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Abstract: Based on the theories of structure–function correlation in Geography, and landscape
pattern-ecological function correlation in Landscape Ecology, the correlation between land use
fragmentation and vegetation activity was quantified. Effective mesh size (meff) was calculated to
represent landscape fragmentation for land use, and the normalized difference vegetation index
(NDVI) was used to reflect vegetation activity. The geographically weighted regression (GWR) model
was applied to explore the spatial non-stationary relationship between meff and NDVI in a karst basin
of the southwestern China, where environmental factors (i.e., climate, topography, and vegetation)
are spatially heterogeneous. The spatial variation and scale dependence of landscape fragmentation
and its relationship with vegetation activity, as well as the influence of lithology types and landforms
relief, were considered. Firstly, the optimal ‘slide window’ size for landscape fragmentation was
determined to be 500 m, and spatial pattern of meff displayed clear heterogeneity with a serious degree
of fragmentation. Landscape fragmentation was more severe in carbonate areas than non-carbonate
areas, reflecting the influence of landforms relief. More serious fragmentation in dolomite areas
meant that the impact of human activities on the landscape morphological characteristics was much
more significant than that in the limestone areas with steeper slope. Multi-scale analysis was used
to verify a neighborhood size of 7 km for GWR in the study area. Negative effects on vegetation
activity from landscape structural changes were more significant in limestone areas, which may
be due to the more vulnerable ecosystems there. This research can provide scientific guidance for
landscape management in karst regions as it considers the multi-scaled and spatially heterogeneous
effects of lithology, geomorphology, and human factors on landscape structure and its correlation
with vegetation activity.

Keywords: landscape fragmentation; vegetation activity; multi-scale; spatial variability; geo-statistic
methods; karst areas of China

1. Introduction

The structure–function correlation is a basic principle of geographic research [1,2], of which coupled
studies on landscape patterns and ecological function in Landscape Ecology [3] are an important aspect.
Most previous studies on the influence of land use on ecological function or vegetation activity have
mainly focused on the type transformation and quality alteration [4–6]. For example, satellite-based
vegetation indices and land use maps were applied to analyze the spatio-temporal difference in
vegetation coverage among different land use types [7]. A field survey and model simulations were
also combined to reveal the statistical relationships between land use and vegetation growth [8].
Furthermore, although landscape pattern indices have been widely applied to calculate land use
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structure [9], a quantitative investigation on the effects of land use changes on vegetation activity by
embedding landscape indices has not attracted sufficient attention [10].

Many studies have pointed out that vegetation coverage, productivity and other indicators reflect
the status of vegetation activities [11,12]. It is an important research content of physical geography
and landscape ecology to ecological functions by vegetation activities and reveal the response rule of
ecological functions to landscape pattern [13]. To a certain degree, the normalized vegetation index
(NDVI) is an objective indicator of large-scale vegetation cover and vegetation productivity, which
is widely used in the study of large-scale vegetation activities [14,15]. Furthermore, interest-driven
environmental restrictions lead to the significant spatial heterogeneity of land use types and landscape
fragmentation, especially in mountainous areas, where the heterogeneity of landscape pattern is caused
by dramatically undulating terrain [16]. Therefore, the calculation scale of landscape pattern index
and the bandwidth of fitting spatial relationships between landscape and vegetation activity should be
identified scientifically and reasonably, which is the basic problem of this kind of research [17,18]. In this
study, under the theoretical framework of the landscape pattern–ecological function relationship [19,20],
the typical karst basin of southwestern China is selected as the study area, and the spatial variability
of the landscape pattern is explored using geo-statistical methods, then the scale dependence and
spatial relationship between landscape fragmentation and vegetation activity are demonstrated using a
GWR model, in order to investigate the spatial heterogeneity of the impact of landscape fragmentation
on vegetation activity systematically, which is also referred to in the study of Ungaro et al. [21–23].
Meanwhile, due to the importance of geological background and topography to land use and vegetation
activity in karst mountain areas [24], the spatial patterns of landscape fragmentation and its ecological
effects were analyzed under different landform and lithology types. Based on these assumptions and
work, we aimed to obtain the relationship between landscape pattern and vegetation activities in karst
areas, and to further explore the rules of the relationship under different geological and geomorphic
conditions. At the same time, a set of methodological frameworks suitable for this region is expected
to be established through this research, which aims to provide a theoretical and methodological basis
for the spatial optimization and comprehensive treatment of rocky desertification areas.

