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Abstract: Tree species classification is important for the management and sustainable development
of forest resources. Traditional object-oriented tree species classification methods, such as support
vector machines, require manual feature selection and generally low accuracy, whereas deep learning
technology can automatically extract image features to achieve end-to-end classification. Therefore,
a tree classification method based on deep learning is proposed in this study. This method combines
the semantic segmentation network U-Net and the feature extraction network ResNet into an improved
Res-UNet network, where the convolutional layer of the U-Net network is represented by the residual
unit of ResNet, and linear interpolation is used instead of deconvolution in each upsampling layer.
At the output of the network, conditional random fields are used for post-processing. This network
model is used to perform classification experiments on airborne orthophotos of Nanning Gaofeng
Forest Farm in Guangxi, China. The results are then compared with those of U-Net and ResNet
networks. The proposed method exhibits higher classification accuracy with an overall classification
accuracy of 87%. Thus, the proposed model can effectively implement forest tree species classification
and provide new opportunities for tree species classification in southern China.

Keywords: tree species classification; Res-UNet; orthophoto; conditional random field

1. Introduction

Tree species classification is highly significant for sustainable forest management and ecological
environmental protection [1]. High-spatial-resolution remote sensing images are preferred for detailed
tree classification because of their better spatial characteristics.

In recent years, significant advances have been made in high-scoring image classification
methods, which are typically characterized into pixel-based classification [2–4] or object-oriented
classification [5–8]. Pixel-based classification methods use pixels as the unit of classification; they
mainly consider the band spectral intensity information of the pixel and ignore the spatial structure
relationship and contextual semantic information [9]. For high-resolution remote sensing images with
fewer bands, pixel-based methods will lead to substantial redundancy in the spatial data, resulting
in “salt and pepper” effects. Many scholars combined manual feature extraction with traditional
object-oriented methods for tree species classification. Immitzer et al. [10] performed a Random Forest
classification (object-based and pixel-based) using spectra of manually delineated sunlit regions of tree
crowns and the overall accuracy for classifying 10 tree species was around 82%. Li et al. [11] explored
the potential of bitemporal WorldView-2 and WorldView-3 images for identifying five dominant urban
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tree species with the object-based Support Vector Machine and Random Forest methods. The study
showed that tree species classification accuracy is higher in bitemporal images. Ke et al. [9] used
three segmentation schemes to evaluate the synergistic use of high spatial resolution multispectral
imagery and low-posting-density LiDAR data for forest species classification using an object-based
approach and synergistic use improved the forest classification. However, these methods require
manual feature selection, which is subjective and therefore complicates the extraction of high-quality
features [12–14]. With the development of deep learning [15], increasing numbers of researchers are
using neural networks to automatically extract features, thereby eliminating the need for manual
feature selection [16–18].

Since being proposed by Hinton in 2006 [19], deep learning theory has resulted in significant
progress in scene recognition, object detection, and remote sensing image classification [20–25]. The
most representative architecture is the convolutional neural network (CNN), which is a multilayer
neural network whose design is derived from the concept of subregions and the hierarchical analysis
revealed by study of the mammalian visual cortex [26]. Deep layers such as textures, boundaries,
and topological structures can be obtained from feature maps, resulting in high classification scores
in the classification tasks of ImageNet and PASCAL VOC (pattern analysis, statistical modeling,
and computational learning visual object classes) datasets [27]. He et al. [28] proposed a method of
combining saliency and multilayer CNN to classify two high-scoring image scene datasets of UC
Merced 21 and Wuhan 7. Zhang et al. [29] stacked multiple fully connected layers of CNN together to
extract multiscale convolutional features and perform aircraft target detection in high-scoring images.
Furthermore, Khan et al. [30] solved the problem of multilabel scene classification for high-scoring
images through an improved CNN network. In the field of tree species classification, it became
common to use improved CNN for tree species classification. Sun et al. [31] modified three different
deep learning methods (i.e., AlexNet, VGG16, and ResNet50) to classify the tree species, as they can
make good use of the spatial context information and VGG16 had the best performance, with an
overall accuracy of 73.25% for 18 tree species. Hartling et al. [32] used Dense Convolutional Network
(DenseNet) for tree species classification and examined its ability to classify dominant tree species
within a highly complex urban environment using a data fusion approach with high spatial resolution
multispectral imagery and LiDAR datasets.

