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Supplementary Materials 

Map Accuracy Reporting Practices 

To understand how TD errors can impact map accuracy, it is necessary to first review current 
practices and standards for measuring and reporting final map accuracy, which are well established 
in the EO literature [39,40,45,57,78]. While the emphasis of this paper is specifically on TD, as opposed 
to map reference data, it is necessary to review procedures for accuracy assessment. Sampling 
protocols for accuracy assessment are more stringent than those for the collection of TD [57], but 
because both training and map reference data are often collected as part of a single campaign or using 
the same methods [52], the stricter set of procedures should be followed for both. We therefore 
summarize several important features and best practices for error analysis. 

Error analysis compares a mapped variable to a corresponding map reference variable. Map 
reference data used for accuracy assessment are collected according to sampling and response 
designs that specify, respectively, the probabilities of inclusion for each location, and the protocol 
for creating the labeled map reference data [57]. Map reference data and TD may both be collected 
as part of a single larger sample1, provided there is strict separation between the two datasets. 
Sampling design, whether simple random, stratified random, or systematic is dependent on 
application and a priori knowledge of the study area, and should be probability-based, such that the 
inclusion probability of each sample relates to the likelihood of that sample unit being included 
[39,54]. If the observations do not have equal probability of selection, then it is essential to convert 
the sample data to a confusion matrix (i.e. a square contingency table) that reflects an unbiased 
estimate for the entire population using methods summarized in Stehman and Foody [57]. 

Map accuracy is typically assessed using a metric or metrics designed to provide information 
regarding the correspondence of mapped and reference data. The objective of these metrics is to 
provide insights into the product’s expected best use cases and potential shortcomings. Accuracy 
metrics vary according to whether the mapped variable is categorical or continuous, with each type 
of variable having its own foundation for error analysis [81–85]. The confusion matrix is the 
foundation for categorical variables. Conventionally, the table’s rows provide mapped categories and 
the columns show the matching reference categories, with the diagonal entries showing agreement 
between the two. The confusion matrix is used to calculate user’s accuracy (i.e. the complement of 
commission error), producer’s accuracy (i.e. the complement of omission error), and overall accuracy 
(i.e. the complement of proportion error) [41]. More details on the interpretation of these values and 
other aspects of the error matrix are provided in several existing publications [37,39,57,81,86–88]. 

Several other accuracy measures are also calculated from the error matrix. Most prominent 
among these is the Kappa Index of Agreement [89], which is widely used in the remote sensing and 
                                                 
1 It is often advantageous to have a separate train sample design, however, as these may be more purposive and 
targeted to classes of interest[54]. 



species distribution modelling literature. However, Kappa varies with class prevalence [84] and can 
be easily misinterpreted, thus its use is no longer recommended [40]. More recently, a number of 
additional metrics have started to be more commonly used in EO accuracy analysis, in part due to 
contributions from other disciplines, such as computer science. Due to differing conventions and 
objectives within these disciplines, the metrics and terminology relating to error and accuracy are 
often quite different. To help resolve this confusion, we summarize these metrics and their meanings 
in Table S1. 

A special and increasingly used type of categorical map is derived from Object-Based Image 
Analysis (OBIA), in which the output map is classified into polygons representing discrete objects 
[97]. At present there is no commonly accepted standard for reporting the accuracy of such maps in 
the remote sensing literature [65], since the optimal set of metrics for polygon accuracy assessment 
depends on the intended use of the categorical map. For example, edge similarity metrics are useful 
for assessing the segmentation of individual agricultural fields, whereas area-based metrics will fail 
where multiple objects are frequently mapped as a single object [65]. The Jaccard Index, also called 
Intersection over Union, is a commonly used benchmark in the computer vision and segmentation 
literature for evaluating polygon-to-polygon classification accuracies and has the advantage of being 
straightforward to calculate and interpret. 
(https://www.sciencedirect.com/science/article/pii/S1875389210002786,https://www.sciencedirect.co
m/science/article/pii/S0098300409001095, http://cs.umanitoba.ca/~ywang/papers/isvc16.pdf, 
https://ieeexplore.ieee.org/abstract/document/7025904). This and other similar area-based metrics 
can be used in a remote sensing context, and thus may help to strengthen communication between 
EO and computer vision researchers. However, we caution that for many mapping goals, these 
metrics should be complemented by others that account for shape and edge similarity. Perhaps due 
to these complexities, many existing studies have assessed the accuracy of object-based maps using 
per-pixel accuracy assessments, which itself is problematic because it involves comparing 
fundamentally different spatial units [65].  

