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Abstract: Passive detection of a moving aerial target is critical for intelligent surveillance.
Its implementation can use signals transmitted from satellites. Nowadays, various types of satellites
co-exist which can be used for passive detection. As a result, a satellite signal receiver may receive
signals from multiple heterogeneous satellites, causing difficult in echo signal detection. In this paper,
a passive moving aerial target detection method leveraging signals from multiple heterogeneous
satellites is proposed. In the proposed method, a plurality of direct wave signals is separated in
a reference channel first. Then, an adaptive filter with normalized least-mean-square (NLMS) is
adopted to suppress direct-path interference (DPI) and multi-path interference (MPI) in a surveillance
channel. Next, the maximum values of the cross ambiguity function (CAF) and the fourth order
cyclic cumulants cross ambiguity function (FOCCCAF) correspond into each separated direct wave
signal and echo signal will be utilized as the detection statistic of each distributed sensor. Finally,
final detection probabilities are calculated by decision fusion based on results from distributed
sensors. To evaluate the performance of the proposed method, extensive simulation studies are
conducted. The corresponding simulation results show that the proposed fusion detection method can
significantly improve the reliability of moving aerial target detection using multiple heterogeneous
satellites. Moveover, we also show that the proposed detection method is able to significantly improve
the detection performance by using multiple collaborative heterogeneous satellites.

Keywords: decision fusion; distributed sensor; fourth order cyclic cumulants cross ambiguity
function; heterogeneous satellite; passive detection

1. Introduction

Satellite communications have attracted tremendous attention in both industries and academia
because of their significant advantages, such as all-weather operations, wide overage, strong viability,
and high reliability [1,2]. To achieve globalization and performance enhancement, satellites have
evolved from a single satellite model to a complicated system with multi-satellite concurrent
compatibility. Accordingly, in addition to navigation in the traditional application of satellite systems,
wireless communications and positioning can also be supported by current satellite systems. Recently,
representative satellite systems, such as the global positioning system (GPS), the digital satellite
broadcasting system (DVB-S) and the international maritime satellite (INMARSAT) have been widely
used in military, industries, and human life [3].
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Passive target detection using satellite illumination is an important application in satellite
systems, which utilizes signals to detect moving targets through signal processing technologies [4,5].
Most existing works on passive target detection makes a strong assumption of a single satellite,
in which only signals for a single satellite need to be processed [6–10]. However, in practice, a receiver
in passive target detection is likely to receive illumination signals from different satellites. Thus,
strong interference caused by undesired satellite illumination may greatly compromise the performance
of traditional passive target detection methods designed for a single satellite illumination [9,11].

In order to adapt to the new multiple heterogeneous satellites environments, in this paper,
we focus on developing the effective passive target detection method with multiple satellite
illumination. Many technical challenges have to be addressed in this regard. For example, the first
obstacle is interference suppression and expected signal purification. Specifically, a near-Earth orbit
target may be simultaneously covered by multiple satellite beams and reference signals transmitted in a
reference channel may be contaminated by unexpected signals, which makes the estimation of reference
signals very difficult [12]. In addition, interference caused by other satellite signals may have negative
impact on direct-path interference (DPI)/multi-path interference (MPI) suppression, resulting in poor
subsequent echo detection performance in a surveillance channel [13]. Thus, multiple satellite signals
received in the reference channel and the DPI/MPI in the surveillance channel should be purified and
suppressed, respectively, for effective passive target detection.

Another challenge in passive target detection is that satellite signals received by a satellite signal
receiver is generally weak. The huge propagation loss caused by the long-distance propagation from
satellites to satellite signal receivers leads to a low received power [14,15]. Furthermore, satellite signals
would be further weakened after being absorbed and reflected by a moving target, so-called target echo.
Therefore, a long coherent accumulation time need to be taken to detect extremely weak satellite echo.
To improve target detection probabilities, the viable option of developing a collaborative detection
system using multiple heterogeneous satellite signals will be studied in this paper.

In our earlier work, a passive method leveraging signals from multiple homogeneous satellites
was proposed for moving aerial target detection [16]. In this paper, a moving aerial target detection
method utilizing multiple collaborative heterogeneous satellites is proposed. the main contributions of
the paper are described as follows:

• For signal purification, parallel band-pass filters are employed to separate the direct wave signals
in the reference channel. Moreover, an adaptive filter based on normalized least mean square
(NLMS) is applied to suppress direct-path interference (DPI) and multi-path interference (MPI)
in the surveillance channel.

• The maximum value of the cross ambiguity function (CAF) and the fourth order cyclic cumulants
cross ambiguity function (FOCCCAF) of each separated direct wave signal and the echo signal
are used to improve the signal-to-noise ratio (SNR) of moving aerial target detection.

• Detection results are obtained by fusing the decisions of multiple sensors to enhance the reliability
of moving aerial target detection.

The reminder of this paper is organized as follows. In Section 2, the system model used in this
paper is presented. The separation of direct wave in the reference channel and suppression of DPI and
MPI in the surveillance channel are described in Section 3. Detection statistics construction and the
detector design are proposed in Section 4. In Section 5, the performance of the moving aerial target
detection is analyzed. Section 6 shows the numerical results to verify the classification performance.
Finally, Section 7 concludes the whole paper.

2. System Model

In this paper, a passive detection system, consisting of one moving aerial target, a satellite
signal receiver, and multiple collaborative heterogeneous satellites is considered in the paper,
as shown in Figure 1. The satellite signal receiver is comprised of a reference channel antenna
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and a surveillance channel antenna. The antenna dedicated to the reference channel receives direct
wave signals from satellites, including GPS, DVB-S, and INMARSAT satellites. On the other hand,
the antenna of the surveillance channel is used to receive target echo signals with the direct wave and
multi-path interference.
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Figure 1. Passive detection system model based on multiple collaborative heterogeneous satellites.

In Figure 1, the signal x(t) in the reference channel is given by [17]

x(t) =
M

∑
i=1

risi(t) + n (t) , (1)

where M denotes the number of different satellites, n(t) is a statistically independent stationary
Gaussian white noise with zero mean, si(t) represents different direct wave signal from the i-th
satellite, and ri stands for the amplitude of the different direct wave signal in the reference channel.

The signal z(t) in the surveillance channel is expressed as

z(t) =
M

∑
i=1

r′ isi(t− Di)e
−j2π fdi

t +
M

∑
i=1

Ωisi(t) +
M

∑
i=1

H

∑
j=1

ωijsi(t− τij) + n′(t), (2)

where r′ i is the amplitude of the i-th echo signal, Di represents the delay of the echo wave relative to
the corresponding different direct wave, fdi

denotes the doppler shift of the echo of different direct
wave signals, Ωi is the amplitude of the direct wave signal in the surveillance channel, ωij is the
amplitude of the direct signal of the i-th satellite passing the j-th multipath channel. τij stands for
the direct signal of the i-th satellite after the j-th multipath channel. H represents the diameter of the
multipath channel in the surveillance channel, n′(t) is a statistically independent stationary Gaussian
white noise with zero mean.
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3. Interference Suppression

3.1. Direct Wave Signal Separation in the Reference Channel

As the receiver in the reference channel receives multiple direct wave signals simultaneously, it is
necessary to separate direct wave signals in the reference channel to facilitate suppression of DPI and
MPI in the surveillance channel and subsequently process. Practically, GPS, DVB-S and INMARSAT
satellites use different frequency bands to transmit signals. Therefore, different band-pass filters need
to be used to separate various direct wave signals. The band-pass filter is determined by [18]

H(ejω) =

Q
∑

r=0
br
(
ejω)−r

1 +
S
∑

k=1
ak
(
ejω
)−k

, (3)

where ak and br are the coefficient for the band-pass filter. ωp denotes pass-band upper boundary
frequency of the band-pass filter. ωpu represents pass-band lower boundary frequency of the band-pass
filter. ωs stands for stop-band upper boundary frequency. ωsu, αp, and αs denote the stop-band
lower boundary frequency, the pass-band maximum attenuation and the stop-band minimum
attenuation, respectively. The parameters of different filters are set according to different spectral
ranges, which determine the values of Q, S, ak, br of different band-pass filter system functions. Then,
a plurality of band-pass filters are connected in parallel to separate direct wave signals at the same time
to obtain different direct wave signals. After the separation of direct wave signals, the time-domain
signals overlapped in the reference channel have become M independent direct wave signals, where the
i-th direct wave signal xi(t) can be expressed as

xi (t) = risi(t) + n(t). (4)

The time-domain overlapped signals mixed with GPS, DVB-S and INMARSAT satellite signals in
the reference channel are used for verification. The spectrogram of mixed direct wave signals is shown
in Figure 2, while those of these three signals after separated by the band-pass filter are shown in
Figure 3. From Figures 2 and 3, it can be seen that after passing through the band-pass filter, the three
satellite signals in time overlapped are effectively separated.

