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Abstract: Considering the high-level details in an ultrahigh-spatial-resolution (UHSR) unmanned
aerial vehicle (UAV) dataset, detailed mapping of heterogeneous urban landscapes is extremely
challenging because of the spectral similarity between classes. In this study, adaptive hierarchical
image segmentation optimization, multilevel feature selection, and multiscale (MS) supervised
machine learning (ML) models were integrated to accurately generate detailed maps for heterogeneous
urban areas from the fusion of the UHSR orthomosaic and digital surface model (DSM). The integrated
approach commenced through a preliminary MS image segmentation parameter selection, followed
by the application of three supervised ML models, namely, random forest (RF), support vector
machine (SVM), and decision tree (DT). These models were implemented at the optimal MS levels to
identify preliminary information, such as the optimal segmentation level(s) and relevant features, for
extracting 12 land use/land cover (LULC) urban classes from the fused datasets. Using the information
obtained from the first phase of the analysis, detailed MS classification was iteratively conducted to
improve the classification accuracy and derive the final urban LULC maps. Two UAV-based datasets
were used to develop and assess the effectiveness of the proposed framework. The hierarchical
classification of the pilot study area showed that the RF was superior with an overall accuracy (OA)
of 94.40% and a kappa coefficient (K) of 0.938, followed by SVM (OA = 92.50% and K = 0.917) and DT
(OA = 91.60% and K = 0.908). The classification results of the second dataset revealed that SVM was
superior with an OA of 94.45% and K of 0.938, followed by RF (OA = 92.46% and K = 0.916) and
DT (OA = 90.46% and K = 0.893). The proposed framework exhibited an excellent potential for the
detailed mapping of heterogeneous urban landscapes from the fusion of UHSR orthophoto and DSM
images using various ML models.
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1. Introduction

Land use/land cover (LULC) maps play an indispensable part in gaining comprehensive insights
into coupled human–environment systems, socioecological concerns, resource inventories, ecosystem
management, planning activities, change monitoring, emergency response, and decision making. For
instance, high-quality thematic LULC information is an essential input for versatile local and regional
applications, such as natural disasters [1,2], agriculture [3], sustainable development [4], and land use
suitability and management [5]. Therefore, producing accurate, up-to-date, and cost-efficient detailed
LULC maps is crucial for resource managers, scientists, decision makers, and city planners.

Remote sensing technologies have been extensively used to retrieve LULC information using
comprehensive options of platforms and sensors with versatile spatial, spectral, and temporal
resolutions. Satellite and airborne remotely sensed data are usually expensive and constrained by
the inability to deliver adequate spatial and temporal resolutions compared to drone-based data.
Nowadays, unmanned aerial vehicles (UAVs) are used to collect remotely sensed data in a cost-effective
manner at low altitudes below the cloud cover with ultrahigh spatial (UHSR) spectral and temporal
resolutions. These advantages make the UAV system a powerful tool that can be used to fulfil the
rapid monitoring and assessment during a natural disaster and real-time monitoring applications [6,7].
A plethora of studies have successfully used UAV platforms to acquire remotely sensed data for LULC
applications [7–13].

Geographic object-based image analysis (GEOBIA), a paradigm that imitates the human visual
perception of real-world targets by addressing the spectral variability amongst classes, has been
a preferable classification approach because of its advantages over pixel-based classification [14,15].
The limitations of pixel-based approaches, such as misclassification and salt-and-pepper effects, are
addressed through the hierarchical/multiscale (MS) exemplification of image objects, representation of
image objects across single/multiple images at MS levels, and incorporation of spatial, spectral, textural,
geometrical, elevation, backscattering, and contextual information in LULC classification [16,17].
GEOBIA has been widely used along with advanced machine learning (ML) algorithms for analyzing
and classifying drone-based images in various applications. De Castro et al. [18] suggested an
automatic GEOBIA approach using a random forest (RF) classifier for site-specific weed management
with UAV-based images. Their results helped the farmers with timely decision making for crop
optimization and management. Komárek et al. [19] utilized a three-level GEOBIA system with
a support vector machine (SVM) algorithm to identify individual plant species from multispectral
and thermal drone-based images. Kamal et al. [20] introduced a GEOBIA approach for mangrove
canopy delineation using UAV-based data. The results showed that the UAV red, green, and blue
(RGB) images are valuable inputs for GEOBIA regardless of the limit of spectral information. Mishra
et al. [21] presented the potential for achieving species-level mapping from multispectral UAV data
through GEOBIA. White et al. [22] proposed a GEOBIA approach to identify sapling Jak pine forests
after wildfire. A MicaSense RedEdge 3 multispectral camera onboard a quadcopter UAV platform
was used for data acquisition. The highest classification accuracy was achieved by including the red
and near-infrared spectra. The following section reviews the various elements affecting the GEOBIA’s
overall quality, including image optimization of image segmentation parameters, several feature
selection (FS) approaches, and machine learning (ML) algorithms.

Related Studies

GEOBIA is constructed on the basis of the conception of creating a meaningful representation
of real-world targets (i.e., LULC types, such as buildings, roads, and vegetation) by generating
homogenous regions from image pixels, and this procedure is referred to as image segmentation.
This procedure groups the raw pixels into homogeneous segments that are jointly exhaustive and
mutually disjointed, which are then used as the primary element for interpretation, classification,
and modelling [23,24]. The overall performance of the GEOBIA’s succeeding phases (i.e., feature
computation, extraction, and classification) is immensely influenced by image segmentation quality [25].
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Several image segmentation algorithms have been adopted to segment remotely sensed data in the
GEOBIA domain. The four commonly used image segmentation algorithms are watershed [26,27],
region-based [28], mean-shift [29], and hybrid segmentation [30]. Amongst them, the region-based
and multiresolution segmentation algorithms have been widely adopted in various remote sensing
applications because of their competency to produce meaningful image objects [31]. The scale parameter
(SP), which explains the degree or the density level where a specific phenomenon can be presented,
is the main parameter in all segmentation algorithms that require fine-tuning depending on the
application [28]. The image segmentation on UHSR images with a single-scale (SS) value results in
creating image objects that are either small (oversegmented) or large (undersegmented). Different issues
should be considered when selecting image segmentation parameters [32]. Firstly, different urban
LULC classes can differ in terms of size and structure and may require several optimum segmentation
levels. Secondly, image objects that belong to the same class might correspond to different optimal
scales because of their different surrounding contrast. Finally, different components within an object
might require analysis at multiple scales. Therefore, finding the optimal SP(s) prior to the analysis is
a crucial step in the GEOBIA framework because different objects can only be analyzed accurately on
the basis of the scale(s) corresponding to their granularity [33].

