of the circle, the axial length of XY, and the
angle of rotation. The axial length of the standard deviation ellipse can be calculated by Equation (8):

SDEx =

√∑n
i=1

(
xi −X

)2

n
, SDEy =

√∑n
i=1

(
yi −Y

)2

n
, (8)

where xi, yi are the coordinates of the pixel location,
(
X, Y

)
is the mean center of points, n is the total

number of the pixels whose OTSU result is 1, SDEx is the semimajor axis of the standard deviation
ellipse, and SDEy is the semiminor axis of the standard deviation ellipse.

The angle of rotation is calculated in Equation (9) as follows:

tanθ = (A + B)/C, (9)

where A =
(∑n

i=1 x2
i −

∑n
i=1 y2

i

)
, B =

√(∑n
i=1 x2

i −
∑n

i=1 y2
i

)2
+ 4

(∑n
i=1 xiyi

)2
, C = 2

∑n
i=1 xiyi, and xiyi is

the standard deviation between the cluster elements and the center of the ellipse [24–26].
We use the directional distribution tool in ArcGIS 10.1 software (ArcGIS 10.1, 2012) to process

high-value cluster points. 2_STANDARD_DEVIATION is selected as the standard deviation level.
According to the above equation, we obtain the distribution scope and direction of the urban commercial
areas as shown in Figure 5. The construction of a standard deviation ellipse should contain at least
three feature points. However, the number of feature points in some areas that are HH in all three
imageries is less than three. For this case, this paper uses a fixed radius of 0.005 decimal degrees to
generate circular buffer for these feature points, and takes the buffer as the scope of the commercial
area, as shown in Figure 6.

Figure 6. Geographic distribution metrics result of Wuhan city’s commercial area based on the nighttime
lights satellite imagery.

3. Results

Shenyang and Wuhan are two typical cities in north and south China. They have similar
development level in urban scale and economic strength. This paper chooses the nighttime lights
satellite imageries of these two cities for experiments. We list the green coverage rates in built-up
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areas of the two cities [27,28], 14 large commercial areas in the region within the third ring road of
Wuhan [29–31] and 11 in the corresponding region in Shenyang [32,33], in Table 2, which shows all the
data and information used in the experiment.

Table 2. Commercial areas and green coverage rate of the two cities.

City Imagery Period Commercial Area Green Coverage Rate

Wuhan
14 June

2018
and 15 September 2018

Zhongnan Road commercial area,
Wuguang commercial area,

Zhongjiacun commercial area, Guanggu
commercial area

Jiedaokou commercial area,
Hanzhengjie commercial area,

Wangjiadun commercial area, Simenkou
commercial area, Xudong commercial

area, Aoshan Century Square
commercial area, Lingjiao Lake

commercial area, Jiangtan commercial
area, Wuhantiandi commercial area,

JianghanRoad commercial area

39.47%

Shen-yang
15 September 2018

and
17 March 2019

Jinlang commercial area, Xita
commercial area, Beihang commercial

area, Taiyuanjie commercial area, Wuai
commercial area, Nanta commercial

area, Zhongjie commercial area, Tiexi
commercial area, Beizhan commercial

area, Aoti commercial area,
Changjiangjie commercial area

38.88%

3.1. The Commercial Areas Detection

By adopting the method proposed in this paper to detect and extract commercial areas, we can
obtain 12 commercial areas located within the third ring road of Wuhan City (we use only one ellipse
to represent the Zhongnan Road commercial area and the Shuiguo Lake commercial area because they
are too close to each other). These commercial areas not only include the old ones in the traditional
sense, such as the Jianghan Road commercial area, the Wuguang commercial area, and the Jiangtan
commercial area, but also include the emerging ones, such as the Wuhantiandi commercial area, the
Lingjiao Lake commercial area, and the Wangjiadun commercial area [29–31].

However, there are some incorrect extraction results in high value clustering hotspots. This is
mainly because in addition to commercial areas, there are also some areas in the city with abundant night
lights, such as Hankou railway station and Hanyang bus station, which are important transportation
hubs in Wuhan. They are important areas for population gathering even at night and need a lot of
lights to ensure the normal operation of railway and highway traffic. Another example is the Wuhan
Expo Center in Hanyang district. As the largest exhibition venue in central China, it often needs to
undertake various international and domestic exhibitions, which also produces a lot of lights at night.
These factors lead to the inability to distinguish the commercial areas from the high-light areas of the
noncommercial areas based only on the brightness values of the imageries.