Figure 2. Spectrogram of three time-domain overlapped satellite signals.
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3.2. DPI and MPI Suppression Based on NLMS Adaptive Filter

The echo signals in the surveillance channel are extremely weak, while the power of DPI and MPI
are much larger than that of echo signals. The gain obtained by increasing the coherent accumulation
time can not satisfy the requirement of echo detection. Therefore, it is necessary to suppress the DPI
and MPI in the surveillance channel.

The cascade suppression of DPI and MPI in the surveillance channel is achieved by using an
adaptive filter [19–21]. The adaptive filter employs NLMS algorithm following [22]

ei(n) = zi(n)− xi
T(n)wi (n) , (5)

wi(n + 1) = wi(n) +
µ

λ + ‖xi(n)‖2 ei(n)xi(n), (6)

where xi(n) denotes the separation direct wave signal in the reference channel, zi(n) represents the
received signal of the surveillance channel, wi (n) is the weight vector of the filter, and ei(n) is the
error signal. In order to avoid a very small ‖xi(n)‖2 that can cause divergence, λ is set to a small
positive constant and µ is the fixed normalized step factor with 0 < µ < 2.
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Figure 3. Spectrograms of three time-domain overlapped satellite signals after separation. (a)
Spectrogram of GPS satellite signal; (b) Spectrogram of INMARSAT satellite signal; (c) Spectrogram of
DVB-S satellite signal.

3.2. DPI and MPI Suppression Based on NLMS Adaptive Filter

The echo signals in the surveillance channel are extremely weak, while the power of DPI and MPI
are much larger than that of echo signals. The gain obtained by increasing the coherent accumulation
time can not satisfy the requirement of echo detection. Therefore, it is necessary to suppress the DPI
and MPI in the surveillance channel.

The cascade suppression of DPI and MPI in the surveillance channel is achieved by using an
adaptive filter [19–21]. The adaptive filter employs NLMS algorithm following [22]

ei(n) = zi(n)− xi
T(n)wi (n) , (5)

wi(n + 1) = wi(n) +
µ

λ + ‖xi(n)‖2 ei(n)xi(n), (6)

where xi(n) denotes the separation direct wave signal in the reference channel, zi(n) represents the
received signal of the surveillance channel, wi (n) is the weight vector of the filter, and ei(n) is the
error signal. In order to avoid a very small ‖xi(n)‖2 that can cause divergence, λ is set to a small
positive constant and µ is the fixed normalized step factor with 0 < µ < 2.

Figure 3. Spectrograms of three time-domain overlapped satellite signals after separation.
(a) Spectrogram of GPS satellite signal; (b) Spectrogram of INMARSAT satellite signal; (c) Spectrogram
of DVB-S satellite signal.
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The surveillance channel may contain a number of different direct wave signals and multi-path
interference. Therefore, it is necessary to suppress the DPI and MPI one by one. The process of DPI and
MPI suppression is as follows: the direct wave signal of each satellite is taken as an input signal xi(n),
firstly. Secondly, the output signal ei(n) of the upper stage after the interference suppression by the
adaptive filter is used as the training signal zi(n) of the adaptive filter of the next stage. This process is
repeated M times to complete cascade suppression of the DPI and MPI. Let y(t) denote the signal in
which the DPI and MPI are suppressed in the surveillance channel as

y(t) = z(t)−
M

∑
i=1

H

∑
j=0

wij.xi(t− j∆), (7)

where wij represents the optimal weight of the j-th trajectory of the i-th satellite, and j∆ stands for the
delay of the j-th path. Thus, y(t) contains only the echo signal of each satellite signal and Gaussian
noise in the ideal case.

4. Detection Statistics Construction

4.1. Detection Statistic Construction Based on CAF

After the cascade NLMS adaptive filtering, there are only echo signals and Gaussian white noise in
the surveillance channel. In order to detect the echo signals, the direct wave signal xi(t) after separation
are correlated with the signal y (t) of the surveillance channel after DPI and MPI suppression to obtain
CAF, which is expressed as [23]

χi(τ, fd) =
∫ TF

0
xi
∗(t− τ)y(t)ej2π fdtdt, (8)

where τ denotes time delay, fd is the Doppler shift, TF stands for coherent accumulation time. In this
paper, several different doppler-time-delay spectra |χi(τ, fd)| are obtained by Equation (8). Then we
can construct the following detection statistic Λ as follows

Λ = |χi(τ, fd)| . (9)

4.2. Detection Statistic Construction Based on FOCCCAF

After the cascade NLMS adaptive filtering, the separated direct wave signal xi(t) and the signal
y (t) after the DPI and MPI suppression in the surveillance channel are processed based on FOCCCAF,
which is expressed as

χ
αi− f ,αi
y,xi (u, f ) =

∫ +∞

−∞
Cαi− f

xixixiy(τ)C
αi
4xi

(τ − u)∗ejπ f τdτ, (10)

where Cαi
4xi

(τ) represents the fourth-order self-circulating cumulant of the direct wave xi(t), and the

cyclic frequency is αi. C
αi− f
xixixiy(τ) denotes the fourth-order mutual-circulating cumulant of xi(t) and

y(t), the cyclic frequency is αi − f . Cαi
4xi

(τ) is expressed as

Cαi
4xi

(τ)=r4
i Mαi

4si
(τ)− 3Ar2

i Mαi
2si
(τ), (11)

where A is the mean squared value of si(t). Mαi
4si
(τ) and Mαi

2si
(τ) are the fourth-order cyclic moment

and the second-order cyclic moment of si(t) at αi, which can be expressed as

Mαi
4si
(τ) = lim

T→∞

1
T

T−1

∑
t=0

(si(t)si(t)si(t)si(t + τ))e−j8παit, (12)
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Mαi
2si
(τ) = lim

T→∞

1
T

T−1

∑
t=0

(si(t)si(t + τ))e−j4παit, (13)

where T is the length of time. Cαi− f
xixixiy(τ) is the fourth-order mutual-circulating cumulant of xi(t) and

y(t), which can be expressed as [24,25]

Cαi− f
xixixiy(τ)=r3

i r
′
ie
−jπ(αi− f+ fdi

)Di M
αi− f+ fdi
4si

(τ − Di)

+ 3r2
i r
′
ie
−jπ fdi

τe−jπ(αi− f+ fdi
)Di M

αi− f+ fdi
sisinsi (τ − Di)

−3Brir
′
ie
−jπ fdi

τe−jπ(αi− f+ fdi
)Di R

αi− f+ fdi
si (τ − Di)

+r3
i Mαi− f

sisinsi (τ),

(14)

where B = E[xi(t)y(t)], αi − f denotes the fourth-order mutual-cyclic frequency of xi(t) and y(t).

R
αi− f+ fdi
si (τ − Di) is the cyclic autocorrelation of the ith signal si(t), which is given by

R
αi− f+ fdi
si (τ − Di)= lim

T→∞

1
T

T−1

∑
t=0

(si(t)si(t + τ))e−j2παit. (15)

M
αi− f+ fdi
4si

(τ − Di) is the fourth-order mutual-circulating moment of si(t) and n(t) in the reference
channel, which can be expressed as

M
αi− f+ fdi
sisinsi (τ − Di) = lim

T→∞

1
T

T−1

∑
t=0

(si(t)si(t)n(t)si(t + τ − Di))e
−j2π(αi− f+ fdi

)t. (16)

Mαi− f
sisinsi (τ) is the fourth-order mutual-circulating moment of si(t) and n

′
(t), which can be expressed as

M
αi− f+ fdi
sisin

′ si
(τ − Di) = lim

T→∞

1
T

T−1

∑
t=0

(si(t)si(t)n
′
(t)si(t + τ − Di))e

−j2π(αi− f+ fdi
)t. (17)

Substituting Equation (11) and Equation (14) into Equation (10), we can obtain

χ
αi− f ,αi
y,xi (u, f ) =

∫ +∞
−∞ Cαi− f

xixixiy(C
αi
4xi

(τ − u))
∗
ejπ f τdτ

=r7
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ M

αi− f+ fdi
4si

(τ − Di)(Mαi
4si
(τ − u))∗ejπ( f− fdi

)τdτ

+ 9ABr3
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ R

αi− f+ fdi
si (τ − Di)(Rαi

si (τ − u))∗ejπ( f− fdi
)τdτ

− 3Br5
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ (Mαi

4si
(τ − u))∗R

αi− f+ fdi
si (τ − Di)e

jπ( f− fdi
)τdτ

− 3Ar5
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ M

αi− f+ fdi
4si

(τ − Di)(Rαi
si (τ − u)ejπ( f− fdi

)τ)
∗
dτ

− 9Ar4
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ M

αi− f+ fdi
sisinsi (τ − Di)(Rαi

si (τ − u)ejπ( f− fdi
)τ)
∗
dτ

+ 3r6
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ M

αi− f+ fdi
sisinsi (τ − Di)(Mαi

4si
(τ − u))∗ejπ( f− fdi

)τdτ

− 3Ar5
i
∫ +∞
−∞ Mαi− f

sisisin
′ (τ)(Rαi

si (τ − u)ejπ( f− fdi
)τ)
∗
ejπ f τdτ

+r7
i
∫ +∞
−∞ Mαi− f

sisisin
′ (τ)(Mαi

4si
(τ − u))∗ejπ f τdτ.