2. Materials and Methods

2.1. Study Area

A typical karst peak-cluster depression area is selected in this study, located in the Guizhou
Province of southwest China at 104◦54′–106◦24′E and 26◦06′–27◦00′N, with an area of 4861 km2. The
study area lies in a subtropical monsoon climate zone, with a warm-humid climate and abundant
rainfall. Heavy rains are concentrated between July and September. Karst geology, a binary hydrological
structure, and thin and discontinuous soil are the typical environmental features of the study area [25,26].
Hydrological processes experience rapid changes, and the spatial distribution of water and soil resources
do not correspond well [27]. The lithology types include limestone, dolomite, interbedded limestone
and dolomite, limestone with clastic rocks, dolomite with clastic rocks, interbedded limestone and
clastic rocks, interbedded dolomite and clastic rocks, clastic rocks, and clastic rocks with carbonate,
among which limestone with clastic rocks LC and interbedded limestone and clastic rocks account for
more than half of the study area (Table 1). Karst landforms mainly consist of middle elevation plains,
middle elevation terraces, middle elevation hills, small relief mountains, and middle relief mountains
(Table 1). In terms of the Hydrological yearbook of the People’s Republic of China—Wujiang area, Yangtze
river basin, the tributary of Wujiang river runs through and there are two hydrological stations in this
study area (YC and LQC, Figure 1c). Combined with DEM data of this area, the area near YC station
is defined as upstream, the area near LQC station as middle stream, and the remaining area as the
downstream. This division is convenient for subsequent description and analysis of spatial pattern.
According to the rocky desertification data (http://www.forestry.gov.cn/), we found significant rocky
desertification in this area. The grade of rocky desertification degree is divided according to the bare
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reate of bedrock (Table 2), referring to the classification criteria of Bai et al. [28], Li et al. [29], and
Gao et al. [30]. In this study area, there are 55.3% of the area with potential, light, moderate, high and
severe rocky desertification. The area percentages, respectively, are 17.2%, 9.80%, 13.00%, 12.3%, and
3.00% (Figure 1f).

Figure 1. Maps of world karst distribution (a) and basic environmental elements (d, lithology;
e, landform; f, rocky desertification) for the study area(c) in the northwest Guizhou province of
China (b).
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Table 1. Proportion of different lithology and landform types in the study area.

Description Area(km2) Areal Percentage Abbreviation

Lithology
types

limestone with clastic rocks 373.3 7.68% LC
clastic rocks 471.0 9.69% CR

dolomite 316.5 6.51% DM
clastic rocks with carbonate 846.8 17.42% CC

limestone 231.4 4.76% LS
interbedded limestone and dolomite 1370.8 28.20% LDI

interbedded limestone and clastic rocks 1196.8 24.62% LCI
interbedded dolomite and clastic rocks 34.5 0.71% DCI

dolomite with clastic rocks 19.9 0.41% DC

Landform
types

middle elevation plain 98.2 2.02% MEP
middle elevation platform 92.4 1.90% MET

middle elevation hill 721.3 14.84% MEH
small relief mountain 3020.6 62.14% SRM

middle relief mountain 928.5 19.10% MRM

Table 2. Summary of model and structural components of the semi-variance functions for effective
mesh size.

Landscape
Fragmentation

Nugget
C0

Sill
C0+C

C0/(C0+C) Range
(a/km) Fractal R2 RSS Fit Model

meff 0.317 0.998 0.318 870 1.964 0.984 0.0016 exponential
model

2.2. Datasets

2.2.1. Land Use Data

The land use data set was provided by the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn), which was interpreted from
30 m-resolution Landsat TM images by supervised classification methods, based on field sampling
points (Figure 2a) collected by GPS with ENVI software. The efficient of Kappa was 0.81 through the
mode of Classifier-Accuracy Assessment in Erdas, which meant the remote sensing data of land use
was reliable. The region includes seven primary land use types: garden plot, woodland, grassland,
commercial land, industrial and warehouse land, water areas, and other land. The dominant types
are woodland and garden plot, occupying 43.6% and 26.2% of the region, respectively. Commercial
and service land, and industrial and warehouse land occupies a small area, mainly in the southeast.
Water conservation and facility land only accounts for 7.9% of the region, and other land use types are
scattered throughout the whole region. Approximately 20 secondary land use types exist (Figure 2a),
which were used to calculate the landscape fragmentation index.