Typically, a CNN network will connect several fully connected layers after the convolution layer
and map the feature map generated by the convolution layer into a fixed-length feature vector [33].
The general CNN structure is suitable for image-level classification and regression tasks because it
desires the probability of classification of the input image at the end. However, the desired output of
remote sensing image tree classification is a classification map of the same size as the input image.
To solve this problem, Long et al. [34] proposed the fully convolutional network (FCN) in 2015 and
explained its application to semantic segmentation. Ronneberger et al. [35] improved the FCN and
proposed the U-Net network. Many subsequent classification studies are based on the idea of the
FCN network. Fang et al. [36] applied the FCN to the classification of high-resolution remote sensing
images; their results showed that the FCN can better obtain the essential features of ground features in
images. Moreover, the mean drift segmentation algorithm can be used to optimize the edge of the
obtained probability map results and improve the classification accuracy. Fu et al. [37] proposed an
accurate classification approach for high-resolution remote sensing imagery based on the improved
FCN model. The average precision, recall, and Kappa coefficient are 0.81, 0.78, and 0.83, respectively.
Flood et al. [38] manually labeled 3-band Earth-i imagery for the presence of trees or large shrubs and
used the U-net neural network architecture to map the presence or absence of trees and large shrubs
across the Australian state of Queensland.

However, the FCN does not consider the spatial relationship between pixels when categorizing
tree species in remote sensing images. Moreover, it lacks spatial consistency and cannot extract
more useful spatial and spectral features [34]. The obtained tree species results are not sufficiently
accurate and the spatial details of the images are relatively low resolution; therefore, the accuracy of the
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classification task is unsatisfactory for complex feature information. The U-Net network can combine
the underlying spatial feature obtained by downsampling with the input of upsampling through skip
connections to improve its ability to obtain tree edge information. However, gradient degradation
commonly occurs during the process of network deepening. The ResNet network has a unique residual
unit, which can avoid gradient degradation in the process of network deepening [39]. Introducing it
into U-Net network has become a current research hotspot. Some scholars have carried out related
research in the fields of single target extraction and urban land classification. Chu et al. [40] proposed
a method based on U-Net that used ResNet replaced contraction part for sea-land segmentation.
Xu et al. [41] designed an image segmentation neural network based on deep residual networks and
used a guided filter to more effectively extract buildings in remote sensing imagery. Zhang et al. [42]
proposed novel multiscale deep learning models, namely ASPP-UNet and ResASPP-UNet for urban
land cover classification based on very high-resolution satellite imagery and ResASPP-UNet produced
the highest classification accuracy.

However, previous studies mainly performed simple binary classification by combining U-Net
and ResNet, and the network structure was relatively simple. Other studies mainly addressed urban
land use classification problems and therefore the ability to classify tree species in complex forest
type is not clear. The problem of small differences in spectral characteristics between tree species
brought challenges to tree species classification. Therefore, the main objectives of this study include
the following: to combine U-Net and ResNet and propose a Res-UNet network suitable for tree
species classification. The convolutional layer of U-Net is replaced with the basic unit of ResNet,
which is used to extract multiscale spatial features and simultaneously solve the gradient degradation
problem of deep networks for an increasing number of network layers. At the output of the network,
post-processing with the conditional random fields (CRF) is proposed to optimize the tree species
segmentation graph; to evaluate the ability of airborne CCD (charge coupled devices) images to identify
complex forest tree species in the south using the Res-UNet network; and to analyze the parameters
that affect the classification ability of the model.