From the perspective of the spatial distribution characteristics of each commercial area, its central
trend, distribution range, and direction trend basically accord with the relevant research results of
commercial areas in Wuhan. Taking the Zhongnan Road-Shuiguo Lake commercial area as an example,
the commercial area extracted by using the method proposed in this paper is an ellipse with a semimajor
axis in the direction of Zhongnan Road and Zhongbei Road, reaching Qingyuzui subway station in
the north and Zhongnan No.2 Road in the south. In addition, as an important part of the Shuiguo
Lake commercial area, Han Street is a pedestrian street whose extension direction is perpendicular to
that of Zhongbei Road, so the length of the semiminor axis of the extracted commercial area mainly
depends on the length of the Han Street. The map of this area is shown in Figure 7. The final detection
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result is an ellipse that is approximately round, which conforms to the basic situation of the Zhongnan
Road-Shuiguo Lake commercial area [34,35]. Overall, the analysis results of Wuhan commercial areas
based on the brightness value of nighttime lights satellite imagery are in line with the objective facts
and reflect the spatial pattern and distribution characteristics of commercial and economic distribution
centers in Wuhan.

Figure 7. The map of the Zhongnan Road–Shuiguo Lake commercial area (base map: Bing Map).

In order to further verify the effectiveness of the proposed method, we conduct the commercial
areas detection on the three imageries within the third ring road of Wuhan on 15 September 2018,
and the corresponding area of Shenyang on 10 September 2018 and 17 March 2019, respectively. All
four Global Moran’s I statistics are shown in Table 3. These results indicate that the global spatial
autocorrelation of brightness values distribution pattern conforms to the statistical characteristics of
typical clustering models. This means that these four imageries can be used to detect commercial areas.

Table 3. The Global Moran’s I statistics.

Imagery Moran’s Index z-Score p-Value Is Clustered

Wuhan, 14 June 2018 0.059590 28.116668 0.000000 Yes
Wuhan, 15 September 2018 0.031851 4.293452 0.000018 Yes

Shenyang, 10 September 2018 0.034785 14.722704 0.000000 Yes
Shenyang, 17 March 2019 0.300103 39.895744 0.000000 Yes

We combine the imagery of Shenyang on 17 March 2019 and the existing commercial areas
information of Shenyang to construct standard deviation ellipses for the high-brightness clustering
points and obtain the Shenyang’s commercial areas detection results. By analyzing the results, we find
that large-scaled commercial areas in Shenyang City like the Jinlang commercial area, the Zhongjie
commercial area, and the Xita commercial area are detected. In addition, the direction of the standard
deviation ellipses and the actual extension of the commercial areas are also generally consistent, which
further validates the effectiveness of the proposed method [32,33]. The detection results are shown in
Figure 8.
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Figure 8. Geographical distribution metrics results: (a) results of detection in Wuhan on 14 June
2018; (b) results of detection in Shenyang on 10 September 2018; (c) results of detection in Wuhan on
15 September 2018; (d) results of detection in Wuhan on 17 March 2019; (e) results of the combination
of (a) and (c); and (f) results of the combination of (b) and (d).

Figure 8a,c shows the commercial areas detected in Wuhan on 14 June 2018 and 15 September
2018. Figure 8b,d shows the commercial areas detected in Shenyang on 10 September 2018 and
17 March 2019. We also combine the detection results from two periods in the same region to ensure
the comprehensiveness of the results, as shown in Figure 8e,f. Combining the detected commercial
areas with the existing ones, we can create two accuracy tables, as shown in Tables 4 and 5.
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Table 4. Detection accuracy table of Wuhan’s imagery.

Commercial Area Imagery on
14 June 2018

Imagery on
10 September 2018

Combination of the
Two Imageries

Zhongnan Road commercial area
√ √ √

Wuguang commercial area
√ √

Zhongjiacun commercial area
√ √

Guanggu commercial area
√ √

Jiedaokou commercial area
√ √ √

Hanzhengjie commercial area
√ √

Wangjiadun commercial area
√ √

Simenkou commercial area
√ √

Xudong commercial area
√ √ √

Aoshan Century Square
commercial area

√ √

Lingjiao Lake commercial area
√ √

Jiangtan commercial area
√ √ √

Wuhantiandi commercial area
√ √

JianghanRoad commercial area
√ √

Detection Accuracy 85.7% 42.9% 100.0%

Table 5. Detection accuracy table of Shenyang’s imagery.