2.2.2. MODIS NDVI Data

Vegetation activity can be indicated by NDVI [31], and also the conditions of vegetation cover and
productivity in a lot of researches [13,32]. NDVI from Moderate Resolution Imaging Spectroradiometer
(MODIS, http://ladsweb.nascom.nasa.gov/) dataset, provided by the EOS/Terra of National Aeronautics
and Space Administration, was used to reflect vegetation activity [33]. Then, 500-m spatial resolution
MODIS NDVI data were collected for the 2005 to 2010 period. This dataset was produced by maximum
value composite (MVC) methods to reduce the impacts of atmospheric clouds, shadows, solar zenith
angle, and aerosol scattering. Radiation correction and geometric rectification were also applied. It was
first cropped for the study area, and then transformed to the Krasovsky_1940_Albers projection. The
NDVI dataset was applied to detect the spatial relationship between landscape fragmentation and
vegetation activity.

http://www.resdc.cn
http://ladsweb.nascom.nasa.gov/
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Figure 2. Spatial patterns of land use (a) and vegetation activity (b) in the study area. Land use types
are: 21 = orchard, 22 = tea garden, 23 = other garden, 31 = forest land, 32 = shrubland, 33 = other forest
land, 41 = natural grassland, 42 = tame pasture, 43 = other grassland, 51 = wholesale and retail land, 52
= accommodation and catering land, 53 = commercial and financial land, 61 = industrial land, 62 =

mining land, 63 = warehouse land, 66 = other lands, 111 = river surface, 113 = reservoir surface, 121 =

vacant land, 122 = facility agricultural land, 123 = ridge , and 124 = saline-alkali land .

As shown in Figure 2b, NDVI values vary from 0.33 to 0.74, with an average of 0.64. Vegetation
activity, represented by the annual mean NDVI from 2005 to 2010, declines from west to east in the
study area. Spatial statistics show that areas with higher NDVI values (i.e., larger than the average)
occupy 47% of the whole area, and areas with NDVI values below 0.5 only account for 9%. This
indicates that vegetation activity is relatively strong, especially in the upstream area, which is mainly
covered with forest and shrub land (Figure 2a). Lower NDVI values, or weaker vegetation activity,
are widely distributed in downstream areas due to greater human disturbance, such as steep slope
reclamation, heavy grazing, and urbanization.

2.3. Methods

2.3.1. Landscape Fragmentation Index

Effective mesh size (meff), as an index of landscape fragmentation, was used to directly reflect
landscape patterns in this study [34]. Ecological processes, landscape composition, and spatial patterns
were all considered in this index to more objectively and comprehensively express fragmentation
level [35]. The meff is the average of the continuous distribution area of different land use types in the
region. The lower the mesh value is, the greater the degree of landscape fragmentation. The formula is:

me f f ( j) = A j·

n∑
i=1

(
Ai j

A j
)

2

=
1

A j

n∑
i=1

Ai j
2 (1)

where meff (j) is the meff of landscape j, n is the number of unbroken pieces in landscape j, and Aij is the
area of plaque i in landscape j. The meff ranges from grid size to the landscape area. The grid type
differs from its neighbors, and there is only one type of landscape. The landscape analysis software
FRAGSTATS [36] was used to calculate the meff value.

2.3.2. Geostatistical Method: Semi-Variance Function

Spatial heterogeneity is the main cause of landscape patterns [37,38], and the scale effect should
be considered in the analysis of spatial heterogeneity [39]. So, a geostatistical method was applied to
obtain the appropriate analysis scale. Geostatistics is based on the theory of regionalization variables,
and it is used to analyze random and structured natural spatial patterns with semi-variograms. In this
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study, an overall analysis of the spatial variation in this region would be carried out with the methods
of semi-variable function. This can be carried out by GS+ 7.0, which is a comprehensive geostatistics
program that is fast, efficient and easy to use.

The meff variogram was computed as half the expected squared increment of the values between
locations xi and xi+h:

γ(h) =
1

2N(h)

N(h)∑
i=1

[Z(xi) −Z(xi + h)]2 (2)

where N(h) is the number of pairs within a given spatial distance (and direction) known as lag h, and
Z(xi) and Z(xi+h) are values of the indicator variable at locations xi and xi+h, respectively.

The nugget C0, sill (C0+C), range, ratio between C0 and (C0+C), and determination coefficient
can quantify the degree of spatial variability. C0, which is the intercept on the y-axis, accounts for
uncorrelated spatial noise or for spatial structures not detected at the analysis scale, and reflects
internal randomness. C represents the spatial heterogeneity of structural factors, such as climate and
landforms. The sill is an indicator of the overall spatial variance of the data. C/(C0+C) is the ratio of
spatial heterogeneity of structural factors to the total spatial heterogeneity, which reflects the influence
of structural factors on total spatial heterogeneity [40]. The range (r) indicates the distance at which the
variogram reaches its sill. Data separated by a distance larger than the range are uncorrelated.