Various supervised and unsupervised image segmentation quality evaluation techniques have
been proposed to determine the optimal single or MS segmentation. Image segmentation results are
usually assessed through the supervised image segmentation quality measures by evaluating the
disparity between the manually digitized objects and the generated image objects from an image
segmentation algorithm, whereas the unsupervised image segmentation quality measures evaluate
MS segmentation results using various statistical-based image segmentation quality measures [34].
Considerable attention has been given to unsupervised segmentation quality measures [35,36]. The vast
majority of the unsupervised optimization methods determine the optimum segmentation parameters to
evaluate the segmentation outputs by computing the between-object heterogeneity and the within-object
homogeneity metrics [37–44]. Moreover, other unsupervised techniques have been adopted in various
applications to determine the optimum single or MS segmentation parameters. Xiao et al. [33] proposed
a MS segmentation optimization using the unsupervised optimization technique to determine the
optimum scales suitable for the extraction of urban green cover from the high-spatial-resolution dataset.
Kamal et al. [45] mapped mangrove species using the MS GEOBIA approach from multiple images
with a varied spatial resolution (i.e., WorldView 2, LiDAR, ALOS AVNIR-2, and Landsat TM).

FS, which is regarded as a crucial task that influences the GEOBIA classification accuracy, specifies
the most relevant features to increase the effectiveness of the adopted classification approach and
expedites the processing time by minimizing irrelevant or redundant features [46]. Various FS
algorithms have been incorporated with the GEOBIA approach in various applications, and these
methods include RF [47,48], SVM [47], ant colony optimization (ACO) [49,50], artificial bee colony [51],
hybrid particle swarm optimization [52], correlation-based FS (CFS) [49,53], and chi-square [54]. Ridha
and Pradhan [49] applied three FS methods, namely, CFS, RF, and ACO, to discriminate several
types of landslides from LiDAR data. The results showed that CFS performs the best with 89.28%
accuracy, followed by RF with 85.59% accuracy and ACO with 86.74% accuracy. Al-Ruzouq et al. [50]
adopted ACO for feature reduction and identification of the most crucial features for date palm
mapping from very-high-resolution aerial imageries. The results showed that ACO and CFS are
superior to other algorithms, including principal component analysis, SVM, information gain, gain
ratio, and chi-square. The effects of various feature importance evaluation methods, including gain
ratio, chi-square, SVM-recursive feature elimination, CFS, Relief-F, SVM, and RF were investigated by
Ma et al. [47] within the GEOBIA environment to map agricultural areas from UAV data. The results
showed that CFS dominates other feature importance evaluation methods.

Recently, GEOBIA has been integrated with various ML methods to classify UAV-based images
for various LULC applications. Ma et al. [47] used two ML classification approaches, namely, SVM
and RF, to classify the UAV data into six categories, namely, building, crop, bare land, road, water,
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and woodland in Deyang, China. RF exhibits a higher classification accuracy compared to SVM. Cao
et al. [55] applied two classification algorithms, namely, SVM and k-nearest neighbors (KNN), in the
GEOBIA domain to map mangrove species from a UAV hyperspectral image. The result showed
that SVM performs better with 89.55% accuracy compared to KNN with 81.70% accuracy. Akar [56]
compared various ML algorithms to perform LULC classification using the UAV images collected from
urban and rural areas. The results showed that rotation forest (92.52%) outperforms RF (90.52) and
gentle AdaBoost (87.52%). Liu et al. [57] proposed a SVM-deep belief network (restricted Boltzmann
machine) method to extract eight land cover classes, namely, tree, building 1, road, grass, river, building
2, building 3, and bare-land, using the fusion of LiDAR data and UAV images. Their proposed
technique shows an overall accuracy (OA) of 92.16% and a kappa (K) value of 0.904%.

In this study, an adaptive MS segmentation and classification approach was adopted to classify
heterogeneous urban areas through the fusion of the UHSR orthophoto and digital surface model (DSM).
The main objectives of the current study are to (1) develop an adaptive MS-optimized image object
approach for detailed urban LULC mapping from UAV-based data, (2) investigate the effects of MS
segmentation on FS computation (CFS and SVM) and its impact on classification accuracy, (3) compare
the performance of three mature ML classification algorithms, namely, RF, SVM, and decision tree
(DT), at MS levels, and (4) assess the transferability of the adopted framework. The remainder of
this paper is organized as follows. Section 2 outlines the geographical location of the study area and
describes the ground truth (GT) data. Section 3 presents a generic overview of the methodological
framework and detailed information about image processing, image segmentation optimization, FS,
MS classification, and evaluation metrics. Section 4 describes the results, and Section 5 discusses the
experimental findings. Section 6 provides the conclusions.

2. Study Area and Materials

2.1. Study Area

The location of the study area is geographically positioned at the University of Science, Malaysia
(USM) campus, Penang, Malaysia. The study area represents an urban area of Penang island with
different LULCs, including vegetation, water bodies, buildings, roads, and bare soil. The RGB
images were acquired on February, 2018, (Figure 1) using a Canon PowerShot SX230 HS (4000 ×
3000 resolution) boarding on a UAV from an altitude of 353 m. The ground resolution of the orthomosaic
is approximately 10 cm, with an 8-bit radiometric resolution. The first dataset was a subset of 2.24 km2

from the produced orthomosaic photos, located between 100◦18′7.43′′E, 5◦21′51.574′′N and 100◦19′2′′E,
5◦21′8.143′′N. A DSM with 0.8 m resolution was generated from 3500 points using Agisoft PhotoScan
Professional (version 1.3.4, http://www.agisoft.com). The second subset (with the coordinates of
100◦17′29.341′′E, 5◦21′38.6′′N and 100◦18′9.622′′E, 5◦21′5.345′′N), covering an area of 1.27 km2, was
selected for investigating the transferability of the methodology.

2.2. GT Data

In the first study area, a total of 1177 GT samples for various urban LULC classes were prepared
through field surveys with the aid of Google Earth images. Twelve different classes were identified,
including water bodies, bare soil, grass, trees, clay tiles type 1, clay tiles type 2, metallic roofs type 1,
metallic roofs type 2, concrete, dark concrete roofs, asbestos cement roofs, and asphalt. The training
and testing GT samples were prepared as vector points and meticulously selected to ensure that all the
available urban LULC classes are well represented. Table 1 presents several types of LULC classes
available in the UAV-based images. Amongst the collected GT samples, 70% of each class was utilized
in the training of ML models, and 30% was dedicated for testing them. For the second study area,
sample statistics derived from the training samples of the first study area were used in the classification
models, and 305 GT testing samples were used to evaluate the classification results.

http://www.agisoft.com
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Figure 1. General location of the study sites: (a) Malaysian states; (b) location map; (c) digital surface
model (DSM) of the study sites; (d) unmanned aerial vehicle (UAV) images of the study sites.

Table 1. Detailed description of different land use/land cover (LULC) classes available in the
UAV-based images.