The scatter plot, showing the mapped variable on the y-axis and the reference variable on the x-
axis, is the foundation of error analysis for continuous variables. Since any point falling off the 1:1 
line indicates deviation from a measurement of the true value, a visual assessment of the plot is an 
intuitive first step for assessing error in the mapped variable. Several metrics are commonly used to 
quantify disagreement between mapped and reference variables, including mean deviation, Root 
Mean Square Error (RMSE; a.k.a. Root Mean Square Deviation, RMSD), and Mean Absolute 
Deviation (MAD). The use of RMSE may be inappropriate, since it combines MAD with the variation 
among the deviations and is frequently misinterpreted as the measurement of average error [92-94]. 
The Receiver Operating Characteristic (ROC) and the Total Operating Characteristic (TOC) enable 
analysis of a continuous mapped variable relative to a binary reference variable, for example presence 
or absence [83,95,96]. The area under this curve (AUC) of an ROC/TOC plot is often used as a single 
measure of overall accuracy that summarizes numerous thresholds for the continuous variable [96].  

Most of the metrics reported above (Table 1) provide useful information for users about map 
reliability. However, the usefulness of that information depends on the map reference data having 
higher accuracy than the mapped data, which is an assumption that is often unexamined [34,183]. 
This tendency is illustrated by Ye et al. [65], who reviewed 209 journal articles focused on object-
based image analysis and found that one third gave incomplete information about the sample design 
and size of their map reference data, let alone any mention of error within the sample. Errors in map 
reference data can bias the map accuracy assessment [47,99], as well as estimates derived from the 
confusion matrix, such as land cover class proportions and their standard errors [46]. To correct for 
such biases caused by map reference error, one can use published procedures for estimating map 
reference data accuracy [47] and to calculate variance measures for area estimates [46]. These 
approaches depend on quantifying errors in the map reference data. For the common case of image-
interpreted map reference data, this can be achieved by having multiple interpreters create reference 
polygons and labels for the same locations, and then calculating the level of agreement in their 
categorical labels [34,57,99,158]. Additionally, knowledge of this uncertainty can be quantitatively 
incorporated into continuous estimates based on the image interpreted data [46]. In situ observations 



can similarly be used to assess the accuracy of image-interpreted map reference samples [60], 
although their availability is often limited by cost considerations.  



Table S1. List of peer-reviewed publications retrieved using Google Scholar search algorithm results. 
Search performed January, 2019, with terms land cover and land use, including permutations of 
spelling and punctuation. Twenty-seven articles kept after initial screening for relevance. 

Authors Title Journal 
Zhong, B.; Ma, P.; Nie, A.; Yang, 
A.; Yao, Y.; Lü, W.; Zhang, H.; 
Liu, Q. 

Land cover mapping using time series HJ-
1/CCD data 

Sci. China Earth Sci. 2014 57, 
1790–1799. 

 
Pacifici, F.; Chini, M.; Emery, 
W.J. 

A neural network approach using multi-
scale textural metrics from very high-
resolution panchromatic imagery for 
urban land-use classification 

Remote Sens. Environ. 2009, 113, 
1276–1292. 