2.3.3. Geographically Weighted Regression Model

GWR is an extension of traditional regression methods, whereby local rather than global parameters
can be estimated [41]. It can address the issue of a spatial non-stationary process, in which the parameter
estimates are functions of location [42]. The relative value of the regression coefficient represented
the degree of correlation, and the local determination coefficient (R2), ranging from 0 to 1, indicated
how well the local regression model fit the observations [43]. The model is run for an observation
point, using a spatial kernel that focuses on that point, and weighs observations subject to a distance
decay function.

The model is expressed as:

yi = β0(µi, νi) +

p∑
k=1

βk(µi, νi)xik + εi (3)

where yi, xik, and εi represent the dependent variable, the independent variable, and the random
error term at location i, respectively. (µi, vi) denotes the coordinate location of the ith point, k is the
independent variable number. β0(µi, vi) expresses the intercept, and βk(µi, vi) is the slope coefficient for
xk at location i.

The parameters are estimated from:

β(µi, νi) = (XTW(µi, νi)X)
−1

XTW(µi, νi)Y (4)

where β(µi, vi) is the unbiased estimate of the regression coefficient, W(µi, vi) represents the weighting
matrix. X and Y are matrices for independent and dependent variables, respectively.

The weighting function (kernel function), can be calculated by the exponential distance decay
form, Gauss function:

ωi j = exp(−
d2

i j

b2 ) (5)

where ωij is the weight of observation j for location i, dij represents the Euclidean distance between
points i and j, and b is the kernel bandwidth. If observation j coincides with i, the weight value is 1, while
wij is decreasing according to a Gaussian curve as the distance dij increases. The optimal bandwidth
ensures that macro patterns are accurate and local information is distinct. Bandwidth is one of the
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most important parameters in this regression model, which is a nonnegative attenuation parameter
describing the functional relationship between weight and distance. The larger the bandwidth, the
slower the weight decays with distance. According to the theory of the model, AICc (revised Akaike
information criteria) value is the primary criteria for determining bandwidth. If the AICc values of
the two models differ by more than 3, the model with lower AICc values will be considered as the
better model.

2.3.4. Research Procedures

Based on land use data, landscape patterns and spatial variability were studied, and the spatial
correlation between meff and NDVI was analyzed using the following steps: (1) The degree of
landscape fragmentation was calculated by FRAGSTATS according to the size of the “sliding window”,
employing 30-m resolution land use data. (2) GS+ 7.0 was used to calculate the spatial heterogeneity
for different analysis scales (250 m, 500 m, 1500 m. etc.) and to determine the appropriate landscape
size. (3) Multi-scale analysis was carried out with the size of “sliding window” as the abscissa and the
value of spatial variability under the corresponding size as the ordinate. (4) Based on the multi-scale
analysis (i.e., multiple neighborhood sizes), the feature points of scale transformation are revealed and
regarded as sliding window size suitable for describing landscape fragmentation in this study area.
(5) Landscape fragmentation index was calculated based on the analysis size, and GWR were applied
to explore the relationship between landscape fragmentation and vegetation activity.

3. Results and Analysis

3.1. Spatial Heterogeneity of Landscape Fragmentation

3.1.1. Scale Dependence of Landscape Fragmentation

Landscape patterns are spatially correlated and scale-dependent [17]. The spatial variation of
landscape fragmentation differs from the scale variation, so an accurate analysis scale is crucial for
studying landscape patterns. Figure 3 shows the variation degree of spatial heterogeneity in landscape
fragmentation at different analysis scales, which reflects the spatial heterogeneity of structural factors.
A higher ratio indicates a stronger degree of spatial autocorrelation or a weaker degree of spatial
variation. The scale analysis of landscape fragmentation in the study area indicates a power law
relationship between effective mesh size and analysis scale (Figure 3). As shown in the Figure 3 of the
manuscript, the spatial differences controlled by the structural factors decrease gradually with the
analysis size changing from 1500 m to 250 m. It starts to stabilize at 500 m. On the other hand, the spatial
differences controlled by random factors also tends to be stable. Therefore, it is reasonable and accurate
to analyze the spatial difference under the analysis scale of 500 m. Furthermore, R2, which represented
the fitting effect, also reached 0.98. According to this experts’ advice, the C/(C0+C) of 250 m is similar
to 500 m, but a larger analysis scale of 500 m revealed sufficient spatial heterogeneity information, and
thus optimally reflected the intrinsic spatial heterogeneity scale of landscape fragmentation. Therefore,
an analysis scale of 500 m was chosen to calculate the landscape fragmentation. Meanwhile, in order to
keep the same scale with the landscape fragmentation, the NDVI product should also be 500 m, so as
to finally study the impact of landscape pattern on vegetation activities.
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Figure 3. Trends of spatial heterogeneity for landscape fragmentation at different scales.