LULC Type Images Description

Water bodies
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Table 1. Cont.

LULC Type Images Description

Dark concrete
roofs
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3. Methodology

3.1. Overview

In this study, MS image segmentation optimization, MS feature computation and evaluations, and
supervised hierarchical ML models were conducted for accurate detailed mapping of a heterogeneous
urban landscape from UAV-based images. As depicted in Figure 2, the adopted methodology
comprises five main phases. Firstly, drone-based images were acquired and preprocessed to generate
the orthophoto and the DSM. Secondly, the optimum MS segmentation parameters were identified
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using unsupervised segmentation quality metrics. Thirdly, the most significant features were selected
at MS levels on the basis of CFS and SVM wrapper approaches. Fourthly, adaptive MS segmentation
optimization and classification were conducted for detailed urban LULC mapping using the RF, SVM,
and DT algorithms. Finally, the transferability of the proposed methodology to a different study area
was investigated.
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Figure 2. Framework of the proposed methodology.

3.2. Image Preprocessing

Various photogrammetric steps, such as interior, relative, and absolute orientations, have been
conducted to establish the mathematical relationship between the image and the ground and
subsequently generate the digital elevation model and the orthophoto (an image with the same
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characteristics of the map, where distortions caused by relief displacement are removed and the
image has a uniform scale). Throughout this process, image matching, automatic aerial triangulation,
geopositioning, orthorectification, and image mosaicking were performed to create the orthomosaic
image and the DSM from the UAV data using Agisoft PhotoScan and ArcGIS 10.4.1. The process
commenced by estimating the exterior and interior orientation parameters that estimate the positions of
the camera in each image and the camera calibration parameters. The RGB images were geometrically
corrected and geotagged to the WGS1984 (world geodetic reference system) using the files extracted
from the Global Positioning System units in the drone and the ground reference station. The images
were projected to a Universal Transverse Mercator coordinate system (zone 38 North) and converted
from JPEG to GeoTiff format. The following steps, such as aligning images, building field geometry,
and orthophoto generation, were implemented to create a DSM (a 3D polygon mesh representing
surface ground) and an orthomosaic. The DSM was generated with the nearest-neighbor interpolation
method and resampled to the same resolution of the orthomosaic. The spatial resolution of the final
orthomosaic for the two study areas was 10 cm, and the spatial resolution of the DSM was 80 cm.

3.3. MS Image Segmentation Optimization

The optimal segmentation level is defined in most of the unsupervised methods as the level
that maximizes the between-object heterogeneity (i.e., adjacent objects can be distinguished from
their surroundings) and the within-object homogeneity (i.e., pixels belonging to the same objects are
similar) [40,41]. The likeness between each image and its neighbors, known as the undersegmentation
metric, is determined through spatial autocorrelation (Moran’s I (MI)) [58], whereas the internal
homogeneity of an image object, known as the oversegmentation metric, is determined through the
area-weighted variance (WV) [41].

An adaptive segmentation optimization approach that integrates unsupervised quality measures,
namely, the F-measure, accompanied with a machine learning classification model was adopted in this
study to identify the optimal scale(s) for each urban LULC class. The F-measure quality measure [39]
was utilized to determine the hierarchical scale values from a set of given segmentation outputs. The
F-measure value for estimating the optimum MS of an application can be computed using Equation (1).

F-measure =
(
1 + ϕ2

) MInorm ×WVnorm

ϕ2. MInorm + WVnorm
, (1)

where WVnorm and MInorm represent the normalized area-WV (oversegmentation metric) and the
normalized Moran’s I (undersegmentation metric), respectively. The relative weights of WVnorm and
MInorm are controlled through a scene-independent factor (ϕ). The ϕ values are selected to ensure that
the generated segmentation levels vary considerably in terms of the within-object homogeneity and
between-object heterogeneities. For instance,ϕ = 3 signifies that triple weighting is assigned to WVnorm,
ϕ =0.5 indicates half weighting for WVnorm, and ϕ = 1 denotes that equal weighting is considered for
WVnorm and MInorm. Additional details about the unsupervised parameter optimization can be found
in [39,59]. The levels defined by the F-measure are used in the second phase to perform a single scale
(SS) classification of each defined segmentation scale. The class-specific accuracy (F-measure) is used
to evaluate the accuracy of each class at multiple levels, as shown in Section 4.3. Then, the optimal
scale(s) for extracting each class is determined and used for subsequent analysis.

3.4. Feature Computation and Selection

Considering the spectral similarity between the various urban LULC classes in the UHSR RGB
images, various features, including spectral values, color invariants, and geometrical textural features,
were computed and assessed at multiple scales, as shown in Table 2. Selecting the significant features
prior to classification is necessary to minimize the computational time by excluding the redundant
attributes and enhance the accuracy of an ML classifier [47]. In this study, CFS and SVM as wrapper FS
techniques were utilized to identify the most relevant MS features of image objects from UAV datasets.
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Table 2. Detailed description of the evaluated attributes (features).

Feature Type Tested Feature Name Description Reference

Spectral

Mean The mean intensity values computed for an image
segment of the RGB channels and the DSM [60]

Standard deviation The standard deviation values computed for an
image segment of the RGM channels and the DSM. [60]

Max_ difference The maximum difference between the RGB channels. [60]
Brightness The average of means of the RGB channels. [60]

NDRG Red−Green
Red+Green [61]

NDGB Green−Blue
Green+Blue [61]

NDBG Blue−Green
Blue+Green [61]

NDRB Red−Blue
Red+Blue [61]

NDBR Blue−Red
Blue+Red [61]

NDGR Green−Red
Green+Red [61]

RB Red
Blue [61]

Ratio-R Red
Green+Blue+Red [61]

Ratio-G Green
Green+Blue+Red [61]

Ratio-B Blue
Green+Blue+Red [61]

V 4
π . arctan ( Green−Blue

Green+Blue ) [62]

S 4
π . arctan ( 1−

√
Red2+Green2+Blue2

1+
√

Red2+Green2+Blue2
) [63]

Texture

Mean
The grey level co-occurrence matrix (GLCM) mean

sum of all directions determined for each band from
the RGB channels and the DSM.

[64]

Homogeneity
The GLCM homogeneity sum of all directions

determined for each band from the RGB channels,
and the DSM.

[64]

Contrast

The GLCM contrast sum of all directions determined
for each band from the RGB channels, and the DSM.

The grey level difference vector (GLDV) matrix
contrast sum of all directions determined for each

band from the RGB channels, and the DSM.

[64]

Entropy
The GLCM and GLDV entropy sum of all directions
determined for each band from the RGB channels,

and the DSM.
[64]

Correlation
The GLCM correlation sum of all directions

determined for each band from the RGB channels,
and the DSM.