 

Abbas, I.I.; Muazu, K.M.; Ukoje, 
J.A.; 

Mapping Land Use - land Cover and 
Change Detection in Kafur Local 
Government , Katsina , Nigeria ( 1995 - 
2008 ) Using Remote Sensing and Gis 

Research journal of environmental 
and Earth Sciences 2010, 2, 6–
12. 

 
Sano, E.E.; Rosa, R.; Brito, J.L.S.; 
Ferreira, L.G. 

Land cover mapping of the tropical 
savanna region in Brazil 

Environ. Monit. Assess. 2010, 166, 
113–124. 

Hu, T.; Yang, J.; Li, X.; Gong, P. Mapping urban land use by using landsat 
images and open social data 

Remote Sensing 2016, 8, 151. 
 

Galletti, C.S.; Myint, S.W. Land-use mapping in a mixed urban-
agricultural arid landscape using object-
based image analysis: A case study from 
Maricopa, Arizona 

Remote Sensing 2014, 6, 6089–
6110. 

 

Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; 
Yang, P.; Li, Z.; Song, Q. 

Exploring the use of google earth imagery 
and object-based methods in land 
use/cover mapping 

Remote Sensing 2013, 5, 6026–
6042. 

 
Al-Bakri, J.T.; Ajlouni, M.; Abu-
Zanat, M. 

Incorporating Land Use Mapping and 
Participation in Jordan 

Mt. Res. Dev. 2008, 28, 49–57. 
 

Mallinis, G.; Emmanoloudis, D.; 
Giannakopoulos, V.; Maris, F.; 
Koutsias, N. 

Mapping and interpreting historical land 
cover/land use changes in a Natura 2000 
site using earth observational data: The 
case of Nestos delta, Greece 

Appl. Geogr. 2011, 31, 312–320. 
 

Liu, J.; Kuang, W.; Zhang, Z.; Xu, 
X.; Qin, Y.; Ning, J.; Zhou, W.; 
Zhang, S.; Li, R.; Yan, C.; et al. 

Spatiotemporal characteristics, patterns 
and causes of land use changes in China 
since the late 1980s 

J. Geogr. Sci. 2014, 24, 195–210. 

Yadav, P.K.; Kapoor, M.; Sarma, 
K. 

Land Use Land Cover Mapping, Change 
Detection and Conflict Analysis of 
Nagzira-Navegaon Corridor, Central India 
Using Geospatial Technology 

International Journal of Remote 
Sensing and GIS 2012, 1. 

 

da C. Freitas, C.; d. S. Soler, L.; 
Sant’Anna, S.J.S.; Dutra, L.V.; dos 
Santos, J.R.; Mura, J.C.; Correia, 
A.H. 

Land Use and Land Cover Mapping in the 
Brazilian Amazon Using Polarimetric 
Airborne P-Band SAR Data.” 

IEEE Trans. Geosci. Remote Sens. 
2008, 46, 2956–2970. 

 

Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater 
Dhaka, Bangladesh: Using remote sensing 
to promote sustainable urbanization 

Appl. Geogr. 2009, 29, 390–401. 

Castañeda, C.; Ducrot, D. Land cover mapping of wetland areas in 
an agricultural landscape using SAR and 
Landsat imagery 

J. Environ. Manage. 2009, 90, 
2270–2277. 

Griffiths, P.; van der Linden, S.; 
Kuemmerle, T.; Hostert, P. 

A Pixel-Based Landsat Compositing 
Algorithm for Large Area Land Cover 
Mapping 

IEEE Journal of Selected Topics in 
Applied Earth Observations and 
Remote Sensing 2013, 6, 2088–
2101. 

Ge, Y. Sub-pixel land-cover mapping with 
improved fraction images upon multiple-
point simulation 

Int. J. Appl. Earth Obs. Geoinf. 
2013, 22, 115–126. 



Gong, P.; Wang, J.; Yu, L.; Zhao, 
Y.; Zhao, Y.; Liang, L.; Niu, Z.; 
Huang, X.; Fu, H.; Liu, S.; et al. 