3.1.2. Spatial Distribution of Landscape Fragmentation

From an overall perspective, the study area shows a different distribution of high and low meff

values, with a larger area of low meff values (Figure 4). Low meff values are mostly located in the
middle and lower streams of the study area, where the degree of landscape fragmentation is more
serious. In upstream areas, with high elevation and weaker human disturbance, there is less landscape
fragmentation. According to different land use types, the meff values of forest land are mostly high,
with an average of 12.13, which is greater than the mean of the whole region (11.70). This may be due
to the concentrated and broad distribution of forest land, resulting in weaker landscape fragmentation
compared to other land use types. The values of the other four land use types are mostly below average.

Figure 4. Spatial distribution of meff values (hm2) in the study area.

At the same time, we further analyzed the spatial heterogeneity of this area based on semi-variance
function (Table 2), and exponential model was used to simulate spatial variance of meff, showing
good fitting effect, with R2 reaching 98.4%. Results indicate that the influences of random factors
are relatively weak, and account for 31.8% of the total impacts, and structural factors are dominant
(C = 68.2%). The degree of landscape fragmentation is high in the middle stream of the study area,
and is distributed on forest land, garden land, watershed, grass land, commercial services land, and
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other land use types. Furthermore, human activity is substantially higher in the middle stream. It is
concluded that the landscape pattern distribution is mainly impacted by the structural factors in the
study area, including unique geological conditions and highly fluctuating landforms, while the random
factors such as local climate factors and human activities have little influence.

3.1.3. Variation Characteristics of Landscape Fragmentation under Different Environmental Factors

Compared with other regions, the degree of landscape fragmentation is greater in this study
area, with an average meff value of 11.70. For example, in the urban fringe of Shunyi district in
Beijing, the average was 42.45, with a range of 7.2–98.01 [44], despite intense human activities. This
may be related to the special geological and geomorphological conditions, which led to landscape
fragmentation. Therefore, elevation, slope, lithology, and landforms were considered in the impact
analysis of landscape fragmentation, which paves the way for subsequent analysis of spatial relationship
between landscape fragmentation and NDVI.

Elevation and slope are the basic topographic factor. So the basic law of landscape fragmentation
with their changes should be preliminarily understood, as the analysis background of lithology and
landform conditions. It is found (Figure 5) that meff values increase with elevation, with the greatest
fragmentation in the range of 1000–1500 m, the weakest fragmentation in the range of 2000–2300 m.
However, the meff values fluctuate with the increase in slope, and there is no obvious upward or
downward trend. Variations in meff value at different elevation and slope are both not evident.

Figure 5. Statistical analysis of the index of landscape fragmentation at different elevation (a) and
slope (b).

The results (Table 3) of the statistical analysis on the landscape fragmentation of different lithology
types suggest that a high fragmentation degree for continuous and intercalated carbonate lithologies
(i.e., LS, DM, LC, DC) was at a high level, and the type of rock alternating (i.e., LCI, DCI) was low.
It can be deduced that the degree of fragmentation is more serious in carbonate than non-carbonate
rocks, and that the higher the content of carbonate, the more serious the fragmentation, which may
be due to strong karst erosion in the carbonate region. For dolomite lithologies, the order of meff

values is DM<DC<DCI (Table 3), indicating that fragmentation degree gradually increases as the
content of clastic rock decreases. Areas of dolomite with clastic rocks occur in regions of high elevation
and steep slopes (middle relief mountain), which result in a fragmented landscape, but limestone
regions are found in small relief mountains. The same pattern is not found in limestone rocks (i.e.,
LCI>LS>LC), in that fragmentation degree first increases then decreases with increasing clastic rock
content. In addition, the fragmentation degree differs according to landform type, which combines
elevation, slope, and terrain (e.g. plain, hill). The degree of fragmentation is most serious for middle
elevation plains, and follows the order: middle elevation terrace>middle elevation hill>small relief
mountain>middle relief mountain, with meff values from 10.59 to 12.47.