[64]

Standard deviation
The GLCM standard deviation sum of all directions
determined for each band from the RGB channels,

and the DSM.
[64]

Dissimilarity
The GLCM dissimilarity sum of all directions

determined for each band from the RGB channels,
and the DSM.

[64]

Angular second moment
The GLCM angular second-moment sum of all

directions determined for each band from the RGB
channels, and the DSM.

[64]

Geometric

Length\Width The ratio between the length and width. [60]

Rectangular Fit A ratio that is based on how well an image object fits
into a rectangle. [60]

Shape_index

A ratio that defines border smoothness of image
objects and can be computed by dividing the border
length of an image object by four times the square

root of its area.

[60]

Density It can be computed by dividing the area covered by
an image object by its radius. [60]

Elliptic_fit A ratio based on how well an image object can fit
into an ellipse. [60]

Compactness It is expressed as the ratio of the area of an image
object to the area of a circle with a similar perimeter. [60]
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The seventy features listed above were computed for three optimized MS image objects, and two
efficient FS methods, namely, CFS and SVM, were used to find the relevant feature subset for each
optimized image object level.

3.4.1. CFS

CFS performs fast processing to appropriately select the optimal feature subset [53,65,66]. It uses
a search algorithm that heuristically assesses each attribute’s predictive capability and the degree of
intercorrelation between the attributes [67]. In other words, this evaluating mechanism calculates
the correlations between the features and classes to classify highly correlated features to the target
class whilst considering the low correlations and low level of redundancy amongst the features [68].
The estimations of the correlation between the subset of attributes and target classes are performed
using Equation (2).

Rs =
srci√

s + s(s− 1)rii
(2)

where s denotes the number of features, rci represents the correlation average between the subset
features and the class variable, and rii denotes the intercorrelation average between the subset features.
Accordingly, the high correlation coefficients between the feature attributes and the target labels are
considered to be relevant to the respective class characterization with a high level of association, whilst
lower intercorrelation (rii) is desired [68].

3.4.2. SVM

SVM is a widely applied regression algorithm with a nonparametric supervised statistical learning
task and is highly suitable for GEOBIA FS and classification tasks [51,69]. This algorithm seeks
an optimal separating hyperplane using the training dataset of so-called support vectors that can
effectively separate the input features (datasets) into target classes with a minimum misclassification
and a maximum margin amongst the target classes [70–72]. When the task is linearly separable, the
hyperplane can be represented using Equation (3):

yi(w.xi +b) ≥ 1− δi, (3)

where w indicates the coefficient vector that determines the orientation of the hyperplane in the feature
space. The offsets of the hyperplane from the original and positive slack variables are represented by b
and δi, respectively [73]. Equation (4) determines the optimized hyperplane, where many hyperplanes
can be designed to distinguish between classes.

Minimise
n∑

i=1

ai −
1
2

n∑
i=1

n∑
j=1

aiajyiyj

(
xixj

)
, (4)

Subject to
n∑

i=1

aiyi= 0, 0 ≤ ai ≤ C, (5)

where ai denotes the Lagrange multipliers and C is the penalty.

3.5. Supervised MS Image Object Classification

Image classification is the final phase in GEOBIA, and the common classification methods used
in this phase are supervised ML models or rule-based methods. In this study, the MS image object
classification was implemented using three supervised classification algorithms, namely, RF, SVM, and
DT. The classification models were trained using the sample statistics derived from the GT dataset of the
first study area. The object-based classification outcomes at different scales were used to quantitatively
evaluate the MS segmentation results and select the optimum scale for each urban LULC class. Then,
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the classification scheme started with a single classification of each optimized image-level using the
selected feature subsets for each level. After acquiring the proper information about the optimal scale(s)
for each class, ML models were used to initially classify large objects at large SP. The classification
results were then copied to a new level, where the unclassified objects were only resegmented to
a fine segmentation level, and the ML models were then used to classify the resegmented objects
on the basis of the selected significant features at that level. The process iteratively continued until
all classes were accurately classified or no improvement was detected in the OA and class-specific
accuracy (F-measure). The two of the aforementioned ML algorithms are briefly described in the
following paragraphs.

A DT is a supervised and nonparametric ML technique that is operable without prior knowledge
on data distribution, with easy interpretation and capability to model and handle the data complexity
reduction and the relationships between variables [74–79]. It is a flexible, fast, and robust algorithm
that can be used to control the nonlinearity between the input features and discrete classes [75].
DT hierarchically utilizes IF-THEN rules to label the variables of each class, where the tree structures,
leaves, and end nodes represent the discrete class labels (decision), and the branches assist in assigning
the labels on the basis of the attributes and majority voting [76]. A heuristic DT recursively partitions
a dataset into homogenous subsets in conjunction with the attribute values at each branch or node in
the single tree [77].

The RF algorithm is an ensemble of DT classifiers that improves the classification of variables
with high accuracy, and its robustness against overfitting the training dataset along with insensitivity
to nonnormal and noisy data makes it suitable for LULC classification [51,78,79]. RF is an ensemble
method that exploits many DTs as a forest generated from bootstrap and utilizes each tree’s vote to
assign the most frequent class label to the input variables [78,80]. Each tree then randomly selects the
predictors and object features from the input vector of every tree node to increase the generalization
error [78,81]. The prediction of the samples is calculated on the basis of the majority votes amongst the
trees [80,81]. The discrimination assignment is calculated using Equation (6):

H(x)= argmaxY

k∑
i=1

I(hi (X, θk)= Y), (6)

where θk is a random vector for the kth tree, X is an input vector, I(·) is an indicator function, h(·)
is a single DT, Y is an output variable, and argmaxy denotes the Y value in the maximization of∑k

i=1 I(hi (X, θk) = Y).

3.6. Evaluation Metrics

The evaluation metrics of the classified images were generated through the frequently applied
confusion matrix and its derivatives, including the OA, K, precision, recall, and F-measure. The
error matrix (confusion matrix) evaluates the classification results versus the reference data in two
dimensions as actual classes in rows and predicted classes in columns.

3.6.1. OA

The OA, which is a percentage indicator of the classification performance, can be defined as the
sum of the correctly classified variables into discrete classes (true positives plus true negatives) to the
total tested variables. OA can be computed from the confusion matrix by dividing the total number of
correctly classified objects/pixels (

∑
Dij or the sum of the major diagonal) with the total number of

objects/pixels (N):

OA =

∑
Dij

N
. (7)
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3.6.2. K Statistics

The K statistic is another statistical measure that defines the observed level of agreement or
accuracy between a detailed map and reference data. The K value approaches +1 when the contribution
of the chance of agreement diminishes and becomes negative when the effects of chance agreements
increases. Conversely, a K value equaling 0 indicates no agreement, indicating that the classification is
entirely conducted by chance or random assignment. A negative K value signifies that the agreement
is worse than occurring by chance. The K statistic is computed using Equation (8):

K =
N

∑m
i, j=1 Di j −

∑m
i, j=1 Ri ×C j

N2 −
∑m

i, j=1 Ri ×C j
, (8)

where m denotes the number of urban LULC classes in the confusion matrix, Dij denotes the number
of observations (objects/pixels) that are correctly classified in row i and column j, Ri denotes the total
number of objects/pixels in row i, Cj denotes the total number of observations in column j, and N
denotes the total number of objects/pixels.