Finer resolution observation and 
monitoring of global land cover: First 
mapping results with Landsat TM and 
ETM+ data 

Int. J. Remote Sens. 2013, 34, 2607–
2654. 

Ghorbani, A.; Pakravan, M. Land Use Mapping Using Visual vs. 
Digital Image Interpretation of TM and 
Google Earth Derived Imagery in Shrivan-
Darasi Watershed (Northwest of Iran) 

Int. J. Remote Sens. 2013, 34, 2607–
2654. 

Friedl, M.A.; Sulla-Menashe, D.; 
Tan, B.; Schneider, A.; 
Ramankutty, N.; Sibley, A.; 
Huang, X. 

MODIS Collection 5 global land cover: 
Algorithm refinements and 
characterization of new datasets 

Remote Sens. Environ. 2010, 114, 
168–182. 

Deng, J.S.; Wang, K.; Hong, Y.; 
Qi, J.G. 

Spatio-temporal dynamics and evolution 
of land use change and landscape pattern 
in response to rapid urbanization 

Landsc. Urban Plan. 2009, 92, 187–
198. 

 
Otukei, J.R.; Blaschke, T. Land cover change assessment using 

decision trees, support vector machines 
and maximum likelihood classification 
algorithms 

Int. J. Appl. Earth Obs. Geoinf. 
2010, 12, S27–S31. 

 

Malinverni, E.S.; Tassetti, A.N.; 
Mancini, A.; Zingaretti, P.; 
Frontoni, E.; Bernardini, A. 

Hybrid object-based approach for land 
use/land cover mapping using high spatial 
resolution imagery 

Int. J. Geogr. Inf. Sci. 2011, 25, 
1025–1043. 

Rozenstein, O.; Karnieli, A. Comparison of methods for land-use 
classification incorporating remote sensing 
and GIS inputs 

Appl. Geogr. 2011, 31, 533–544. 

Jawak, S.D.; Luis, A.J. Improved land cover mapping using high 
resolution multiangle 8-band WorldView-2 
satellite remote sensing data 

JARS 2013, 7, 073573. 

Ran, Y.H.; Li, X.; Lu, L.; Li, Z.Y. Large-scale land cover mapping with the 
integration of multi- source information 
based on the Dempster – Shafer theory 

Int. J. Geogr. Inf. Sci. 2012, 26, 169–
191. 

 
Clark, M.L.; Aide, T.M.; Grau, 
H.R.; Riner, G. 
 
 

A scalable approach to mapping annual 
land cover at 250 m using MODIS time 
series data: A case study in the Dry Chaco 
ecoregion of South America 

Remote Sens. Environ. 2010, 114, 
2816–2832. 

Berberoglu, S.; Akin, A. Assessing different remote sensing 
techniques to detect land use/cover 
changes in the eastern Mediterranean 

Int. J. Appl. Earth Obs. Geoinf. 
2009, 11, 46–53. 

 

 

Table S2. Summary of commonly used error metrics. 

 Term Information Content/Typical Usage Description 

Overall Accuracy 
Summary metric combining all class 

accuracies into a single number 
Proportion of correctly classified cases 

divided by the total of all classified cases 

User’s Accuracy 
(a.k.a. Precision) 

Metric of the intensity of true positives 
given the classified category in which 
the true positives were ‘found’. The 

intensity complement of commission 
error. 

Proportion of correctly classified cases 
relative to the total number of cases 

classified into the given category 

Kappa Index of 
Agreement 

Single metric for overall accuracy 

Used to measure the agreement between 
mapped and reference categories of a 
dataset while attempting to correct for 

agreement that occurs by chance. 



Producer’s Accuracy 
(a.k.a. Sensitivity, 

Recall) 

Metric indicating the intensity of true 
positives given the reference category) 
The intensity complement of omission 

error. 