2. Materials and Methods

2.1. Study Area

The study area is located in the Jiepai Forest Farm of the Guangxi Gaofeng State Owned Forest
Farm in Nanning, Guangxi Province, southern China. As shown in Figure 1, it is located at 108◦31′

east longitude and 22◦58′ north latitude. The average annual temperature is approximately 21 °C,
the average annual rainfall is 1304.2 mm, and the red soil layer is deep, which is suitable for the
growth of tropical and subtropical tree species [43]. The forest cover in the study area is dominated by
artificial forests, predominantly eucalyptus (Eucalyptus robusta Smith), Illicium verum (Illicium verum
Hook.f.), wetland pine (Pinus elliottii Engelm.), Masson pine (Pinus massoniana Lamb.), Chinese fir
(Cunninghamia lanceolata (Lamb.) Hook.), and other broad-leaved tree types. Among them, eucalyptus
(Eucalyptus robusta Smith) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) are planted over
large areas, which has certain advantages for classification. Some broad-leaved tree species have a
small planting area so are classified as other broad-leaved trees. Some roads also exist in the study
area. The classification system is shown in Table 1.
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Large area eucalyptus, there are many logging 
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Illicium verum Pure Illicium verum forests 

Pinus massoniana Pure Pinus massoniana forests 

Pinus elliottii A small amount of pure wetland pine forest land 

Mytilaria laosensis Mytilaria laosensis and Chinese fir mixed forest 

Other broad-leaved Small amount of unknown broadleaf 

2.2. Acquisition and Preprocessing of Remote Sensing Image Data 

The aerial flights took place on January 13, 2018 and January 30, 2018. The aerial photography 
area was 108°7′ to 108°38′ east longitude, 22°49′ to 23°5 ′ north latitude, measuring approximately 125 
km2. The specific area is shown in Figure 1. The actual flight altitude was approximately 1000 m, and 
the weather on the day of data acquisition was clear and cloudless. The onboard LiCHy (LiDAR, 
CCD, and Hyperspectral) system of the Chinese Academy of Forestry is equipped with an aerial 
digital camera to acquire CCD images [44]. It is also equipped with a LiDAR scanner and a 

Figure 1. Geographical location of Gaofeng Forest Farm Boundary (top left), the CCD orthophoto
of Jiepai Field and study area (bottom left), the CCD orthophoto of aerial area (top right), the CCD
orthophoto of study area (bottom right).

Table 1. Classification system of the study area (Figure 1 (bottom right)).

Type Common Name Note

Nonforest land Roads Nonforest land mainly includes roads

Forest land

Other forest land Mainly includes some auxiliary production land

Cunninghamia lanceolata Pure Chinese fir forests

Eucalyptus robusta Large area eucalyptus, there are many logging
areas in the forest

Illicium verum Pure Illicium verum forests

Pinus massoniana Pure Pinus massoniana forests

Pinus elliottii A small amount of pure wetland pine forest land

Mytilaria laosensis Mytilaria laosensis and Chinese fir mixed forest

Other broad-leaved Small amount of unknown broadleaf

2.2. Acquisition and Preprocessing of Remote Sensing Image Data

The aerial flights took place on January 13, 2018 and January 30, 2018. The aerial photography area
was 108◦7′ to 108◦38′ east longitude, 22◦49′ to 23◦5 ′ north latitude, measuring approximately 125 km2.
The specific area is shown in Figure 1. The actual flight altitude was approximately 1000 m, and the
weather on the day of data acquisition was clear and cloudless. The onboard LiCHy (LiDAR, CCD, and
Hyperspectral) system of the Chinese Academy of Forestry is equipped with an aerial digital camera
to acquire CCD images [44]. It is also equipped with a LiDAR scanner and a hyperspectral sensor for
LiDAR Data, hyperspectral data, inertial measurement unit (IMU), and GPS data. The aviation digital
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camera has 60 million pixels, a lens focal length of 50 mm, and an image spatial resolution of 0.2 m,
including three bands of red, green, and blue.

2.3. Ground Survey Data and Other Auxiliary Data

The ground data survey was conducted at Gaofeng Forest Farm from January 16, 2018 to February
5, 2018. First, the GF-2 data were visually interpreted to determine the location of the classification
area. Then field survey was conducted in the classification area to understand the distribution and
characteristics of tree species. In addition, a vector map of the entire forest farm provided by the
Guangxi Academy of Forest Sciences was used to assist in making labels for training samples.