Remote Sens. 2020, 12, 1134 10 of 16

Table 3. Statistical analysis of the index of landscape fragmentation by lithology and landform type.

Lithology and Landform Average meff
Value

Coefficient of
Variance

Lithology

limestone with clastic rocks (LC) 10.95 0.345
clastic rocks (CR) 11.08 0.350

dolomite (DM) 11.10 0.349
clastic rocks with carbonate (CC) 11.55 0.342

limestone (LS) 11.75 0.354
interbedded limestone and dolomite (LDI) 11.97 0.331

interbedded limestone and clastic rocks (LCI) 12.09 0.335
interbedded dolomite and clastic (DCI) 12.33 0.325

dolomite with clastic rocks (DC) 11.71 0.354

Landform

middle elevation plain (MEP) 10.59 0.345
middle elevation terrace (MET) 11.04 0.330

middle elevation hill (MEH) 11.30 0.342
Small relief mountain (SRM) 11.61 0.345

middle relief mountain (MRM) 12.47 0.317

3.2. Spatial Relationship Between Landscape Fragmentation and Vegetation Activity Based on GWR Model

3.2.1. Multi-scale Simulation Using GWR Model

GWR was used to analyze the spatial relationship between landscape pattern and vegetation
activity, and bandwidth (the analysis scale of correlation research) can impact the simulation effect
of regression. To ensure that GWR effectively describes the non-stationary spatial correlation, an
optimal bandwidth should be selected. Here, comprehensively considering the confirmed standard
of bandwidth and the actual meaning of weight function, a bandwidth of 7 km was selected as the
analysis scale for this GWR model in this study. The process is as follows.

An AICc value of 7 km is the smallest through model calculation, but the differences of AICc
values between 7km and 4 km, 5 km, 6 km, respectively, are less than 3. However, residual sum of
squares (RSS) and the coefficient of determination (R2) values of scales less than 7km seem to have
a good fitting effect, with low RSS and high R2 (Figure 6). Under this circumstance, the functional
relationship between bandwidth and weight is also considered. According to the Gaussian function,
the smaller the bandwidth, the greater the reduction in weight with the increase in unit distance,
which is similar to the inverse distance weight model. Apparently, this is inconsistent with the original
intention of the GWR model. Furthermore, Figure 6 shows that the value changes of different scales
gradually leveled off from 7 km, and the R2 was 0.46 at a bandwidth of 7 km. Taking the above reasons
into consideration, the scale of 7 km can not only meet the requirement of having a smaller AICc
value, meaning a better fitting effect, but also represents the macro pattern of the region accurately and
depicts the local information clearly.

Figure 6. Residuals (a) and R2 (b) of GWR models for different bandwidth scales.
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3.2.2. Spatially Relationships Between Landscape Fragmentation and Vegetation Activity

Due to its advantage of regional parameter estimation, the GWR model was used to quantify
the spatial correlation between landscape fragmentation and vegetation activity, with R2 being 0.46.
Considering that the prerequisite of the GWR method’s application is the spatial difference between
the independent and dependent variables—that is, the regression coefficients change with the spatial
position of independent variables [44] —this study conducted spatial autocorrelation analysis on the
regression coefficient. The spatial autocorrelation index of regression coefficients is 0.84, calculated by
the Spatial Statistics Tools—Spatial Autocorrelation mode of ArcGIS, which indicates that the coefficients
are non-stationary spatially. The Z value is more than 2.58 times standard deviation, which is statistically
significant at the significant level of 0.01.

The regression coefficients are clearly spatially heterogeneous (Figure 7). Positive and negative
correlations are distributed throughout the study area. Negative correlations between NDVI and
meff are mainly distributed in the northeast, and account for 45.4% of the whole region. Positive
relationships are mostly located in the east and west. In the upstream of the study area, the relationship
between NDVI and meff is predominantly positive. This can be attributed to the low degree of landscape
fragmentation in the upstream, which is mainly shrub and orchard land, and where vegetation cover is
in a good condition. In the middle stream, both positive and negative correlations are found. This area
shows high landscape fragmentation, and high NDVI may be influenced by temperature, precipitation
and terrain, among other factors. Downstream areas mainly show positive correlations. That is, the
more fragmented the landscape is, the lower the NDVI value. This also indicates that human activities,
such as uncontrolled exploitation and utilization of natural resources, have an important effect on
vegetation. Particularly in the southeast, the absolute value of the regression coefficients is significantly
larger on commercial services land and industrial warehouse land.