True positive rate; ratio of correctly 
classified cases of a given class to the 

total true cases of that class 

Specificity 
Metric for commission error; indicates 

how well the model avoids false 
positives 

True negative rate; ratio of correctly 
classified negatives to the sum of true 

negatives and false positives 

True Skill Statistic 
[90] 

Metric that combines sensitivity and 
specificity while accounting for class 

prevalence 
Sensitivity + Specificity - 1 

F1 [81,82] 
Combined metric of commission and 

omission error 
Equally weighted harmonic mean of 

precision and recall 

Bias (Mean Bias 
Error) 

Quantifies the average difference 
between predicted and reference 

variables 

The average error, representing the 
systematic over- or under-prediction of a 

continuous variable 

Root Mean Square 
Error/Deviation 

Measures a combination of the average 
error and the variability within the 

distribution of errors 

A potentially misleading metric used to 
measure disagreement between 

predicted and reference continuous 
variables 

Mean Absolute 
Deviation 

Measures how far points are from Y=X 
line 

Recommended metric to measure 
disagreement between predicted and 

reference continuous variables 

Jaccard Index, also 
called  Intersection 

over Union 

Between two discrete/crisp datasets, 
reports the area of intersection divided 

by the area of union. 

Most commonly used metric to indicate 
accuracy of object-based classification, 

which is also called semantic 
segmentation. 

Triple Collocation RMSE 

TC-based RMSE estimates at each pixel were used to compute a priori probability (𝑃𝑖) of selecting 
a particular dataset: 

𝑃 =

1
𝜎

∑
1
𝜎

 (eq.S1) 

Pi is the probability of selecting measurement system i, 𝜎  is the standard deviation of the 
random error in measurement system i.  

Figure S1 depicts how XT (the training time series for a pixel) is formed by sampling from X1, X2, 
and X3 over time. 

 
  



Table S3. Quantitative results of comparing each of the three models trained for the road detection 
case in Kumasi, Ghana to the validation labels. This region (shown in Figure 9) included 5,406,942 
road pixels and 50,627,010 background pixels. 

 F1 IOU Precision Recall 

Khartoum Model 

Average 0.6659 0.5723 0.7758 0.6267 

Road 0.3780 0.2330 0.6250 0.2709 

Background 0.9538 0.9116 0.9266 0.9862 

Kumasi Model 

Average 0.8004 0.6955 0.7693 0.8450 

Road 0.6458 0.4769 0.5662 0.7513 

Background 0.9552 0.9142 0.9725 0.9386 

Khartoum Model retrained in Kumasi 

Average 0.7869 0.6830 0.7965 0.7780 

Road 0.6135 0.4425 0.6363 0.5921 

Background 0.9603 0.9236 0.9568 0.9639 

 

Table S4. Template and procedure for documenting training data. Note that the ‘values’ column is 
intentionally left blank, as this is merely an example. We would expect a fully filled out table to be 
several pages in length due to the technical nature of the metadata explanation. 

Metadata Category Value 

Training data set name  

How data were created (technical details, to include number of analysts, 
whether in situ or image interpretation, samples of field sheets, copies of 

materials used to educate analysts, date of data creation, etc.) 
 

Funding source  

Purpose  

LULC definitions  

Time period  

Spatial extent  

Spatial resolution (image, field, quadrat, point location)  

Image ID (sensor specific unique identification information)  

 



(a)              (b) 

 

(c)              (d) 

 

(e) 

 

Figure S1. Sample prediction results in Kumasi, Ghana. (a) Input imagery. (b) Predictions from the 
Las Vegas model. (c) Predictions from the Khartoum model. (d) Prediction from the Kumasi model. 
(e) Predictions from the Khartoum Model retrained in Kumasi. [In panel b-e model predictions are in 
shaded color overlaid with validation labels in red on top of imagery.]. 

Figure S1 shows a qualitative comparison of different model outputs along with the validation 
labels over a sample area of Figure 4. 



 
Figure S2. Schematic of product selection using the Triple Collocation approach. 

 