2.4. Datasets Production

The datasets used in this study were cropped from the entire image of entire aerial area (as shown
in Figure 1 (top right)). The training data comprised 1000 images with a pixel size of 1024 × 1024
including all categories in the classification system. The test data size was 5334 × 4951 pixel images
and training data and test data are independent of each other. Based on forest farm vector data, visual
interpretation, and a field survey, the tree species categories were marked as labels. In order to meet
the required number of samples during the training process, data enhancement operations such as
translation and rotation were performed on the training data to form a total of 2000 images that were
sent to the neural network as a training set. To enhance the robustness of the network, the training
sets were divided into training data (80%) and validation data (20%) using the stratified sampling
method. The number of training samples and validation samples in each category is shown in Table 2.
In addition, this study used 40%, 60%, 80%, and 100% of the training sets for training in order to
explore the most suitable number of training samples.

Table 2. Number of training and validation samples for each tree species category after
data augmentation.

Type Training Samples Validation Sample

Eucalyptus 288 72
Illicium verum 260 65

Roads 120 30
Pinus massoniana 168 42
Mytilaria laosensis 111 28
Other broad-leaved 76 19

Other forest land 200 50
Chinese fir 224 56

Pinus elliottii 153 38
Total 1600 400

2.5. Workflow Description

In this study, an improved U-Net network was used to classify high-resolution images of tree
species. The convolutional layer of the network was represented by the residual unit of the ResNet
network. The classification process was shown in Figure 2: 1024 × 1024 image blocks were cut from
the entire image and the real feature categories were labeled as training samples. The training samples
were used as the training set after image enhancement. The selected test sample size was 5334 × 4951,
which contained nine feature types. The same method was used to label the true feature types. The
image block instead of the pixel unit was sent to the network for training, and the model loss was
obtained after training. The model parameters were updated by gradient back propagation until
the optimal parameters were obtained. In the classification stage, the test set was sent to the trained
network for prediction, and the prediction result was subjected to CRF post-processing to obtain the
final classification map.
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2.6. Network Structure

2.6.1. ResNet Network

Kaiming He et al. [39] proposed the ResNet network in 2015, which won first place in the
ImageNet competition classification task. ResNet was proposed to solve the problem of deep gradient
degradation. Thus, many subsequent methods have been based on either ResNet50 or ResNet101.
ResNet refers to the VGG19 network on which it is based; it replaces the fully connected layer with a
global average pool and uses a connection method called “shortcut connection” (see Figure 3). The
feature map is composed of a residual map and an identity map and the output is y = F (x) + x.
Residual learning is easier than original feature learning. When the network has reached the optimum,
it continues to deepen and the residual approaches zero. At this time, the network only performs
identity mapping, and its performance does not decrease with increasing depth, which avoids the
degradation problem caused by network deepening. In this study, two residual units were designed
for different model requirements. As shown in Figure 4, when the number of input channels and
output channels was equal, the residual unit shown in Figure 4a was used to perform three 3 × 3
convolution operations on the input and output together with the original input, using a stride of one.
Conversely, when the number of input channels and output channels was different, the residual unit
of Figure 4b was used with a stride customized, and 3 × 3 convolution was performed on the input
and output with the results after three convolution operations. The ResNet network in this study was
composed of these two types of residual units. In order to achieve the tree species classification task,
the residual unit 4b was used at the output end of the network instead of the fully connected layer. A
two-dimensional feature map was output, and softmax was used for pixel-by-pixel class prediction.