Figure 7. Spatial distribution of regression coefficients from the GWR models for NDVI and effective
mesh size.

3.3. Effect of Environmental Factors on the Spatial Relationship Between Landscape Fragmentation and
Vegetation Activity

The relationship between landscape patterns and vegetation activity shows significant spatial
heterogeneity. Lithology is an important and intrinsic factor of karst regions, which influences the
formation of landscape patterns and ecosystem function. The GWR coefficients of different lithology
types are analyzed statistically. Results show that the coefficients are positive in areas of limestone and
limestone mixed with clastic rocks, at 4 × 10−4 and 1.4 × 10−4, respectively, and those in continuous
dolomite (DM) areas are negative (−2.2 × 10−4). In limestone (LS) areas, the greater the degree of
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landscape fragmentation, the poorer the vegetation activity. This rule becomes weaker as the content
of clastic rocks increases. Relatively higher correlations also indicate that ecological functions are
more sensitive to changes in the external environment. In contrast, the average GWR coefficient in
DM regions (meff = 11.10) is negative; the more severe the landscape fragmentation, the better the
vegetation activity. The terrain in DM regions is typically gentle, and may be affected by human
activities, including afforestation and grain for green in this area. In addition, statistical results (Table 4)
show that the GWR coefficient fluctuates with elevation and slope with no clear trend.

Table 4. Statistical analysis of GWR coefficients for different elevation and slope.

Elevation (m) GWR Coefficients Slope (◦) GWR Coefficients

910–1000 −5.7 × 10−4 0–5 −18.5 × 10−4

1000–1500 −19.6 × 10−4 5–10 −10.8 × 10−4

1500–2000 −5.6 × 10−4 10–15 1.3 × 10−4

2000–2300 −13.4 × 10−4 15–20 −14.1 × 10−4

A clearer effect of elevation and slope is observed for different landform types (Figure 8).
For example, negative relationships between landscape fragmentation and vegetation activity are
found in middle elevation hills, middle elevation terraces, and middle elevation plains. A positive
correlation occurs in small relief and middle relief mountains. In middle relief mountains, the positive
relationship reflects weak human disturbance. In middle elevation regions, human activity has a more
important impact on the relationship. Moreover, projects of rocky desertification management have
led to improvement of the ecological environment, but may have also led to landscape fragmentation.

Figure 8. Statistical analysis of GWR coefficients for different lithology (a) and landform (b) types.

4. Discussion

This research, guided by the relationship between geographical structure and function,
systematically explores the spatial relationship between landscape pattern and ecological function.
A set of methodological frameworks suitable for this region was constructed, through studying spatial
relationship between them. The regional rules obtained from this framework will provide scientific
support for the spatial optimization and treatment of rocky desertification areas.

The degree of landscape fragmentation is influenced by environmental factors (elevation, slope,
lithology and landform), both directly and indirectly. Carbonate lithology and terrain with higher relief
are typically more prone to landscape fragmentation. However, add to the effect of human activities,
the spatial distribution of landscape fragmentation is highly complex. Furthermore, this study also
found that the fragmentation degree and its relationship with vegetation activities showed obvious
differences in the different lithology types of karst areas. Specifically, landscape fragmentation in DM
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regions is significantly higher than in LS, LCI, DCI, and DC regions, where the terrain is steeper. In
flat areas, human activities are more intense, which enhances fragmentation. However, the ecological
function of the area with serious fragmentation is better, and we think this may be due to the ecosystem
restoration projects in the flat DM region. For areas of limestone dominance, the influence of human
activities is not greater than for the DM region. Due to the obviously positive relationship between
landscape fragmentation and vegetation activities in these areas, we found that the ecological functions
of landscape fragmentation are much more significant, and assume that they are more sensitive
to the changes of external physical environment. Meanwhile, we also found some problems. The
landscape fragmentation averages under different geological and topographic conditions (elevation,
slope, lithology and landform) are concentrated on the range of 10.6–13.5, which is smaller than the
range in the spatial pattern map of the whole study area, of 2.97–17.73. That is to say, under the same
geological or topographic conditions, different levels of landscape fragmentation can be distributed
with great differences, resulting in the lack of characteristic in the average value of the final landscape
fragmentation degree under a certain condition. This phenomenon indicates that the fragmentation of
region landscape is comprehensively affected by a variety of factors, with interactions between factors
playing important roles. Therefore, it is necessary to analyze the interaction of different factors, which
will be further studied in the future, in order to deeply understand the influencing mechanism of
landscape fragmentation. In addition, there are some uncertainties in this study. For example, the
possible impact of human activities is mentioned in the analysis of influence factors in this study,
but the limited data mean it is not quantified. So, if the impact of human activities is represented by
the corresponding human and economic parameters, the quantitative relationship between human
activities and topographic conditions and vegetation activities can be accurately explored, which can
further enhance the persuasiveness of the research results; we plan to do this in future research.