3.6.3. Precision, Recall, and F-measure

The F-measure is the weighted average or harmonic mean of two ratios known as precision
(p). Recall (r) metric is another performance measure used to assess the class-specific accuracy from
retrieved information [82,83]. It can be computed using Equation (9) on the basis of the average of p
and r. The F-measure value ranges from 0 (lowest) to 1 (highest).

Fmeasure= 2×
p × r
p + r

. (9)

The p or the confidence of a LULC class is determined by dividing the number of true positives
(number of objects\pixels correctly belonging to the actual class) by the total number of objects
categorized as the positive class (i.e., the sum of true positives and false positives, which are
objects/pixels incorrectly categorized as belonging to the class). The r or the sensitivity shows the
proportion of true positive objects/pixels that are correctly predicted and identified and can be defined
as the number of true positives divided by the total number of objects/pixels that are members of
the positive class (i.e., the sum of true positives and false negatives). p and r can be calculated using
Equations (10) and (11), respectively. A perfect predictor’s value for p and r would be described as 1.

p =
true positives

true positives + false positives
, (10)

r =
true positives

true positives + false negatives
. (11)

4. Results

This section summarizes the various outcomes of this study, including the MS image segmentation
optimization and parameter selection, FS, and classification results.

4.1. Results of MS Image Segmentation

In this study, the quantitative evaluation of image segmentation results at MS levels through
unsupervised segmentation quality measures aims to determine the optimal SP that allows excellent
delineation and extraction of urban LULC classes that may share a similar spectral response with
each other and vary in structure, size, and their surrounding contrast. The oversegmentation (WV)
and undersegmentation (MI) metrics were computed from the three RGB channels, and their mean
values were normalized and used to compute the F-measure (for selecting the three optimum SPs),
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as shown in Table 3. Three values, namely, 3, 1, and 0.33, of the scene-independent variables (ϕ) were
selected to pinpoint the three SPs from the computation of Equation (1). These values were empirically
selected and supported by the study of Johnson et al. [62] to ensure that the adopted segmentation
levels vary remarkably from each other in terms of the between-object homogeneity and within-object
heterogeneity. The highest values on the last three columns in Table 2 correspond to the optimal MS
levels, and these scales are 200, 100, and 50. Figure 3a,b depict the image segmentation results of a small
subset at the scale of 200, where large homogenous objects, such as water bodies, grass, bare soil, and
some clay tiles, are well delineated. Figure 3c,d show the image segmentation results of a small subset
at the scale of 100, where medium objects, such as some types of roofing materials, are well identified.
Figure 3e,f display the image segmentation results of a small subset at the scale of 50, where large and
medium objects are oversegmented but small roofing materials and trees are well distinguished.

Table 3. Results of the applied unsupervised segmentation quality measures at multiscale (MS) levels.

Scale
No of

Objects WV mean MI mean WV norm MI norm
F-Measure

ϕ = 3 ϕ = 1 ϕ = 0.33

25 340731 78.606 0.548 1.000 0.000 0 0 0
50 104840 132.924 0.452 0.858 0.242 0.684 0.377 0.260
75 53011 178.661 0.395 0.739 0.385 0.677 0.506 0.404

100 33217 217.177 0.344 0.639 0.514 0.624 0.570 0.524
125 22978 253.258 0.314 0.545 0.588 0.549 0.566 0.584
150 16878 288.418 0.286 0.453 0.658 0.468 0.537 0.630
175 12887 322.978 0.250 0.363 0.748 0.383 0.489 0.674
200 10181 354.309 0.229 0.281 0.801 0.301 0.416 0.678
225 8216 384.925 0.217 0.202 0.833 0.218 0.325 0.637
250 6841 412.203 0.195 0.130 0.888 0.143 0.227 0.566
275 5738 439.515 0.169 0.059 0.953 0.065 0.112 0.384
300 4961 462.250 0.150 0.000 1.000 0 0 0
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4.2. Results of FS

Following the optimization of segmentation SPs, several spectral, geometrical, and textural
features were computed at MS levels for FS, as shown in Table 1. Two wrapper approaches, namely,
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CFS and SVM, combined with the KNN algorithm, were used to assess all features as a part of
classification. Table 4 compares the OA, K, and other relevant features selected by SVM and CFS at
scales of 50, 100, and 200. The results of CFS and SVM exhibited significant differences in terms of
the number and type of selected features in each scale. However, the two methods eliminated 60%
from the total number of features, whereas less than 40% of the features contributed to achieving high
accuracy. CFS attained a slight improvement in terms of the OA and number of selected features,
as presented in Table 2, and was selected for subsequent processing.

4.3. Classification Results

The detailed mapping of impervious surfaces in a heterogeneous urban area from UAV-based
images is particularly challenging when only three spectral channels, RGB, are used because of the
spectral similarity of various urban LULC classes. In such a case, a successful extraction of urban objects
should consider the information of the variation in size and the surroundings of the different types
of LULC that exist in the image. For instance, asbestos cement and dark concrete roofs or cemented
pavements may share similar spectral responses because of the presence of cement in their contents.
To minimize the confusion between different LULC classes, the information of the suitable scale(s) that
provides the best accuracy and ensures the strong differentiation between classes is necessary to obtain
a holistic view and to perform hierarchical classification.

The initial stage of classification in this study is to find the optimum level for extracting each
class, which can be achieved using ML models, followed by a class-specific accuracy measure. Three
standard classification algorithms, namely, RF, SVM, and DT, were used to classify the first study
area at the selected optimal scales (SP 200, SP 100, and SP 50). The accuracy of each classification
level was evaluated on the basis of OA, K, and F-measure. Figure 4a–c show the SS classification
results of RF, Figure 4d–f display the SS classification results of SVM, and Figure 4g–i show the SS
classification results of DT. Table 5 shows the SS classification results for the first study area. The highest
SS classification results were obtained by SS-RF at scale 50, with an OA of 92.2 and a K of 9.14, followed
by SS-SVM at scale 100 with an OA of 90.5 and a K of 0.896 and SS-DT at scale 50 with an OA of 88.1%
and a K of 0.87. Finding the optimum scale for extracting the LULC in heterogeneous urban areas
can vary on the basis of the adopted classification algorithm by comparing the class-specific accuracy
measures of SS-RF, SS-SVM, and SS-DT classification results. For instance, the SS-RF classification
results showed that the SP 50 exhibited the highest OA for the extraction of water bodies, trees, grass,
dark concrete, type 2 clay tiles, and type 2 metallic roofs, whereas the SP 200 showed enhanced
extraction of bare soil, asphalt, type 1 metallic roofs, concrete, type 1 clay tiles, and asbestos cement
roofs. The classification results of SS-SVM showed better extraction for clay tiles (types 1 and 2) at the
largest optimized SP, whereas the smallest optimized SP was optimal for extracting water bodies, bare
soil, trees, and metallic roofs (types 1 and 2). The previous step was adopted prior to the hierarchical
classification approach to provide a diagnostic result where SP is suitable for extracting 12 urban LULC
classes and for ensuring reasonable discrimination between the classes.
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Table 4. Results of correlation-based feature selection (CFS) and support vector machine (SVM) at MS levels.