2.6.2. ResNet-Unet Network

Previously, when CNN was used for classification tasks, the input could only take the form
of images and the output was the corresponding labels; however, many users wish to obtain the
classification results for each pixel in visual tasks. Ronneberge et al. [35] proposed the U-Net network
in 2015, whose network structure is shown in Figure 5. In the structure, “3 × 3 conv, n” represents the
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convolution layer with a convolution kernel of 3 × 3 and number of input channels is n, “max_pool_2
× 2” represents the maximum pooling layer with a step size of two, “3 × 3 deconv” represents the
convolution kernel with a 3 × 3 transposed convolution layer, “concat” refers to splicing two tensors,
and “m × m” such as “256 × 256” means m-m size of feature map. It was mainly used for medical
image analysis, before gradually being used in image classification tasks. U-Net is also a variant of the
CNN that has been improved using FCN. U-Net is composed of two main parts: the contraction path
and the expansion path. The contraction path is used to capture the semantic information of the image,
whereas the symmetrical expansion path is used to accurately locate the semantic information. The
fully connected layer is not used in the network structure. It reduces the number of parameters that
need to be trained, enabling the network to perform end-to-end output more efficiently.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 18 
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Our tree classification strategy used the idea of semantic segmentation. Based on the advantages
of the U-Net network, this study proposed a Res-UNet network by combining U-Net and ResNet and
the following improvements were made for the classification of tree species: (1) The convolutional layer,
pooling layer, and residual unit were modified. (2) A residual unit was inserted to extract the image
space features before fusing the feature maps of the downsampling layer and the upsampling layer,
so as to adapt to the classification of complex tree species. (3) Linear interpolation was used instead
of deconvolution to reduce the model complexity to a certain extent. (4) The final output level was
modified to nine to distinguish the nine tree species. (5) At the output of the network, post-processing
with the CRF is proposed to optimize the tree species segmentation graph. The network structure was
shown in Figure 6. It includes downsampling and upsampling. In the structure, “3 × 3 conv, n” and
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“m ×m” such as “256 × 256” have the same meaning as U-Net, “resize_bilinear” represents bilinear
interpolation, and “add” refers to connecting two matrices.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 18 
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In the downsampling network structure, four residual units with a step size of two are used for
feature extraction. Every time the feature map passes through a residual unit, its size is doubled and
the number of convolution filters is doubled. In each residual unit, the data is normalized in batches to
ensure that each forward propagation is output on the same distribution as the maximum. In this way,
the distribution of the data samples referenced in the backward calculation will be the same as that in
the forward calculation, ensuring a uniform distribution, leading to more meaningful adjustment of
the weights and avoiding the problem of gradient explosion during network training. The activation
function is rectified linear unit (relu), which enables the sparse model to better mine relevant features
and fit the training data to accelerate network convergence.

When using a full CNN for high-scoring image classification, in order to achieve end-to-end
classification, deconvolution is often used for upsampling operations to upsample the feature map to
the size of the input image. However, deconvolution needs to learn a large number of parameters and is
computationally intensive. The bilinear interpolation algorithm does not require learning parameters,
reducing the amount of calculation [45]. Therefore, this study used bilinear interpolation instead of
deconvolution and analyzed its impact on classification performance. So, in the upsampling network,
a linear interpolation operation is used instead of deconvolution. Every time the linear interpolation is
performed, the feature map is doubled until it increases to the size of the input feature map, so that
the entire network can achieve end-to-end input. In the linear interpolation process, as the number
of convolutions increases, the extracted features are more effective; however, the loss of feature map
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spatial information can easily occur. Therefore, feature maps with the same size in the upsampling
layer and downsampling layer are combined to obtain a feature map with higher spatial resolution.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 18 
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In this study, the downsampled feature map was first sent to a residual unit with a step size
of 1 then upsampled. When the upsampling features were fused, the output of each layer of the
upsampling was first subjected to a residual operation with a step size of one to ensure that it has
the same size and number of channels as the corresponding upsampling layer. At the output of the
network, a 1 × 1 convolution layer was used to obtain a feature map with the same number of output
channels as categories. The proposed Res-UNet network enables the feature map to be restored to the
input size by extracting the deep features of the image to achieve end-to-end classification.

2.7. Conditional Random Field (CRF)

The CRF is a discriminant probability model, which is an improvement on the Hidden Marko
Model (HMM) and Maximum Entropy Markov Model (MEMM). CRF overcomes the limitation of
HMM whereby it can only define specific types of feature functions. Instead, the CRF can define a
larger number of feature functions, and the feature functions can use arbitrary weights. MEMM is
only normalized locally; thus, it is easy to fall into local optimization. In the CRF model, the global
probability is counted. When normalizing, the global distribution of the data is considered, the problem
of label offset of the MEMM is solved, and the global optimum can be obtained.

In image segmentation, CRF treats each labeled pixel as a random variable in a Markov random
field, and the entire image is a global observation. Then, the energy function labeled x can be
expressed as:

E(x) = Σiϕu(xi) + Σi<jϕp
(
xi, xj

)
(1)
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The first item is a data item, which is the segmentation result of CNN, and it represents the
probability that the xi-th pixel belongs to each category. The second term is a post-processing smoothing
term, which represents the difference in gray value and spatial distance between the two pixels xi
and xj. At this time, the most likely label combination can be obtained by minimizing the energy
function E (x). Then, the optimal segmentation result can be obtained. Post-processing is critical
to the classification results. In order to verify the impact of the classification results using CRFs for
post-classification processing, a CRF operation was added to the network output.