Commercial Area Imagery on
10 September 2018

Imagery on
17 March 2019

Combination of the
Two Imageries

Jinlang commercial area
√ √ √

Xita commercial area
√ √

Beihang commercial area
Taiyuanjie commercial area

√ √

Wuai commercial area
√ √ √

Nanta commercial area
√ √

Zhongjie commercial area
√ √ √

Tiexi commercial area
√ √

Beizhan commercial area
√ √ √

Aoti commercial area
√ √ √

Changjiangjie commercial area
√ √

Detection Accuracy 45.5% 90.9% 90.9%

3.2. Sensitivity Analysis

This paper uses the OSTU algorithm to determine the imagery binarization threshold. However,
different binarization algorithms may result in different imagery segmentation thresholds. In order to
analyze the effect of this commercial area detection method on different segmentation thresholds, a
sensitivity analysis needs to be performed.

As different imagery binarization algorithms are executed, it can be found that the absolute
value of the difference between the threshold obtained by the OSTU algorithm and the one by other
algorithms is within 2. Therefore, for the imagery segmentation threshold calculated by the OSTU
algorithm, we use the values obtained by adding 2 and subtracting 2 as the new thresholds to binarize
the imagery. Then, the respective Global Moran’s Is are calculated, as shown in the following table.

Based on the data in Table 6, we can draw a sensitivity analysis line chart about the binarization
threshold, as shown in Figure 9.

It can be found from the figure that as the threshold value fluctuates, the Global Moran’s I will
also change, but the overall change is small. This effectively shows that the method proposed in this
paper has low threshold sensitivity for imagery segmentation and many different imagery binarization
algorithms can be used to pre-process the nighttime lights satellite imagery.
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Table 6. The Global Moran’s I with different thresholds.

Imagery Threshold Moran’s Index

Wuhan, 14 June 2018
13 0.024876
16 0.059590
19 0.051476

Wuhan, 15 September 2018
44 0.050771
47 0.031851
50 0.028270

Shenyang, 10 September 2018
26 0.041921
29 0.034785
32 0.026875

Shenyang, 17 March 2019
11 0.342360
14 0.300103
17 0.296880

Figure 9. Sensitivity analysis line chart about the binarization threshold

4. Discussion

4.1. Detection Result in Different Periods

Comparing the results of ESDA of Wuhan imageries on 14 June 2018 and 15 September 2018,
we find that the global Moran’s I and the commercial area detection accuracy in June (0.059590 and
85.7%) are higher than that in September (0.031851 and 42.9%), and compared with the ESDA results
on 10 September 2018 and 17 March 2019 in Shenyang, the global Moran’s I and the commercial area
detection accuracy in March (0.300103 and 90.9%) are higher than that in September (0.034785 and
45.5%) too. For the same region, the value of the global Moran’s I can reflect the clustering degree of
high-value points, and thus reflect the quality of the commercial areas detection results, that is, the
detection accuracy. We believe that this is closely related to the local weather characteristics—whether
Wuhan in June or Shenyang in March, the weather conditions in both places are so harsh that many
outdoor recreational activities cannot be carried out, leading more residents to choose shopping malls
for leisure activities [36]. Therefore, compared with September when the weather conditions are more
suitable for outdoor activities, hot June in Wuhan and cold March in Shenyang tend to boost the
business for local commercial areas. Thus, the global Moran’s I and the detection accuracy calculated
during these periods are also relatively high.
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From Table 5, we find that although the number of commercial areas detected from the imagery of
Wuhan on 15 September 2018 is small, the Simenkou commercial area and the Zhongjiacun commercial
area missed by the imagery of Wuhan on 14 June 2018 are successfully detected. If the detection results
of the two periods are combined, all the large commercial areas in the region of the Wuhan third ring
road can be detected. Thus, it is worthwhile to use imageries from multiple time periods in the process
of conducting commercial areas detection.

Based on the above comparison, we believe that in the process of using nighttime lights satellite
imagery for commercial areas detection, we ought to analyze the weather conditions of the study area
primarily, and try to select imageries of the period with poor weather conditions, such as winter and
summer, for experiments. The detection results of these periods are often more consistent with the
actual situation and have higher accuracy. At the same time, we may also select as many imageries as
possible from the same area for research, and integrate the detected commercial areas to obtain more
comprehensive results.