(18)
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In Equation (18), the first four items do not contain any noise, which is used to detect the echo
signal, and constructs the following detection statistic Λ as

Λ=r7
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ M

αi− f+ fdi
4si

(τ − Di)(Mαi
4si
(τ − u))∗ejπ( f− fdi

)τdτ

+9ABr3
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ R

αi− f+ fdi
si (τ − Di)(Rαi

si (τ − u))∗ejπ( f− fdi
)τdτ

−3Br5
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ (Mαi

4si
(τ − u))∗R

αi− f+ fdi
si (τ − Di)e

jπ( f− fdi
)τdτ

−3Ar5
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ M

αi− f+ fdi
4si

(τ − Di)(Rαi
si (τ − u)ejπ( f− fdi

)τ)
∗
dτ.

(19)

In Equation (19), let ρMR denote the correlation coefficient of the fourth-order self-circulating
moment Mαi

4si
(τ) of the signal si(t) and the cyclic autocorrelation function Rαi

si (τ) of si(t) as

ρMR =
cov(Mαi

4si
(τ), Rαi

si (τ))√
var(Mαi

4si
(τ))

√
var(Rαi

si (τ))
, (20)

where var(Mαi
4si
(τ)) represents the variance of Mαi

4si
(τ), var(Rαi

si (τ)) denotes the variance of Rαi
si (τ),

and cov(Mαi
4si
(τ), Rαi

si (τ)) is the covariance of Mαi
4si
(τ) and Rαi

si (τ), which can be expressed as

cov(Mαi
4si
(τ), Rαi

si (τ))=E[Mαi
4si
(τ)Rαi

si (τ)]− E[Mαi
4si
(τ)]E[Rαi

si (τ)]. (21)

From Equation (12) and Equation (15), we can obtain

E[Mαi
4si
(τ)Rαi

si (τ)]

= E[ lim
T→∞

(
1
T

T−1
∑

t=0
(si(t)si(t)si(t)si(t + τ))e−j8παit 1

T

T−1
∑

t=0
(si(t)si(t + τ))e−j2παit

)
]

= E[ lim
T→∞

(
1
T

T−1
∑

t=0
(si(t)si(t)si(t)si(t))e−j8παit

)
lim

T→∞

(
1
T

T−1
∑

t=0
(si(t + τ)si(t + τ))e−j2παit

)
]

= E[Mαi
4si
(τ)]E[Rαi

si (τ)].

(22)

From the above analysis, we can obtain

cov(Mαi
4si
(τ), Rαi

si (τ))=E[Mαi
4si
(τ)Rαi

si (τ)]− E[Mαi
4si
(τ)]E[Rαi

si (τ)] = 0. (23)

Using Equation (23) in Equation (20), we can also obtain

ρMR = 0, (24)

and Equation (19) can be simplified as

Λ=r7
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ M

αi− f+ fdi
4si

(τ − Di)(Mαi
4si
(τ − u))∗ejπ( f− fdi

)τdτ

+9ABr3
i r
′
ie
−jπ(αi− f+ fdi

)D ∫ +∞
−∞ R

αi− f+ fdi
si (τ − Di)(Rαi

si (τ − u))∗ejπ( f− fdi
)τdτ.

(25)

4.3. Detector Design

In order to improve the reliability of the final detection results, distributed sensors are used for
collaborative detection. Each sensor is designed as a binary detector, whose binary hypothesis can be
described as: assumption H1 shows that the surveillance channel signal y(t) contains the echo signal
r′isi(t− Di)e

−j2π fdi
t corresponding to the i-th direct wave signal risi(t); assumption H0 shows that the
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surveillance channel y(t) does not contain the echo signal r′isi(t− Di)e
−j2π fdi

t corresponding to the
i-th direct wave risi(t)), which can be expressed as

H1 : y(t) =
M
∑

η=1
∃η=i

r
′
ηsη(t− Dη)e

−j2π fdη t
+ n′(t),

H0 : y(t) =
M
∑

η=1
∀η 6=i

r
′
ηsη(t− Dη)e

−j2π fdη t
+ n′(t).

(26)

Based on the binary hypothesis in Equation (26), the binary detector is

|Λ|
H1
>

<
H0

Tdi
, (27)

where Tdi
is the detection threshold. Each sensor uses detector in Equation (27) to make the decision.

Each sensor decision ui is

ui =


0

1

else,

Λ ≥ Tdi
.

(28)

When output ui of the sensor is one, target is detected, and H1 is true. When output ui of the
sensor is zero, no target is detected, and H0 is true. The performance of the ith sensor can be denoted
as P(ui/Hj′) , j′ = 0, 1. The false alarm probability of the ith sensor can be denoted as Pi(1/H0) = Pfi

,
the detection probability of the sensor can be denoted as Pi(1/H1) = Pdi

. According to Equation (28),
the fusion center of the distributed sensor fuses the decision result of each sensor according to the
criterion of "h in k". It means that if there are more than or equal k sensors that detect the target in h
sensors, the overall decision is H1. The decision of each sensor is independent of each other, the fusion
center gives the decision output u as

u =


1

0

h
∑

i=1
ui ≥ k,

else.

(29)

After the fusion decision of the fusion center, the final detection probability Pd is expressed as

Pd = P(u = 1/H1)

= P(u = 1/u1,u2, . . . uh, H1)P(u1,u2, . . . uh/H1)

= P(u = 1/u1,u2, . . . uh, H1)
h

∏
i=1

P(ui/H1)

= P(u = 1/u1,u2, . . . uh, H1) ∏
i∈S1

P(ui = 1/H1) ∏
i∈S0

P(ui = 0/H1)

= P(u = 1/u1,u2, . . . uh, H1) ∏
i∈S1

Pdi ∏
i∈S0

(1− Pdi
)

=
h
∑

i′=k
∑

Ci′/h

{Pd1 , Pd2 , · · · Pdh
}

=
h
∑

i′=k
∑

∑ ui=i′
∏
i

Pdi
ui (1− Pdi

)1−ui ,

(30)
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where S1 = {i |ui = 1, ∀i = 1, · · · , h}, S0 = {i |ui = 0, ∀i = 1, · · · , h}. The final false alarm probability
Pf is expressed as

Pf = P(u = 1/H0)

= P(u = 1/u1, u2, . . . uh, H0) ∏
i∈S1

Pfi ∏
i∈S0

(1− Pfi
)

=
h
∑

i′=k
∑

Ci′/h

{
Pf1 , Pf2 , · · · , Pfh

}
=

h
∑

i′=k
∑

∑ ui=i′
∏
i

Pfi
ui (1− Pfi

)1−ui .

(31)

From the above, the procedure of the moving aerial target detection method based on multiple
collaborative heterogeneous satellites is summarized in Algorithm 1.

Algorithm 1 The procedure of the proposed passive detection method.

1: Different direct wave signals in the reference channel are parallelly separated by Equation (3);

2: DPI and MPI are in the surveillance channel cascadely suppressed by Equation (5) and Equation
(6);

3: FOCCCAF and CAF are introduced by Equation (10) and Equation (8) to construct the detection
statistic Λ;

4: Fuse the binary decision results of each sensor among the distributed sensors to get the final target
detection results by Equation (29).