2.8. Network Training and Prediction

During network training, the model parameters were initialized randomly and the training set
was input into the model for training. The average cross-entropy loss was used to calculate the loss of
the model, where the loss function is expressed as follows:

loss = −
1
m

m∑
i=1

[xi log(zi) + (1− xi) log(1− zi)] (2)

Here, m represents the size of the mini-batch, and x_i and z_i represent the predicted and true values
of the ith sample in each batch, respectively. The loss was forwarded and the network parameters
were optimized using the Adam optimizer [46]. The calculation formula of the Adam optimizer is

θt = θt−1 −α∗ m̂t/
(√

ŝt + ε
)

(3)

where θ is the weight, α is the learning rate, t is the number of training iterations, m is the momentum
vector, s is the squared cumulative vector of the gradient, and ε is an infinitely small number.

Finally, under the optimal model, the learning rate was set to 1e-5, the batch size was 1, and
60,000 rounds were trained until the accuracy ceases to improve. The model weights were guaranteed.
During prediction, due to computer memory limitations, the model predicts the 256 × 256 area of
the test image each time and uses CRF for post-processing until it traverses the entire image to
obtain the classification result map. This study used Python based on the TensorFlow deep learning
framework. The hardware configuration of the operating platform included Intel®Xeon (R) CPU
E5-2620 v4@2.10GHZ and two nvidia GeForce GTX 1080Ti GPUs.

3. Results

3.1. Tree Species Classification Results with Different Training Samples

Table 3 shows the tree species classification accuracy in the Res-UNet (Linear interpolation + CRF)
network using 40%, 60%, 80%, and 100% of the training sets. When the training sample is 40% of
the training set, it shows very poor classification results, and the Kappa coefficient is only 0.683. In
addition, with the increase of the training set, the classification accuracy shows an upward trend, but
the increased amplitude gradually decreases. Therefore, this study used 100% of the training sets to
conduct experiments with different methods.

Table 3. Tree species classification accuracy in Res-UNet (Linear interpolation + CRF) networks with
different training sample numbers.

Number of Samples 40% 60% 80% 100%

Overall Accuracy 70.41% 79.87% 84.28% 87.51%
Average Accuracy 70.09% 78.69% 82.17% 85.43%
Kappa Coefficient 0.683 0.773 0.815 0.842
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3.2. Tree Species Classification Results

Figure 7 shows the tree species classification results for various classification methods. According
to the comparison and analysis of the classification results, Res-UNet has a better ability to distinguish
each tree species. Eucalyptus and Illicium verum can be better classified, but the small area of Mytilaria
laosensis is seriously misaligned. After post-processing with the CRF, the mixed phenomenon of
Chinese fir and other broad-leaved improved.
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Figure 7. Tree species classification results by different classification methods. (a) Ground truth
category, (b) the result of ResNet using bilinear interpolation and CRF, (c) the result of U-Net using
bilinear interpolation and CRF, (d) the result of Res-UNet using deconvolution and CRF, (e) the result
of Res-UNet using bilinear interpolation, and (f) the result of Res-UNet using bilinear interpolation
and CRF.

The tree species classification results of various methods are shown in Table 4. The classification
accuracy of the Illicium verum is high in various networks, indicating that various networks can
effectively extract the characteristics of the Illicium verum, and the classification results are relatively
stable. Except for other broad-leaved, Res-UNet improves the classification accuracy of tree species
from that of ResNet and U-Net. The classification accuracy of each tree species has been improved
to a different level after CRF post-processing was added; the overall classification accuracy increases
by 2.7%. The classification accuracy of tree species is also improved by using bilinear interpolation
instead of deconvolution, and the overall classification accuracy is improved by 5.8%. Figure 7f shows
the results of post-processing and upsampling using linear interpolation, which again indicates that
the proposed model achieves the best classification effect. Although the classification accuracy is
lower than the results obtained using hyperspectral imagery, it shows higher classification accuracy
compared to studies using three-band high-resolution image classification.
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Table 4. Classification accuracy of tree species with different classification methods.