According to the above results of spatial pattern characteristics, it is found that this region does
have high spatial heterogeneity. So, considering the uniqueness of this karst area, a multi-scale analysis
should be conducted before calculating the meff and regression relationship, as is conducted in the
study. Based on the multi-scale statistical relation analysis, significant power law relations between
spatial variance and analysis scale, and exponential change rules between the determination coefficient
of spatial relationship of fragmentation-vegetation activity and analysis scale, are identified, of which
500 m and 7 km are intended to be the regional characteristic scales of fragmentation calculation and
relationship fitting, respectively.

Furthermore, the results of this study are of practical significance. For example, the meff value is
mostly low in dolomite regions, but the relationship between mesh and NDVI suggests a beneficial
effect of landscape fragmentation on vegetation activity. Thus, although ecological restoration can be
seen to be harmful through landscape fragmentation, it can also enhance the ecological function and
improve the ecological environment, which is the ultimate aim of landscape ecology research. These
results can provide more objective, scientific, and comprehensive theoretical support, and, furthermore,
provide guidance for ecological restoration.

5. Conclusions

The spatial relationship between landscape pattern and ecosystem process and function is complex,
yet it is the key to ecosystem services research and ecological restoration. In this study, the spatial
heterogeneity of landscape fragmentation and its spatially non-stationary relationship with vegetation
activity was detected using geostatistical analysis and a GWR model for this study area. Moreover, a
multi-scale analysis based on landscape size and GWR neighborhood size was conducted in view of
spatial variability. Considering the impact of topography and lithology on land use and vegetation
activity in mountainous karst areas, the influences of these factors were investigated.

Firstly, we found the spatial pattern of landscape fragmentation showed clear heterogeneity,
which is mainly dominated by the structural factors (e.g., geology, topography, and other physical
environmental factors). The fragmentation degree was mostly high in the region, with the range
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of 2.97–17.73 and the mean of the whole region being 11.70. Among them, the value of woodland
is the largest, and the value is 12.13. Moreover, compared to non-carbonate regions, the degree of
landscape fragmentation was greater in carbonate areas, with the smallest value of different lithology
types being 10.95 in the LC area, as well as the DM areas. The influence of human activities on the
morphological characteristics of dolomite regions was much more significant than that in limestone
regions. Secondly, the spatial relationship between landscape fragmentation and vegetation activity
was also highly heterogeneous, and negative correlations are mainly distributed in the northeast,
accounting for 45.4% of the whole region. In limestone regions, larger coefficients, e.g., the largest
of 4 × 10−4 in LS areas, revealed significant negative effects on ecosystem function due to structural
changes, which also reflected the greater sensitivity and vulnerability of the ecosystem to environment
variations. Contrastingly, the coefficient of DM areas is the smallest, −2.2 × 10−4, which shows that
the fragmented landscape had a beneficial effect on ecosystem function in flat areas with dolomite.
This indicates that although the degree of landscape fragmentation may be exacerbated by ecosystem
restoration projects, it could also improve the conditions of vegetation cover. Through these works,
a methodology of multi-scale analysis for this area is also formed at the same time, including the
thought and method of analysis scale and bandwidth, which would be helpful to further improve the
landscape pattern and ecological effect in the karst mountain area.

Landscape ecology research contributes toward an understanding of ecosystem services and
how land management can enhance sustainability of ecosystem services in a changing landscape. We
suggest that the principles of "scientific analysis, prominent focus, clear objectives" should be paid more
attention in relation to karst ecological management and rocky desertification control. The surface relief
characterized by landscape fragmentation, and the ecological function characterized by vegetation
activity, as well as the regional differences of different lithology and geomorphic units, especially, will be
the scientific basis for treating both the symptoms and root causes and structure–function collaborative
management of rocky desertification in the future, which is also the key for land management and
urban planning. It is also an important impetus for ecological restoration and construction in this area,
and provides a representative case for landscape ecology research, further contributing to the in-depth
development of landscape ecology research.
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