5. Moving Aerial Target Detection Performance Analysis

5.1. Performance Analysis of Detection Based on CAF

Suppose that the real and imaginary parts of Gaussian noise n(t) and Gaussian noise n′(t) are
distributed as N(0, σ2

n) and N(0, σ2
n′), respectively. The separated reference signal and the echo signal

from which the direct wave signal and multipath interference are suppressed in the surveillance
channel are calculated CAF and discrete, which can be expressed as

χi(lTs, fd) =
N−1

∑
m=0

xi
∗(mTs − lTs)y(mTs)ej2π fdmTs , (32)

where Ts represents the sample interval, N is the number of sampling points and Ts stands for the
sampling time, N = TF/Ts. Equation (32) can also be expressed as

χi(l, fd) =
N−1
∑

m=0
xi
∗(m− l)y(m)ej2π fdm

=
N−1
∑

m=0
Re{y(m)xi

∗(m− l)ej2π fdm}+ j
N−1
∑

m=0
Im{y(m)x∗i (m− l)ej2π fdm}.

(33)

Lemma 1. The distribution of the detection based on CAF under the H1 hypothesis is

(Λ/H1) ∼ CN(ri
∗r
′
iχsisi (l − ζ, fd − fdi

), 2N(r2
i σ2

n′ +
M

∑
η=1

r
′
η

2
σ2

n)), (34)

and the distribution of the detection based on CAF under the H0 hypothesis is

(Λ/H0) ∼ CN(0, 2N(r2
i σ2

n′ +
M

∑
η=1
η 6=i

r
′2
η σ2

n)), (35)
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where CN(.) represents the complex Gaussian process.

Proof. See Appendix A.1.

Form the above analysis, the detection probability of each sensor is

pdi
=
∫ +∞

Tdi

ρ(Λ/H1)dΛ = Q1


√√√√√√

∣∣Nrir
′
i

∣∣2
N(r2

i σ2
n′ +

M
∑

η=1
r′2ησ2

n)

,

√√√√√√ Tdi

N(r2
i σ2

n′ +
M
∑

η=1
r′2ησ2

n)

 , (36)

where ρ(Λ/H1) represents the probability density function of (Λ/H1), Q1(·, ·) denotes the Marcum Q
function [26–28]. The false alarm probability for each sensor is

Pfi
=
∫ +∞

Tdi

ρ(Λ/H0)dΛ = exp

−
Tdi

2N(r2
i σ2

n′ +
M
∑

η=1
η 6=i

r′2η σ2
n

 , (37)

where ρ(Λ/H0) represents the probability density function of (Λ/H0). Substituting Equation (36) and
Equation (37) into Equation (30) and Equation (31), the overall detection probability and false alarm
probability after decision fusion are

Pd =
h
∑

i′=k
∑

∑ ui=i′
∏
i


Q1


√√√√√

∣∣∣Nrir
′
i

∣∣∣2
N(r2

i σ2
n′+

M
∑

η=1
(r′η)

2
σ2

n)
,
√√√√ Tdi

N(r2
i σ2

n′+
M
∑

η=1
(r′η)

2
σ2

n)




ui

·

1−Q1


√√√√√

∣∣∣Nrir
′
i

∣∣∣2
N(r2

i σ2
n′+

M
∑

η=1
(r′η)

2
σ2

n)
,
√√√√ Tdi

N(r2
i σ2

n′+
M
∑

η=1
(r′η)

2
σ2

n)




1−ui
 ,

(38)

and

p f =
h

∑
i′=k

∑
∑ ui=i′

∏
i

exp

−
Tdi

2N(r2
i σ2

n′ +
M
∑

η=1
η 6=i

r′2η σ2
n



ui
1− exp

−
Tdi

2N(r2
i σ2

n′ +
M
∑

η=1
η 6=i

r′2η σ2
n





1−ui

. (39)

The echo signal-to-noise ratio SNRη of the surveillance channel in the η-th detection channel is
defined as

SNRη = 10 lg
(r
′
η)

2

σ2
n′

. (40)

From Equation (40), we can obtain

10
SNRη

10 =
(r
′
η)

2

σ2
n′

. (41)
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In this case when η is equal i, by substituting Equation (41) into Equation (36), we can get the
relationship between the detection probability pdi

of a single sensor and the echo signal-to-noise ratio
SNRi as

pdi
(SNRi) = Q1


N
∣∣∣rir

′
i

∣∣∣√
N(

ri
2(r′i )

2

10
SNRi

10

+
M
∑

η=1
(r′η)

2
σ2

n)

,

√
Tdi√

N(
ri

2(r′i )
2

10
SNRsi

10

+
M
∑

η=1
(r′η)

2
σ2

n)

 , (42)

and the relationship between the final detection probability pd after the fusion and the echo
signal-to-noise ratio SNR is

pd =
M
∑

i′=k
∑

∑ ui=i′
∏
i=1

Q1


√√√√√

∣∣∣Nrir
′
i

∣∣∣2
N(

ri
2r′i

2

10
SNRi

10

+
M
∑

η=1
r′2η σ2

n)

,
√√√√ Tdi

N(
ri

2r′i
2

10
SNRi

10

+
M
∑

η=1
r′2η σ2

n)




ui

·

1−Q1


√√√√√ |Nriri

′ |2

N(
ri

2r′i
2

10
SNRi

10

+
M
∑

η=1
r′2η σ2

n)

,
√√√√ Tdi

N(
ri

2r′i
2

10
SNRi

10

+
M
∑

η=1
r′2η σ2

n)




1−ui

.

(43)

From Equation (43), it can be seen that the detection probability pd is related to the number of
sampling points N, the power ratio of the direct echo ri

2
/

r′i
2, the detection threshold Tdi

and the noise

power σ2
n in the reference channel with different echo signal-to-noise SNRi.

5.2. Performance Analysis of Detection Based on FOCCCAF

It is assumed that the noises n(t) and n
′
(t) obey the Gaussian distribution of N(0, σ2

n) and
N(0, σ2

n′
), respectively. We can get the FOCCCAF from the separated reference signal and the echo

signal after the DPI and MPI suppression in the supervise channel by using Equation (10).

Lemma 2. The distribution of the detection based on FOCCCAF under the H1 hypothesis is

Λ/H1 ∼ CN(ri
7ri
′
e−jπ(αi− f− fdi

)Di χ
αi− f− fdi

,αi
4si

(u, f ) + 9ABri
3ri
′
e−jπ(αi− f− fdi

)Di χ
αi− f− fdi

,αi
2si

(u, f ),
σ10

si
N3 (81A2ri

8(r
′
i)

2σ2
n + 9ri

12(r
′
i)

2σ2
nσ4

si
+ 9A2ri

10σ2
n′
+ r14

i σ2
n′

σ4
si
)).

(44)

and the distribution of the detection based on FOCCCAF under the H0 hypothesis is

Λ/H0 ∼ CN(0,
σ10

si

N3 (
M
′

∑
η=1
∀η 6=i

81A2r8
i (r

′
η)

2
σ2

n +
M
′

∑
η=1
∀η 6=i

9r12
i (r

′
η)

2
σ2

nσ4
si
+ 9A2r10

i σ2
n′
+ r14

i σ2
n′

σ4
si
)). (45)

Proof. See Appendix A.2.

From the above analysis, the detection probability for each sensor is

pdi
=
∫ +∞

Tdi

ρ(Λ/H1)dΛ = Q1


√

N2
∣∣ri

7ri
′ + 9ABri

3ri
′ ∣∣2

Y
,

√
Tdi

Y

 , (46)
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where ρ(Λ/H1) represents the probability density function of (Λ/H1) and Y =
σ10

si
N3 (81A2r8

i (r
′
i)

2σ2
n +

9r12
i (r

′
i)

2σ2
nσ4

si
+ 9A2r10

i σ2
n′
+ r14

i σ2
n′

σ4
si
). The false alarm probability for each sensor is

Pfi
=
∫ +∞

Tdi
ρ(Λ/H0)dΛ

= exp

−
Tdi

σ10
si

N3 (
M′
∑

η=1
∀η 6=i

81A2r8
i (r
′
η)

2
σ2

n+
M′
∑

η=1
∀η 6=i

9r12
i (r′η)

2
σ2

nσ4
si+9A2r10

i σ2
n′
+r14

i σ2
n′

σ4
si )

 ,
(47)

where ρ(Λ/H0) represents the probability density function of (Λ/H0). Substituting Equation (46)
and Equation (47) into Equation (30) and Equation (31), the detection probability and false alarm
probability after distributed sensor fusion are

Pd =
h
∑

i′=k
∑

∑ ui=i′
∏
i

(
Q1

(√
N2|ri

7ri
′+9ABri

3ri
′ |2

Y ,
√

Tdi
Y

))ui

·
(

1−Q1

(√
N2|r7

i ri
′+9ABri

3ri
′ |2

Y ,
√

Tdi
Y

))1−ui

,

(48)

and

p f =
h

∑
i′=k

∑
∑ ui=i′

∏
i

exp (−Tdi

∆
)

ui

(1− exp(−Tdi

∆
))