Method

ResNet
(Linear

Interpolation +
CRF)

UNet
(Linear

Interpolation +
CRF)

Res-UNet
(Deconvolution
+ CRF)

Res-UNet
(Linear

Interpolation +
noCRF)

Res-UNet
(Linear

Interpolation +
CRF)

Overall Accuracy (%) 68.25 75.34 81.67 84.76 87.51
Average Accuracy (%) 65.12 74.45 81.09 85.23 85.43

Kappa Coefficient × 100 65.52 73.28 80.34 83.15 84.21

Eucalyptus 71.58 80.12 87.45 88.24 88.37
Illicium verum 84.32 81.09 85.21 87.13 87.62

Roads 68.15 74.58 81.07 82.97 83.57
Pinus massoniana 69.07 76.43 86.58 85.04 87.14
Mytilaria laosensis 58.23 61.98 72.32 75.36 78.65
Other broad-leaved 49.67 54.37 51.08 66.15 70.41

Other forest land 49.82 70.13 76.42 80.73 83.14
Chinese fir 55.89 72.64 79.21 85.43 86.01

Pinus elliottii 41.45 70.51 80.34 85.03 87.15

Note: The numbers with gray background in the table indicate the highest overall classification accuracy, average
classification accuracy, and Kappa coefficient among the various classification methods.

As shown in Figure 8, the ResNet, U-Net, and Res-UNet networks use linear interpolation instead
of upsampling and CRF post-processing training accuracy and cross-entropy loss curves, where the
x-axis represents the number of training iterations. After 80,000 iterations of training, the accuracy and
loss of U-Net and Res-UNet tend to stabilize. Among them, the accuracy of Res-UNet is slightly higher
than that of U-Net, and its loss decreases most rapidly to zero. Conversely, the U-Net loss drops to 0.3
and remains stable, whereas ResNet exhibits the lowest accuracy and loss convergence; thus, ResNet is
the least desirable model.
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Table 5 shows the number of parameters that need to be trained during different model training,
as well as the time required for model training and prediction. When linear interpolation is used
instead of the deconvolution operation in the upsampling process, the training times are approximately
equal. However, when using linear interpolation training, a small number of parameters need to be
trained, which reduces the complexity of the operation.

Table 5. Parameters, training, and prediction time of different classification methods.

Method ResNet Unet
(Deconvolution)

Unet
(Interpolation)

Res-UNet
(Deconvolution)

Res-UNet
(Interpolation)

Number of parameters 1,863,344 8,902,602 8,558,090 59,131,530 55,984,266

Prediction time (s) 112 110 111 126 127

Training time (h) 4 1 1 13 13
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4. Discussion

4.1. Parameters Affecting Model Classification Ability

4.1.1. Impact of CRFs on Classification Results

When using a deep neural network for image classification, the downsampling operation during
encoding will lose the image information, resulting in poor image contour restoration during decoding.
In addition, the convolution operation is locally connected so can only extract information from a
rectangular area around a pixel. Although repeated convolution operations can gradually increase the
rectangular area, it cannot be extracted even at the last convolution layer. The CRF model is based
on a probability map model, which calculates the similarity between any two pixels to determine
whether they belong to the same class and uses the global information of the observation field to
avoid errors caused by inappropriate modeling and compensate for the boundary smoothing problem
caused by deep neural networks. Based on the pixel probability calculated by the deep neural network,
the prior information of the local structure of the image is fused through CRF, which can effectively
improve the classification accuracy. In this study, the CRF post-processing operation reduced mixing
between other broad-leaved and Chinese fir species, especially for the other broad-leaved trees with a
sparse distribution in the lower right corner of the study area. The resulting boundaries were clearer
and smoother, and the classification accuracy was significantly improved. Figure 9 compares the
classification effect of the mixed tree species in the red box in Figure 7f after CRF post-processing.
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4.1.2. Effect of Bilinear Interpolation Instead of Deconvolution