4.2. Detection Result in Different Regions

Combining the results of ESDA of Wuhan imageries with that in Shenyang imageries (as shown
in Table 7), we can use the accuracy as the objective evaluation basis for the quality of the commercial
areas detection, to explore the law of spatial variation of clustering degrees in the detection.

Table 7. Detection accuracy table of Shenyang’s imagery.

Region Imagery Detection Accuracy Green Coverage Rate

Wuhan City
14 June 2018 85.7%

39.47%15 September 2018 42.9%
Combination 100.0%

Shenyang City
10 September 2018 45.5%

38.88%17 March 2019 90.9%
Combination 90.9%

We use the combination of detection results in two periods in Wuhan and Shenyang (Figure 8e,f)
to represent the final commercial area detection results in the corresponding regions. By comparing
these two results, we can discuss the influence of geospatial factors on the commercial area detection.

Although there are many variables caused by different research areas, few of them can really
affect the distribution of brightness value of imageries. We believe that the influence of green coverage
in different areas on the light brightness value in the imagery is relatively significant. The green
coverage rate in built-up areas can well reflect the exuberance of trees (especially street trees) in a city.
According to the statistical yearbook (Wuhan Municipal Bureau of Statistics 2018, Shenyang Municipal
Bureau of Statistics 2018), green coverage rate in built-up areas within the third ring road of Wuhan
is slightly higher than that of Shenyang. For the two results, the detection accuracy shares the same
rule—the accuracy in the area within the third ring road of Wuhan is marginally higher than that of
Shenyang. According to analysis, we believe that areas with a higher green coverage rate have more
street trees, which may reduce the interference of urban lighting equipment (especially street lamps) to
the commercial area detection to a certain extent [37]. Therefore, the accuracy obtained by detection
for the region within the third ring road of Wuhan is higher.

Therefore, we can conclude that the method of using the nighttime lights satellite imagery for
commercial areas detection proposed in this paper is more suitable for the regions with a relatively
high vegetation coverage rate in urban built-up areas. Thus, it is necessary to analyze the feasibility
and accuracy of the detection based on the local green coverage rate when we use this method to detect
commercial areas.
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4.3. Results Analysis

Based on the above discussion, we can gain some enlightenment when selecting experimental
data. There are two factors that need be taken into consideration. Firstly, when it comes to selecting of
imagery, weather conditions should be noted. Furthermore, we should do it while it is poor, because
the harsh weather can ensure that in the area of interest, the indoor commercial areas will be more
frequently visited. Consequently, it is easier to detect and extract hot spots. Secondly, in terms of the
selection of research areas, we ought to select areas with a relatively high green coverage rate in urban
built-up areas to reduce the interference of street lamp on the detection of commercial areas.

By the time of writing, Luojia No.1 01 has transmitted limited imageries of Wuhan City and
Shenyang City that could be used for research. In the imageries that we process, errors in pixel
brightness values and inconsistent registration of different imageries exist inevitably, which may lead
to certain deviations in the actual number and range of commercial areas extracted [38]. On one
hand, we still need to screen out the better quality and larger time span imageries from the imageries
transmitted from Luojia No.1 01 in the future for testing and analysis. On the other hand, although the
brightness value of the imagery has been normalized during the preprocessing, this normalization is
only linear. We can perform radiation calibration in preprocessing to convert the imageries’ brightness
value to absolute radiation brightness, so as to adapt to the need for nonlinear normalization.

5. Conclusions

As the latest generation of nighttime lights satellite, Luojia No.1 01 well supplements the spatial
resolution deficiency of the two kinds of nighttime lights satellites (DMSP/OLS and NPP/VIIRS) that
have been widely used before and provides a new research idea for the detection and extraction
of urban commercial areas. This paper proposes a method that takes the nighttime lights satellite
imageries transmitted by Luojia No.1 01 as the data source, makes use of the characteristic of the city
commercial areas being more prominent in night lighting, carries out cluster analysis on the brightness
value of the imageries, constructs the standard deviation ellipses, and then extracts the distributions
and scopes of the urban commercial areas. Compared with the traditional measurement and analysis
method of urban commercial areas, the method in this paper uses nighttime lights satellite imagery
for operation, which has the characteristics of objective data, good real-time performance and high
accuracy, and provides an intuitive and reliable reference for relevant departments to make urban
planning and administrative decisions. At the same time, the dynamic changes of the commercial area
can be obtained by using the combination of imageries from different periods to provide a basis for
further research on the development and changes of the city.
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