1−ui

, (49)

where ∆=
σ10

si
N3 (

M
′

∑
η=1
∀η 6=i

81A2r8
i (r

′
η)

2
σ2

n +
M
′

∑
η=1
∀η 6=i

9r12
i (r

′
η)

2
σ2

nσ4
si
+ 9A2r10

i σ2
n′

+ r14
i σ2

n′
σ4

si
). In the supervise

channel, the ith(i = η) echo signal-to-noise ratio SNRi is defined as

SNRi = 10 lg
(r
′
i)

2

σ2
n′

. (50)

From Equation (50), we can obtain

10
SNRi

10 =
(r
′
i)

2

σ2
n′

. (51)

Substituting Equation (51) into Equation (46), the relationship between the detection probability
of a single sensor Pdi

and the echo signal-to-noise ratio SNRi is expressed as follows

pdi
=
∫ +∞

Tdi

ρ(Λ/H1)dΛ = Q1


√

N2
∣∣r7

i ri
′ + 9ABri

3ri
′ ∣∣2

Ξ
,

√
Tdi

Ξ

 , (52)
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where Ξ =
σ10

si
N3 (81A2r8

i (r
′
i)

2σ2
n + 9r12

i (r
′
i)

2σ2
nσ4

si
+ 9A2r10

i
9A2r10

i (r
′
i )

2

10
SNRi

10

+ r14
i

(r
′
i )

2

10
SNRi

10

σ4
si
). The relationship

between the final detection probability after fusion Pd and the echo signal-to-noise ratio SNR is
expressed as follows:

Pd =
h
∑

i′=k
∑

∑ ui=i′
∏
i

(
Q1

(√
N2|r7

i ri
′+9ABri

3ri
′ |2

Ξ ,
√

Tdi
Ξ

))ui

·
(

1−Q1

(√
N2|ri

7ri
′+9ABri

3ri
′ |2

Ξ ,
√

Tdi
Ξ

))1−ui

.

(53)

From Equation (53), it can be seen that the detection probability Pd is related to the number of

sampling points N and the power ratio of the direct echo r2
i

/
r
′
i
2
, the power of si(t) and the noise

power in the reference channel with different echo signal-to-noise.

6. Numerical Results and Discussion

To verify the effectiveness of the proposed passive detection method and investigate and the
influence of different parameters on the detection performance, a series of simulation experiments
are conducted using MATLAB (9.5.0.944444 (R2018b), MathWorks Company, Natick, MA, USA).
Simulation parameters are set according to [29,30]. GPS satellite, DVB-S satellite and INMARSAT
satellite signals are considered in the simulation with Gaussian white noise. The ratio of echo signal to
direct wave power is defined as

DSR =
PD
PS

, (54)

where N represents the number of sampling points, PS and PD are the power of the direct wave and
the echo, respectively. The detection accuracy rate is used to evaluate the detection algorithm as

δH =
NR
N
× 100%, (55)

where δH and NR are the number of corrected detection and the total number of detection in the
simulation, respectively.

In order to evaluate the influence of sampling points on the detection performance of weak
echo signals, three satellite signals GPS, DVB-S and INMARSAT are used for simulation experiments.
The carrier frequencies of the three signals are: 1.57 GHz, 12.38 GHz, 4.2 GHz; the chip-rates are:
1.023 MHz, 22.425 MHz, 2.2 MHz; the delay is 1 us, 2 us, 3 us; the doppler shift are: 100 Hz, 200 Hz,
300 Hz; the intensity of the three signal direct waves are: −130.1 dBw, −111.83 dBw, −120.61
dBw, and the direct wave and its corresponding echo power difference are 40 dBw, Pf a = 10−4,
coherent accumulation points are: 107, 108, 109.2000 Monte Carlo simulation experiments are carried
out and the simulation results are shown in Figure 4.

From Figure 4, it can be seen that the detection performance of the weak echo gradually increases
with the increase of the accumulated points under the same SNR. This is because, as the number
of accumulated points increases, the peaks at the corresponding delay and Doppler frequency shift
become more prominent, which is equivalent to increasing the echo SNR gain, thereby improving
detection performance. When the cumulative number of points is 109 and the SNR is −75 dB,
the detection probability of the echo signal reaches 99%. For the same cumulative number of points,
as the SNR becomes larger, the detection performance improves. The simulation results agree with the
theoretical results, and the feasibility of detecting weak echo signals based on FOCCCAF is verified.
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Figure 4. Relationship between coherent accumulation points and detection performance.

In order to compare the proposed method based on FOCCCAF with the method based on CAF,
three satellite signals GPS, DVB-S and INMARSAT satellite signals are used for simulation experiments.
Pf a = 10−4, coherent accumulation point is 109, 2000 Monte Carlo simulation experiments are carried
out and the simulation results are shown in Figure 5.

It can be seen from Figure 5 that the detection performance based on FOCCCAF is better than that
on CAF, and the detection performance is improved by about 6 dB. This is because both FOCCCAF
and CAF perform echo detection by detecting the delay of the corresponding echo signal and the peak
at the Doppler shift, and the fourth-order cyclic cumulant can suppress noise, which is equivalent to
increasing the detected peak value, so that the FOCCCAF-based peak under the same echo SNR is more
prominent, which is beneficial to the detection of echo signals. The theoretical and actual detection
performance are consistent, verifying the superiority of FOCCCAF-based detection performance
to CAF.
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Figure 5. Detection performance of the proposed method.
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In order to verify the impact of false alarm probability on the performance of the proposed method,
the detection performance of the method under different false alarm probabilities is simulated. GPS,
DVB-S and INMARSAT satellite signals are used for simulation experiments. coherent accumulation
point is 109, 2000 Monte Carlo simulation experiments are carried out and the simulation results are
shown in Figure 6.
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Figure 6. Detection performance with different false alarm probabilities.

From Figure 6, it can be seen that, under the same SNR, the greater the false alarm probability,
the greater the detection probability. The simulation gives the relationship between the echo SNR and
the detection probability of the false alarm probability at 10−4, 10−5 and 10−6. When the echo SNR is
around −75 dB and the accumulated point reaches 109, the detection probability of the echo signal
reaches 1. When the echo SNR is −95 dB, the detection probability is 0. This is because the echo SNR
is too low, even if the accumulated points reach 109, the detected peak cannot be highlighted. To detect
weak echo signals at this SNR, we need more points to accumulate.

In order to verify the impact of SDR on detection performance, GPS, DVB-S and INMARSAT
satellite signals are used for simulation experiments. Pf a = 10−4, coherent accumulation point is 109,
2000 Monte Carlo simulation experiments are carried out and the simulation results are shown in
Figure 7.

In order to verify the impact of SDR on detection performance, GPS, DVB-S and INMARSAT
satellite signals are used for simulation experiments. Pf a = 10−4, coherent accumulation point is 109,
2000 Monte Carlo simulation experiments are carried out and the simulation results are shown in
Figure 7.

It can be seen from Figure 7 that the detection performance of the echo signal is becoming better
and better with the increase of the echo direct wave power ratio. This is because under the condition
that the direct wave power is constant, as the echo direct wave power ratio increases, the echo signal is
enhanced, and the detected peak can be highlighted. This is equivalent to improving the SNR, so the
detection of echo signals is promoted. The correctness of the theory is verified by actual simulation.

In order to compare the detection performance with different methods, GPS, DVB-S and
INMARSAT satellite signals are used for simulation experiments. Pf a = 10−4, coherent accumulation
point is 109, 2000 Monte Carlo simulation experiments are carried out and the simulation results
are shown in Figure 8. From Figure 8, it can be seen that under the same conditions, the detection
probability based on FOCCCAF which is proposed in this paper is better than that of CAF and CCAF
in [16].
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Figure 7. Relationship between SDR and detection performance.
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Figure 8. Detection performance comparison with different methods.