Scale
Feature

Type
CFS SVM

Selected Features No OA K Selected Features No OA K

50

Spectral
Red, Blue, DSM, SD_DSM, Vegetation,

Ratio_G, Ratio_B, NDRG, NDGR NDBR,
Max_diff

16 91.63 0.93

Red, Green, Blue, DSM, Vegetation,
Ratio_G, Ratio_B, NDGR, NDBR, NDRB,

NDGB, NDBG, Shadow, RB, Max_diff,

21 91.61 0.91
Textural

GLCM_Mean_DSM,
GLCM_Entropy_Green,

GLCM_ Dissimilarity _Blue,
GLCM_SD_Blue

GLCM_ Entropy _R, GLCM_ Entropy
_Blue, GLCM_ Entropy _Green,

GLCM_ Homogeneity _Red,
GLDV_Mean_Blue

Geometrical Shape_index Length/Width

100

Spectral
Red, Green, Blue, DSM, SD_DSM, SD_R,

Vegetation, Ratio_R, Ratio_G, NDRG,
NDBR, NDBG, Shadow, RB, Max_diff,

22 93.3 0.92

Green, Red, Blue, DSM, Vegetation,
Ratio_G, Ratio_Blue, NDRG, NDGR,
NDGB, RB, NDBR, NDRB, Shadow,

NDBG, Max_diff, Brightness

28 92.11 0.914

Textural

GLCM_Mean_Red, GLCM_Mean_DSM,
GLCM_SD_Green,

GLCM_Correlation_DSM,
GLCM_ Dissimilarity _Blue, GLCM_Ang

2nd moment_Green

GLCM_Mean_DSM, GLCM_Mean_Blue,
GLCM_ Entropy _Blue, GLCM_ Entropy

_Red, GLCM_ Entropy _Green,
GLCM_ Homogeneity _Red,

GLDV_Mean_Blue, GLDV_Conrast_Blue,
GLDV_Entropy_Red.

Geometrical Shape_index Shape_index, Length/Width

200

Spectral

Red, Green, Blue, DSM, SD_DSM,
Vegetation, Ratio_R, Ratio_G, Ratio_B,
NDRG, NDGR, NDBR, NDGB, NDRB,

Shadow Max_diff,

27 93.78 0.93

Red, Green, Blue, DSM, SD_DSM,
Vegetation, Ratio_G, Ratio_B, NDGR,

NDBG, Shadow, RB, Max_diff

21 92.3 0.92

Textural

GLCM_Mean_Red, GLCM_Mean_Blue,
GLCM_SD_DSM, GLCM_SD_Green,

GLCM_ Homogeneity _DSM, GLCM_Ang
2nd moment _Blue, GLCM_ Dissimilarity

_Blue, GLCM_ Correlation _Rede,
GLCM_ Homogeneity _Red

GLCM_Mean_Blue,
GLCM_ Homogeneity _Green,

GLCM_Entropy_R, GLCM_ Correlation
_Blue, GLDV_Mean_Blue,

GLDV_Entropy_DSM

Geometrical Shape_index, Length/Width Length/Width, Compactness
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Figure 4. Single-scale (SS) classification results: (a–c) Random forest (RF) classification at scales of
200, 100, and 50, respectively; (d–f) SVM classification at scales of 200, 100, and 50, respectively; and
(g–i) decision tree (DT) classification at scales of 200, 100, and 50, respectively.

Table 5. Performance of the extraction of LULC classes using RF, SVM, and DT at single scales.

SS-RF

Class
SP 200 SP 100 SP 50

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Water bodies 1.000 0.980 0.990 1.000 0.997 0.999 1.000 0.997 0.999
Bare soil 0.879 0.918 0.898 0.653 0.404 0.499 0.850 0.942 0.893

Grass 0.790 0.352 0.487 0.871 0.878 0.874 0.871 0.994 0.928
Asphalt 0.855 0.757 0.803 0.674 0.626 0.649 0.771 0.569 0.655

Metallic roofs 2 0.992 0.862 0.922 1.000 0.924 0.961 1.000 1.000 1.000
Trees 0.580 0.830 0.683 0.790 0.999 0.883 0.999 0.973 0.986

Dark concrete 0.741 0.961 0.836 1.000 0.899 0.947 0.994 0.969 0.981
Metallic roofs 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Concrete 1.000 0.925 0.961 1.000 0.906 0.951 0.983 0.914 0.947
Clay tiles type 2 1.000 0.964 0.981 0.980 0.874 0.924 0.985 0.983 0.984
Clay tiles type 1 1.000 0.996 0.998 0.474 0.902 0.621 0.977 1.000 0.989

Asbestos 0.913 0.951 0.932 0.743 0.838 0.788 0.624 0.849 0.719

OA 88.4% 84.25% 92.2%

Kappa 0.873 0.827 0.914
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Table 5. Cont.

SS-SVM

Class
SP 200 SP 100 SP 50

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Water bodies 0.964 1.000 0.982 1.000 0.998 0.999 1.000 1.000 1.000
Bare soil 0.861 0.823 0.842 0.940 0.974 0.956 0.936 1.000 0.967

Grass 0.790 0.742 0.765 0.787 0.866 0.825 0.835 0.874 0.854
Asphalt 0.861 0.836 0.849 0.906 0.854 0.879 0.878 0.745 0.806

Metallic roofs 2 0.854 1.000 0.921 0.891 1.000 0.942 0.998 1.000 0.999
Trees 0.943 0.939 0.941 0.941 0.953 0.947 0.974 0.963 0.969

Dark concrete 0.835 0.624 0.714 0.999 0.651 0.788 0.977 0.633 0.768
Metallic roofs 1 0.969 0.808 0.881 1.000 0.848 0.918 1.000 1.000 1.000