Bilinear interpolation differs from ordinary linear interpolation methods; it calculates the value of
a point by finding the four pixel points closest to the corresponding coordinate, which can effectively
reduce the error. Assuming the source image size is m × n and the target image is a × b, then the
side-to-side ratios of the two images are: m/a and n/b. Typically, this ratio is not an integer. The
floating point is used during programming and storing. The (i, j) -th pixel point (i-row, j-column) of
the target image can correspond to the source image by the side length ratio, and its corresponding
coordinates are (i ×m / a, j × n / b). Obviously, this corresponding coordinate is not typically an integer.
The calculation principle of bilinear interpolation can obtain the calculation result of the integer to
avoid the occurrence of errors. Moreover, bilinear interpolation does not require learning parameters,
which reduces the complexity of the model. In this study, after using bilinear interpolation instead
of deconvolution, the number of parameters that the model required for training was reduced. The
classification accuracy of the other broad-leaved, Pinus elliottii, and Chinese fir categories increased by
19%, 6.8%, and 6.8% respectively. The classification accuracy of other broad-leaved leaves exhibited
the greatest improvement (19%). Furthermore, the overall accuracy and Kappa coefficients improved
by an average of 5.8% and 3.8%.
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4.2. Comparison of Improved Res-UNet with U-Net and ResNet Networks

The network operation results reveal that Res-UNet obtained the best classification results;
i.e., the highest classification accuracy and Kappa coefficient for various tree species, followed by
U-Net, with ResNet exhibiting the worst effect. When the ResNet network was used alone, the
classification results were fragmented, the edges were rough, the accuracy was low, and severe mixing
occurred between tree species. The improved Res-UNet network uses the ResNet residual unit instead
of the U-Net network convolution layer, which can extract information at different scales of the image
and identify tree species in smaller areas. At the same time, it avoids the gradient degradation problem
caused by the deepening of the network layer to obtain the best classification effect. Thus, the proposed
Res-UNet can be an effective method for the classification of complex tree species in southern China.

4.3. Comparison of Classification Accuracy for Different Categories

Because various broad-leaved tree species exhibited a sparse distribution, they were classified
into other broad-leaved categories. However, due to differences in the characteristics of different
broad-leaved tree species, the classification effect was not ideal, even though the accuracy was greatly
improved by improving the network. Notably, the planting area of eucalyptus was large and the
sample size was sufficient; it exhibited the highest classification accuracy of all tree species. The
classification accuracy of Illicium verum is second only to eucalyptus. Its clustered leaves are easily
distinguishable from other tree species. Therefore, assuming a sufficient sample size, the improved
Res-UNet network can be employed with high-spatial-resolution images to achieve higher tree species
classification accuracy.

4.4. Impact of Label Samples on Classification

When using CNNs to classify tree species in remote sensing images, the sample is very important;
however, labeling is difficult [47]. For the classification of broad-leaved tree species, the proposed
method exhibited relatively low accuracy due to the small sample size. Therefore, for tree species with
insufficient sample sizes, the classification accuracy is affected. The issue of sample making is gaining
increasing attention from scholars [48]. Some researchers have proposed a method of combining
unsupervised learning and semisupervised learning to make samples of each tree species using sparse
autoencoders and deep belief networks when testing organic carbon content [49]. It simplifies the
production of samples. In future research, we will try to further optimize the network structure to
address the small sample problem.

5. Conclusions

In this article, we proposed an improved Res-UNet network for tree classification using
high-scoring remote sensing images. This novel method uses the residual unit of ResNet instead
of the convolutional layer of the U-Net network; therefore, it can achieve multiscale feature
extraction of an image, allowing information to spread from shallow to deep layers while avoiding
degradation of network performance. Conditional random fields are used at the output of the
network for postclassification processing, which results in smoother tree species boundaries. By using
bilinear interpolation instead of deconvolution, the network performance is significantly improved.
Experimental results show that, compared with U-Net and ResNet, the improved Res-UNet method
can effectively extract the spatial and spectral characteristics of an image. For southern Chinese tree
species with small differences in their spectral characteristics, the overall accuracy, average accuracy,
and Kappa coefficients were 87.51%, 85.43%, and 84.21%, respectively. The proposed network provides
new opportunities for the tree species classification of high-spatial-resolution images.
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