7. Conclusions

In this paper, a novel method of the passibe moving aerial target detection has been proposed
under collaborative heterogeneous multiple satellites, in which parallel band-pass filters and an
NLMS-based adaptive filter based on NLMS are used to separate direct wave signals in the reference
channel and suppress DPI/MPI in the surveillance channel, respectively. Then, the detection statistic of
weak echo signals from multiple heterogeneous satellites was obtained by using the anti-interference
property of FOOCCCAF. Through distributed multi-sensors fusion, multiple detection results have
been superimposed to obtain final detection results. Finally, depending on the theoretical analysis
of the detection statistics, the relationship between the detection performance and a series of key
parameters is studied. Numerical results have demonstarted that the proposed method is able to
precisely detect a moving target in multiple heterogeneous satellite environments. This indicated that
in a complicated environment with multiple satellites, the proposed method is more applicable than
the methods relying on a single satellite as the illumination for passive detection.
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Appendix A

Appendix A.1. Proof of Lemma 1

In Equation (33), the real part Re (χi(l, fd)) of the CAF under assumption H1 is expressed as

Re (χi(l, fd)) =
N−1
∑

m=0
Re{y(m)xi

∗(m− l)ej2π fdm}

=
N−1
∑

m=0
Re{

M
∑

η=1
∃η=i

r
′
ηsη(m− ζ)ri

∗si
∗(m− l)e−j2π fdη mej2π fdm}

+
N−1
∑

m=0
Re{n∗(m− l)

M
∑

η=1
∃η=i

r
′
ηsη(m− ζ)e−j2π fdη mej2π fdm}

+
N−1
∑

m=0
Re{n′(m)ri

∗si
∗(m− l)ej2π fdm} +

N−1
∑

m=0
Re{n′(m)n∗(m− l)ej2π fdm}.

(A1)

The first term of Equation (A1) belongs to the real part of the CAF of the reference signal and
the corresponding echo signal. It belongs to the determined detection statistics Re(Λ) and can be
expressed as follows

N−1
∑

m=0
Re
(

r
′
irη
∗
)

Re{
M
∑

η=1
∃η=i

sη(m− ζ)s∗η(m− l)e−j2π fdi
mej2π fdm}

= Re (r′ iri
∗)Re{χsisi (l − ζ , fd − fdi

)},
(A2)

where χsisi (l − ζ, fd − fdi
) represents the self-ambiguity function of the radiation source signal, when

ζ is equal zero and fdi
is equal zero, we can get

χsisi (l, fd) =
N−1

∑
m=0

si(m)si
∗(m− l)ej2π fdm. (A3)

Equation (A3) is a self-ambiguity function of si(m) and si(m) is the signal of the normalized
amplitude, so the amplitude of |si(m)| is equal to one and E {si(m)} is equal to zero. Therefore, when ζ

is equal zero and fdi
is equal zero, the self-ambiguity function obtains the maximum value, which is

expressed as
|χsisi (0, 0)| = N. (A4)

The second and third terms of Equation (A1) represent the real part of the CAF between the noise
and the satellite illumination signal, which is equivalent that Gaussian noise is linearly transformed,
so the second term still subject to Gaussian distribution of the following statistics characteristic

N−1

∑
m=0

Re{n∗(m− l)
M

∑
η=1
∃η=i

r
′
ηsη(m− ζ)e−j2π fdη mej2π fdm} ∼ N(0,

M

∑
η=1

Nr
′
η

2
σ2

n), (A5)
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and
N−1

∑
m=0

Re{n′(m)ri
∗si
∗(m− l)ej2π fdm} ∼ N(0, Nri

2σ2
n′). (A6)

The fourth term of Equation (A1) represents the cross correlation between the reference channel
and the noise of the surveillance channel. Since they two are statistically independent, so this term
is zero under the circumstance that N is large sufficiently. To sum up, under the assumption H1,
Re (χi(l, fd)) subject to the Gaussian distribution of the following statistical characteristic

Re (χi(l, fd)) ∼ N(Re
(
r′ iri

∗)Re{χsisi (l − ζ, fd − fdi
)}, N(ri

2σ2
n′ +

M

∑
η=1

r
′
η

2
σ2

n)). (A7)

In Equation (33), the imaginary part Im (χi(l, fd)) of the CAF under the assumption H1 is
assumed as

Im (χi(l, fd)) =
N−1

∑
m=0

Im{y(m)x∗i (m− l)ej2π fdm}. (A8)

From Equation (A8), we can obtain

Im (χi(l, fd)) =
N−1
∑

m=0
Im{y(m)xi

∗(m− l)ej2π fdm}

=
N−1
∑

m=0
Im{

M
∑

η=1
∃η=i

r
′
ηsη(m− ζ)ri

∗si
∗(m− l)e−j2π fdη mej2π fdm}

+
N−1
∑

m=0
Im{n∗(m− l)

M
∑

η=1
∃η=i

r
′
ηsη(m− ζ)e−j2π fdη mej2π fdm}

+
N−1
∑

m=0
Im{n′(m)ri

∗si
∗(m− l)ej2π fdm} +

N−1
∑

m=0
Im{n′(m)n∗(m− l)ej2π fdm}.

(A9)

The first term of Equation (A9) belongs to the imaginary part of the CAF of the reference signal
and its corresponding echo signal, which is a determined detection statistics Im(Λ) and it can be
expressed as follows

N−1
∑

m=0
Im
(

r
′
irη
∗
)

Im{
M
∑

η=1
∃η=i

sη(m− ζ)s∗η(m− l)e−j2π fdi
mej2π fdm}

= Im (r′ iri
∗) Im{χsisi (l − ζ , fd − fdi

)}.
(A10)

The second and third terms of Equation (A9) represent the imaginary part of the CAF between
the noise and the source signal, which is equivalent that Gaussian noise is linearly transformed, so the
second term still subject to the Gaussian distribution of following statistics characteristic

N−1

∑
m=0

Im{n∗(m− l)
M

∑
η=1
∃η=i

r
′
ηsη(m− ζ)e−j2π fdη mej2π fdm} ∼ N(0,

M

∑
η=1

Nr
′
η

2
σ2

n), (A11)

and
N−1

∑
m=0

Im{n′(m)ri
∗si
∗(m− l)ej2π fdm} ∼ N(0, Nri

2σ2
n′). (A12)

The fourth term of Equation (A9) represents the cross correlation between the reference channel
and the noise of the surveillance channel, since they two are statistically independent, so this term
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is zero when N is large enough. To sum up, under the assumption H1, Im (χi(l, fd)) subjects to the
Gaussian distribution of the following statistical characteristics

Im (χi(l, fd)) ∼ N(Im
(
r′ iri

∗) Im{χsisi (l − ζ, fd − fdi
)}, N(ri

2σ2
n′ +

M

∑
η=1

r
′
η

2
σ2

n)). (A13)

From Equation (A7) and Equation (A13), under the assumption H1,the test statistic Λ obeys the
complex Gaussian distribution with mean µ1 = ri

∗r
′
iχsisi (l− ζ, fd − fdi

) and variance σ2
1 = 2N(ri

2σ2
n′ +

M
∑

η=1
r
′
η

2
σ2

n), which can be expressed as

(Λ/H1) ∼ CN(ri
∗r
′
iχsisi (l − ζ, fd − fdi

), 2N(r2
i σ2

n′ +
M

∑
η=1

r
′
η

2
σ2

n)), (A14)

where CN (.) represents complex Gaussian distribution.
Under the assumption H0, the real part of the CAF is given by

Re (χi(l, fd)) =
N−1
∑

m=0
Re{y(m)xi

∗(m− l)ej2π fdm}

=
N−1
∑

m=0
Re{

M
∑

η=1
∀η 6=i

r
′
ηsη(m− ζ)ri

∗si
∗(m− l)e−j2π fdη mej2π fdm}

+
N−1
∑

m=0
Re{n∗(m− l)

M
∑

η=1
∀η 6=i

r
′
ηsη(m− ζ)e−j2π fdη mej2π fdm}

+
N−1
∑

m=0
Re{n′(m)ri

∗si
∗(m− l)ej2π fdm}

+
N−1
∑

m=0
Re{n′(m)n∗(m− l)ej2π fdm}

(A15)

Under the hypothesis H0, the different satellite signals are uncorrelated, so the first term of
Equation (A15) can be ignored, the second and third terms of Equation (A15) represent of the imaginary
part of the CAF between Gaussian noise and radiation signal. The second term and the third term still
subject to the Gaussian distribution of the following statistical characteristic

N−1

∑
m=0

Re{n∗(m− l)
M

∑
η=1
∀η 6=i

r
′
ηsη(m− ζ)e−j2π fdη mej2π fdm} ∼ N(0, N

M

∑
η=1
η 6=i

r′η
2
σ2

n), (A16)

and
N−1

∑
m=0

Re{n′(m)ri
∗si
∗(m− l)ej2π fdm} ∼ N(0, Nr2

i σ2
n′). (A17)

The fourth term of Equation (A15) represents the cross correlation between the reference channel
and the noise of the surveillance channel. Since they two are statistically independent, this term is zero
when N is large enough. To sum up, under the assumption H0, Re (χi(l, fd)) subjects to the Gaussian
distribution of the following statistical characteristic