Concrete 1.000 0.907 0.951 1.000 0.993 0.996 1.000 0.942 0.970
Clay tiles type 2 1.000 1.000 1.000 1.000 1.000 1.000 0.928 0.982 0.954
Clay tiles type 1 0.485 0.992 0.651 0.485 0.911 0.633 0.474 0.873 0.614

Asbestos 0.983 0.933 0.958 0.889 0.967 0.926 0.750 0.952 0.839

OA 88% 90.5% 89.7%

Kappa 0.868 0.896 0.886

SS-DT

Water bodies 1.000 0.788 0.881 1.000 1.000 1.000 0.915 1.000 0.956
Bare soil 0.889 0.853 0.871 0.758 0.886 0.817 0.729 0.924 0.815

Grass 0.790 0.246 0.375 0.871 0.244 0.381 0.864 0.687 0.765
Asphalt 0.752 0.812 0.781 0.707 0.677 0.692 0.710 0.541 0.614

Metallic roofs 2 0.957 0.858 0.905 0.998 1.000 0.999 0.998 0.846 0.916
Trees 0.529 0.895 0.665 0.806 0.945 0.870 0.904 0.965 0.934

Dark concrete 0.732 0.966 0.833 0.946 0.843 0.891 0.943 0.925 0.934
Metallic roofs 1 1.000 0.964 0.982 1.000 1.000 1.000 1.000 1.000 1.000

Concrete 1.000 0.925 0.961 0.983 0.911 0.946 0.975 1.000 0.987
Clay tiles type 2 0.948 0.521 0.672 0.886 0.902 0.894 1.000 0.823 0.903
Clay tiles type 1 0.474 0.948 0.632 0.385 0.882 0.536 1.000 1.000 1.000

Asbestos 0.676 1.000 0.806 0.756 0.833 0.793 0.639 0.852 0.730

OA 79% 83.4% 88.1%

K 0.771 0.819 0.869

Utilizing the preliminary information acquired from the SS classification of the RF, SVM, and DT
algorithms, the hierarchical classification was conducted for the first study area. The results are shown
in Figure 5. Table 6 illustrates the OA, K, and class-specific accuracies of the first study area using
the hierarchical RF, SVM, and DT classification algorithms. Similar to SS classification, the MS-RF
classification was superior with an OA of 94.40% and a K of 0.938, followed by MS-SVM with an OA of
92.50% and a K of 0.917 and MS-DT with an OA of 91.60% and a K of 0.908.

Table 6. Class-specific accuracy measures for the MS RF, SVM, and DT of the first study area.

MS-RF MS-SVM MS-DT

Class Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Water bodies 1.000 0.967 0.983 1.000 0.998 0.999 1.000 1.000 1.000
Bare soil 0.761 0.754 0.757 0.919 1.000 0.958 0.899 0.810 0.852

Grass 0.871 0.933 0.901 0.996 0.892 0.941 0.869 0.698 0.774
Asphalt 0.863 0.916 0.889 0.851 0.944 0.895 0.765 0.705 0.734

Metallic roofs 2 1.000 0.999 1.000 0.998 1.000 0.999 0.998 0.873 0.932
Trees 0.972 0.972 0.972 0.941 0.999 0.969 0.888 0.999 0.940

Dark concrete 0.832 0.963 0.893 0.996 0.646 0.783 0.768 0.950 0.849
Metallic roofs 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Concrete 1.000 0.925 0.961 1.000 0.993 0.996 0.975 1.000 0.987
Clay tiles type 2 1.000 0.964 0.981 1.000 1.000 1.000 0.931 0.878 0.904
Clay tiles type 1 1.000 0.923 0.960 0.485 0.904 0.631 1.000 1.000 1.000

Asbestos 0.962 0.969 0.966 0.983 0.927 0.955 0.935 0.975 0.954

OA 94.40% 92.50% 91.60%
K 0.938 0.917 0.908

Compared to SS classification, the hierarchical classification results noticeably improved the
extraction of urban LULC classes. For instance, an improvement of 2.24% in the OA was observed
in the MS-RF algorithm, along with a significant improvement in the differentiation and extraction
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of asbestos cement, concrete, and asphalt roofs. Similarly, the MS-SVM classification exhibited an
enhancement in the class-specific accuracies, OA, and K of trees, grass, and asphalt classes. The OA
accuracy of MS-DT showed an improvement with 3.57%, which achieved an overall improvement in
the extraction of trees, grass, and asbestos cement roofs.
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Figure 5. Results of MS classification using the integrated approach of the first dataset: (a) RF, (b) SVM,
and (c) DT.

To validate the transferability of the hierarchical classification approach, the MS-RF, MS-SVM,
and MS-DT classifications were applied in the second study area using the sample statistic file derived
from the image of the first study area. Figure 6 and Table 7 show the classification results for the second
study area. The results of the second dataset showed that the MS-SVM classification was superior
with an OA of 94.45% and a K of 0.938, followed by MS-RF with an OA of 92.46% and a K of 0.916
and MS-DT with an OA of 90.46% and a K of 0.893. The proposed hierarchical classification approach
demonstrates excellent potential for the detailed mapping of heterogenous urban areas from RGB-UAV
images and DSM. The proposed methodology can be adopted for various areas with different LULCs.
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(b) SVM, and (c) DT.

Table 7. Class-specific accuracy measures for the MS RF, SVM, and DT of the second study area.

RF SVM DT

Class Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Water bodies 0.531 0.989 0.691 0.594 0.969 0.737 0.585 0.974 0.731
Bare soil 0.960 0.884 0.921 0.982 0.960 0.971 0.953 0.788 0.862

Grass 0.972 0.650 0.779 0.984 0.786 0.874 0.912 1.000 0.954
Asphalt 0.925 1.000 0.961 0.976 1.000 0.988 0.973 1.000 0.986

Metallic roofs 2 1.000 1.000 1.000 0.969 0.680 0.800 0.745 1.000 0.854
Trees 1.000 0.959 0.979 1.000 0.984 0.992 1.000 0.618 0.764

Dark concrete 0.971 0.975 0.973 0.992 1.000 0.996 0.901 0.990 0.944
Metallic roofs 1 0.992 1.000 0.996 0.980 1.000 0.990 0.986 1.000 0.993

Concrete 0.953 1.000 0.976 1.000 1.000 1.000 0.953 1.000 0.976
Clay tiles type 2 1.000 0.961 0.980 1.000 0.983 0.991 1.000 0.856 0.923
Clay tiles type 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

OA 92.46% 94.45% 90.46%
K 0.916 0.938 0.893
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5. Discussion

Considering that segmenting UHSR UAV-based images of a heterogeneous and complex urban
landscape is a challenging task in GEOBIA, the selection of the optimum SP(s) is an imperative step to
ensure that different landscapes are well delineated at different scales. This study conducted a detailed
mapping of a heterogeneous urban area, an area covered with various natural and impervious surfaces
that vary in size and structure, from the fusion of the UAV-based orthophoto and DSM by improving
the GEOBIA frameworks with different solutions to some of the issues stated in related studies section.
An adaptive MS segmentation that assimilates an unsupervised image segmentation evaluation metric
(i.e., F-measure) and ML algorithms were proposed to identify the optimal MS parameters for extracting
the detailed urban LULC classes.