Re (χi(l, fd)) ∼ N(0, N(ri
2σ2

n′ +
M

∑
η=1
η 6=i

r
′
η

2
σ2

n)). (A18)
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Similarly, the imaginary part Im (χi(l, fd)) under H0 obeys the Gaussian distribution of the
following statistical properties

Im (χi(l, fd)) ∼ N(0, N(ri
2σ2

n′ +
M

∑
η=1
η 6=i

r
′
η

2
σ2

n)). (A19)

Under the assumption H0, the detection statistic obeys the following complex Gaussian
distribution

(Λ/H0) ∼ CN(0, 2N(r2
i σ2

n′ +
M

∑
η=1
η 6=i

r
′2
η σ2

n)). (A20)

Appendix A.2. Proof of Lemma 2

In the Equation (18), the expectation of M
αi− f+ fdi
sisinsi (τ) equals zero, and the variance of

M
αi− f+ fdi
sisinsi (τ) is

var
[

M
αi− f+ fdi
sisinsi (τ)

]
= E

{[
M

αi− f+ fdi
sisinsi (τ)

]2
}
− E

{[
M

αi− f+ fdi
sisinsi (τ)

]}2

= E

{[
M

αi− f+ fdi
sisinsi (τ)

]2
}

= 1
N2

N−1
∑

t1=0

N−1
∑

t2=0
E
{

N−1
∑

τ=0

[
s3

i (t1)
[
s3

i (t2)
]∗]n(t1 + τ)[n(t2 + τ)]∗ej2π(αi− f+ fdi

)(t2−t1)
}

= 1
N σ2

nσ6
si

,

(A21)

where σ2
n represents the variance of n(t), σ2

si
denotes the variance of si(t). From Equation (A21),

the M
αi− f+ fdi
sisinsi (τ − Di) in the fifth term and the Mαi− f

sisisin
′ (τ) in the seventh term obey the Gaussian

distribution of the following statistical characteristics

M
αi− f+ fdi
sisinsi (τ − Di) ∼ N(0,

1
N

σ2
nσ6

si
), (A22)

and
Mαi− f

sisisin
′ (τ) ∼ N(0,

1
N

σ2
n′

σ6
si
), (A23)

where σ2
n is the variance of n

′
(t). From Equation (18), the Rαi

si (τ− u) in the fifth and seventh terms and
the Mαi

4si
(τ− u) in the sixth and eighth terms obey the Gaussian distribution of the following statistical

characteristics
Rαi

si (τ − u) ∼ N(0,
1
N

σ4
si
), (A24)

and
Mαi

4si
(τ − u) ∼ N(0,

1
N

σ8
si
). (A25)

Let

Ω1 = −9Ari
4r
′
ie
−jπ(αi− f+ fdi

)D
∫ +∞

−∞
M

αi− f+ fdi
sisinsi (τ − Di)(Rαi

si (τ − u)ejπ( f− fdi
)τ)
∗
dτ, (A26)

using the above analysis results, we can know that E[Ω1] = 0 and
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var[Ω1] = E{[Ω1]
2} − E{[Ω1]}2 = E{[Ω1]

2}

= 81A2r8
i (r

′
i)

2E

[[
1
N

N−1
∑

τ1=0
n(τ1 − v; α)M3si (τ1 − v; α)Rsi (τ1 − v; α)ej2πτ1

]

·
[

1
N

N−1
∑

τ2=0
n(τ2 − v; α)M3si (τ2 − v; α)Rsi (τ2 − v; α)ej2πτ2

]∗]

=
81A2r8

i (r
′
i )

2

N2 E

[
N−1
∑

τ1=0

N−1
∑

τ2=0
n(τ1 − v; α)M3si (τ1 − v; α)Rsi (τ1 − v; α)ej2πτ1

· n∗(τ2 − v; α)M3si
∗(τ2 − v; α)Rsi

∗(τ2 − v; α)e−j2πτ2
]

=
81A2r8

i (r
′
i )

2

N2

N−1
∑

τ1=0

N−1
∑

τ2=0
E
[

∑
V

n(τ1 − v; α)n∗(τ2 − v; α)Rsi (τ1 − v; α)Rsi
∗(τ2 − v; α)

·M3si (τ1 − v; α)M3si
∗(τ2 − v; α)ej2π(τ1−τ2)

]
=

81A2r8
i (r
′
i )

2

N3 σ2
nσ10

si
,

(A27)

and Ω1 obeys the Gaussian distribution of the following statistical characteristics

Ω1 ∼ N

0,
81A2r8

i (r
′
i)

2

N3 σ2
nσ10

si

 . (A28)

Let

Ω2 = 3ri
6ri
′
e−jπ(αi− f+ fdi

)D
∫ +∞

−∞
M

αi− f+ fdi
sisinsi (τ − Di)(Mαi

4si
(τ − u))∗ejπ( f− fdi

)τdτ. (A29)

Similarly, Ω2 obeys the Gaussian distribution of the following statistical characteristics

Ω2 ∼ N

0,
9ri

12(r
′
i)

2

N3 σ2
nσ14

si

 . (A30)

Let

Ω3 = −3Ari
5
∫ +∞

−∞
Mαi− f

sisisin
′ (τ)(Rαi

si (τ − u)ejπ( f− fdi
)τ)
∗
ejπ f τdτ. (A31)

Similarly, Ω3 obeys the Gaussian distribution of the following statistical characteristics

Ω3 ∼ N

(
0,

9A2r10
i

N3 σ2
n′

σ10
si

)
. (A32)

Let

Ω4 = ri
7
∫ +∞

−∞
Mαi− f

sisisin
′ (τ)(Mαi

4si
(τ − u))∗ejπ f τdτ. (A33)

Similarly, Ω4 obeys the Gaussian distribution of the following statistical characteristics

Ω4 ∼ N
(

0,
ri

14

N3 σ2
n′

σ14
si

)
. (A34)

In summary, under the assumption H1, the detection statistic Λ is obeyed the complex Gaussian
distribution, which is expressed as

Λ/H1 ∼ CN(ri
7ri
′
e−jπ(αi− f− fdi )Di χ

αi− f− fdi ,αi

4si
(u, f ) + 9ABri

3ri
′
e−jπ(αi− f− fdi )Di χ

αi− f− fdi ,αi

2si
(u, f ),

σ10
si

N3 (81A2ri
8(r

′
i)

2σ2
n + 9ri

12(r
′
i)

2σ2
nσ4

si
+ 9A2ri

10σ2
n′
+ r14

i σ2
n′

σ4
si
)).

(A35)
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Under the assumption H0,

χ
αi− f ,αi
y,xi (u, f ) =

∫ +∞
−∞ Cαi− f

xi xi xiy(C
αi
4xi

(τ − u))
∗
ejπ f τdτ

=ri
7r
′
ηe−jπ(αi− f+ fdi )Di

∫ +∞
−∞ M

αi− f+ fdi
sisisisη

(τ − Di)(Mαi
4si
(τ − u))∗ejπ( f− fdi )τdτ

+ 9ABri
3r
′
ηe−jπ(αi− f+ fdi )Di

∫ +∞
−∞ R

αi− f+ fdi
sisη

(τ − Di)(Rαi
si (τ − u))∗ejπ( f− fdi )τdτ

− 3Bri
5r
′
ηe−jπ(αi− f+ fdi )Di

∫ +∞
−∞ (Mαi

sisisisη
(τ − u))∗R

αi− f+ fdi
si (τ − Di)e

jπ( f− fdi )τdτ

− 3Ari
5r
′
ηe−jπ(αi− f+ fdi )Di

∫ +∞
−∞ M

αi− f+ fdi
sisisisη

(τ − Di)(Rαi
si (τ − u)ejπ( f− fdi )τ)

∗
dτ

−
M′

∑
η=1
∀η 6=i

9Ari
4r
′
ηe−jπ(αi− f+ fdi )Di

∫ +∞
−∞ M

αi− f+ fdi
sisinsη

(τ − Di)(Rαi
si (τ − u)ejπ( f− fdi )τ)

∗
dτ

+
M′

∑
η=1
∀η 6=i

3ri
6r
′
ηe−jπ(αi− f+ fdi )D ∫ +∞

−∞ M
αi− f+ fdi
sisinsη

(τ − Di)(Mαi
4si
(τ − u))∗ejπ( f− fdi )τdτ

− 3Ari
5 ∫ +∞
−∞ Mαi− f

sisisin
′ (τ)(Rαi

si (τ − u)ejπ( f− fdi )τ)
∗
ejπ f τdτ

+ri
7 ∫ +∞
−∞ Mαi− f

sisisin
′ (τ)(Mαi

4si
(τ − u))∗ejπ f τdτ.