Although GEOBIA can leverage the computation and use various features in the classification
process, adding many features can reduce the classification accuracy and increase the computational
time. CFS and SVM were used in this study to select the most significant features computed for each
level from the optimized three-scale levels. An object’s spectral, geometrical, and textural feature
values are different because the size of the generated image objects (i.e., roofing material and roads)
varies on the basis of the selected scale level. CFS obtained a maximum OA of 93.78% (K = 0.93) at the
scale level of 200 by selecting 27 significant features, whereas SVM obtained a minimum accuracy at the
scale level of 50, with the value of OA = 91.61 (K = 0.91) by selecting 21 features. CFS and SVM selected
a set of features that vary in terms of the number and type in each segmentation level. However,
various spectral features, such as R, B, DSM, Ratio-G, Ratio-B, Vegetation, the normalized difference
between the red and green channels (NDRG), the standard deviation of image objects derived from
the DSM (SD-DSM), and the normalized difference between the blue and red channels (NDBR), were
commonly selected at all levels. The selection and incorporation of DSM-derived features, along with
other selected features, remarkably contributed in the differentiation of spectrally similar classes, such
as asbestos cement roofs, dark concrete roofs, old pavements, and asphalt. In a complex landscape
without height information, an ML model might erroneously categorize bare soil as a roofing material
or the opposite in accordance with the parallel spectral and textural characteristics. Al-Najjar et al. [7]
utilized the fusion of DSM and optical images to generate generic automatic LULC classes for a complex
urban area.

As stated in Section 3, the SS RF, SVM, and DT classification models were initially examined in
the first study area at the optimal scales, identified through the F-measure along with the significant
features, and selected by CFS at each optimal scale level. The SS classification results varied from one
level to another when each SS model was applied, and the OA classification accuracies ranged from
79% to 92.2%. The comparison of SS classification maps showed that clear misclassifications were
obtained by the DT algorithm, especially on clay tiles, asphalt, grass, and trees.

Following the FS and SS classification, iterative adaptive MS classification models were developed
in the first study area and were tested in the second study area. The adopted hierarchical classification
scheme of the first study area using the RF algorithm showed outstanding performance (OA = 94.4%)
on the extraction of urban LULC classes compared to SVM (OA = 92.5%) and DT (OA = 91.6%).
However, slight confusion was observed between different classes, as shown in Figure 7. For instance,
MS-SVM showed a minor confusion between metal type1, asphalt, bare soil, and grass, as demonstrated
in Figure 7b,k. Similarly, MS-DT showed a great confusion amongst the asphalt, grass, and metal
type 1, as shown in Figure 7c. In addition, a remarkable confusion was found between some asbestos
cement roofs, dark concrete roofs, asphalt, clay tiles type 2, and bare soil classes in some areas when
MS-DT was used, as shown in Figure 7f,i,l. MS-RF showed an outstanding performance but exhibited
a minor confusion between some asphalt objects that mixed with shadows as water bodies, as depicted
in Figure 7d,j. The comparison of SS and MS approaches showed that the accuracy of some classes (i.e.,
trees, type 1 clay tiles, and asbestos classes) clearly improved with the use of the proposed approach.
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Figure 7. MS classification results for four different regions of the first study area using RF, SVM, and
DT: (a–c) first region, (d–f) second region, (g–i) third region, and (j–l) fourth region.

The applicability of the adopted scheme in the second study area indicated that MS-RF and
MS-SVM exhibited relatively similar classification results. However, the MS-SVM algorithm (OA =

94.45% and K = 0.938) was superior to RF (OA = 92.46% and K = 0.816), with a slight improvement in
the OA and K values. All MS algorithms showed some degrees of confusion between some objects
with grass and water bodies, as shown in Figure 8j– l, which may be attributed to the existence of new
water objects that vary in spectral characteristics as the second study area was classified on the basis of
the sample statistics derived from the first study area. As represented in Figure 8j, the water body was
poorly classified using MS-RF and showed confusion with the grass class. In this scenario, the present
water body in the second study area was a pond with extremely different reflectance from the training
samples obtained in the first study area and was more obvious in the MS-RF classified map compared
to other algorithms because of the RF algorithm sensitivity to training. RF is sensitive to the size of
training samples and the selection of an accurate representative of each class for classification [84].
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Moreover, utilizing MS-DT resulted in misclassification between the tree and dark concrete classes,
and between the grass and tree classes (Figure 8c). DT demonstrated a minor confusion between
the bare soil, type 2 clay tiles, dark concrete, and asphalt, as shown in Figure 8c,f,i,l. As shown in
Figure 8d,e, most of the roof types were categorized in an extremely similar manner by utilizing RF
and SVM. MS-SVM showed a minor confusion in some areas between the asphalt and dark concrete,
as shown in Figure 8h, whereas MS-RF showed a relatively better differentiation between asphalt and
dark concrete for the same area, as shown in Figure 8g.
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6. Conclusions

Accurate and up-to-date urban LULC information is crucial for urban planning, management
and environmental applications. UAVs allow the acquisition of remotely sensed data with UHSR,
as high as 1 cm, in a flexible and inexpensive manner, significantly contributing to the initiation of
a wide spectrum of applications. This study aimed to achieve an accurate and detailed urban LULC
classification in a heterogeneous landscape using GEOBIA and ML models from UHSR drone-based
images. Given the high-level details of UAV images and the limited amount of spectral information,
a MS GEOBIA approach that integrates MS image segmentation evaluation, MS FS, and hierarchical



Remote Sens. 2020, 12, 1081 23 of 27

ML classification algorithms was used to generate detailed LULC urban maps from the fusion of
orthophotos and DSMs. Two UAV-based images were used to implement and evaluate the efficiency
of the proposed method. Three commonly used supervised ML models, namely, RF, SVM, and DT,
were compared within the MS/hierarchical segmentation and classification approach. The MS-RF
classification achieved the highest accuracy, with an OA of 94.40% and a K of 0.938, followed by
MS-SVM with an OA of 92.50% and a K of 0.917 and MS-DT with an OA of 91.60% and a K of 0.908.
The applicability of the proposed approach to the dataset of the second study area showed excellent
performance when MS-SVM and MS-RF were used. The proposed framework exhibited enormous
potential for the detailed mapping of heterogeneous urban areas from UHSR RGB and DSM images.
The results obtained from this approach can serve as vital information and input for scientists, decision
makers, and city planners.
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