(A36)

Since there is no echo corresponding to the ith direct wave in the supervise channel, that is ∀η 6= i.

At this time, there is no correlation between M
αi− f+ fdi
sisisisη (τ − Di) and Mαi

4si
(τ − u), R

αi− f+ fdi
sisη (τ − Di)

and Rαi
si (τ − u), R

αi− f+ fdi
si (τ − Di) and Mαi

sisisisη (τ − u), M
αi− f+ fdi
sisisisη (τ − Di) and Rαi

si (τ − u). Let

Ω
′
1 = −

M
′

∑
η=1
∀η 6=i

9Ari
4r
′
ηe−jπ(αi− f+ fdi

)Di
∫ +∞

−∞
M

αi− f+ fdi
sisinsη (τ − Di)(Rαi

si (τ − u)ejπ( f− fdi
)τ)
∗
dτ, (A37)

using the above analysis results, we can know that E[Ω
′
1] = 0, and

var[Ω
′
1] = E{[Ω′

1]
2} − E{[Ω′

1]}2 = E{[Ω′
1]

2}

=
M
′

∑
η=1
∀η 6=i

81A2r8
i (r

′
η)

2
E

[[
1
N

N−1
∑

τ1=0
n(τ1 − v; α)M3si (τ1 − v; α)Rsi (τ1 − v; α)ej2πτ1

]

·
[

1
N

N−1
∑

τ2=0
n(τ2 − v; α)M3si (τ2 − v; α)Rsi (τ2 − v; α)ej2πτ2

]∗]

=
M
′

∑
η=1
∀η 6=i

81A2r8
i (r
′
η)

2

N2 E

[
N−1
∑

τ1=0

N−1
∑

τ2=0
n(τ1 − v; α)M3si (τ1 − v; α)Rsi (τ1 − v; α)ej2πτ1

·n∗(τ2 − v; α)M3si
∗(τ2 − v; α)Rsi

∗(τ2 − v; α)e−j2πτ2
]

=
M
′

∑
η=1
∀η 6=i

81A2r8
i (r
′
η)

2

N2

N−1
∑

τ1=0

N−1
∑

τ2=0
E
[

∑
V

n(τ1 − v; α)n∗(τ2 − v; α)Rsi (τ1 − v; α)Rsi
∗(τ2 − v; α)

=
M
′

∑
η=1
∀η 6=i

81A2r8
i (r
′
η)

2

N2 ∗ N ∗ σ2
n ∗ 1

N σ6
si
∗ 1

N σ4
si

=
M
′

∑
η=1
∀η 6=i

81A2r8
i (r
′
η)

2

N3 σ2
nσ10

si
,

(A38)
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and Ω
′
1 obeys the Gaussian distribution of the following statistical characteristics

Ω
′
1 ∼ N

0,
M
′

∑
η=1
∀η 6=i

81A2r8
i (r

′
η)

2

N3 σ2
nσ10

si

 . (A39)

Let

Ω
′
2 =

M
′

∑
η=1
∀η 6=i

3ri
6r
′
ηe−jπ(αi− f+ fdi

)D
∫ +∞

−∞
M

αi− f+ fdi
sisinsη (τ − Di)(Mαi

4si
(τ − u))∗ejπ( f− fdi

)τdτ. (A40)

Similarly, Ω
′
2 obeys the Gaussian distribution of the following statistical characteristics

Ω
′
2 ∼ N

0,
M
′

∑
η=1
∀η 6=i

9r12
i (r

′
η)

2

N3 σ2
nσ14

si

 . (A41)

Let

Ω
′
3 = −3Ar5

i

∫ +∞

−∞
Mαi− f

sisisin
′ (τ)(Rαi

si (τ − u)ejπ( f− fdi
)τ)
∗
ejπ f τdτ. (A42)

Similarly, Ω
′
3 obeys the Gaussian distribution of the following statistical characteristics

Ω
′
3 ∼ N

(
0,

9A2r10
i

N3 σ2
n′

σ10
si

)
. (A43)

Let

Ω
′
4 = r7

i

∫ +∞

−∞
Mαi− f

sisisin
′ (τ)(Mαi

4si
(τ − u))∗ejπ f τdτ. (A44)

Similarly, Ω
′
4 obeys the Gaussian distribution of the following statistical characteristics

Ω
′
4 ∼ N

(
0,

r14
i

N3 σ2
n′

σ14
si

)
. (A45)

In summary, under the assumption H0, the detection statistic Λ is obeyed the complex Gaussian
distribution, which is expressed as

Λ/H0 ∼ CN(0,
σ10

si

N3 (
M
′

∑
η=1
∀η 6=i

81A2r8
i (r

′
η)

2
σ2

n +
M
′

∑
η=1
∀η 6=i

9r12
i (r

′
η)

2
σ2

nσ4
si
+ 9A2r10

i σ2
n′
+ r14

i σ2
n′

σ4
si
)). (A46)

References

1. Hashim, I.; Al-Hourani, A.; Rowe, W.; Scott, J. Adaptive X-Band Satellite Antenna for Internet-of-Things
(IoT) over Satellite Applications. In Proceedings of the 13th International Conference on Signal Processing
and Communication Systems, Surfers Paradise, Australia, 16–18 December 2019; pp. 1–7.

2. Li, F.; Lam, K.; Zhao, N.; Liu, X.; Zhao, K.; Wang, L. Spectrum Trading for Satellite Communication Systems
with Dynamic Bargaining. IEEE Trans. Commun. 2018, 66, 4680–4693. [CrossRef]

3. Ilyushin, Y.; Padokhin, A.; Smolov, V. Global Navigational Satellite System Phase Altimetry of the Sea Level:
Systematic Bias Effect Caused by Sea Surface Waves. In Proceedings of the 2019 PhotonIcs & Electromagnetics
Research Symposium—Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 1618–1627.

http://dx.doi.org/10.1109/TCOMM.2018.2837909


Remote Sens. 2020, 12, 1150 25 of 26

4. Qiao, J.; Chen, W.; Ji, S.; Weng, D. Accurate and Rapid Broadcast Ephemerides for Beidou-Maneuvered
Satellites. Remote. Sens. 2019, 11, 787. [CrossRef]

5. Powell, S.; Akos, D. GNSS Reflectrometry Using the L5 and E5a Signals for Remote Sensing Applications.
In Proceedings of the 2013 US National Committee of URSI National Radio Science Meeting, Boulder, CO,
USA, 9–12 January 2013; p. 1.

6. Clarizia, M.; Chotiros, N.; Vaccaro, M. A GPS-Reflectometry Simulator for Target Detection Over Oceans.
In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 23–27 July 2018; pp. 450–451.

7. Garvanov, I.; Kabakchiev, C.; Behar, V.; Garvanova, M. Target Detection Using a GPS Forward-Scattering
Radar. In Proceedings of the 2015 International Conference on Engineering and Telecommunication, Mosocw,
Russia, 18–19 November 2015; pp. 29–33.

8. Clarizia, M.; Braca, P.; Ruf, C.S.; Willett, P. Target Detection Using GPS Signals of Opportunity. In Proceedings
of the 2015 18th International Conference on Information Fusion, Washington, DC, USA, 6–9 July 2015;
pp. 1429–1436.

9. Gronowski, K.; Samczynski, P.; Stasiak, K.; Kulpa, K. First, Results of Air Target Detection Using Single
Channel Passive Radar Utilizing GPS Illumination. In Proceedings of the 2019 IEEE Radar Conference,
Boston, MA, USA, 22–26 April 2019; pp. 1–6.

10. Mojarrabi, B.; Homer, J.; Kubik, K. Power Budget Study for Passive Target Detection and Imaging Using
Secondary Applications of GPS Signals in Bistatic Radar Systems. In Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 449–451.

11. Zeng, H.; Chen, J.; Wang, P.; Yang, W.; Liu, W. 2D Coherent Integration Processing and Detecting of Aircrafts
Using GNSS-Based Passive Radar. Remote. Sens. 2018, 10, 1164. [CrossRef]

12. AlJewari, Y.; Ahmad, R.; AlRawi, A. Impact of Multipath Interference and Change of Velocity on the
Reliability and Precision of GPS. In Proceedings of the 2014 2nd International Conference on Electronic
Design, Penang, Malaysia, 19–21 August 2014; pp. 427–430.

13. Wu, X.; Gong, P.; Zhou, J.; Liu, Z. The Applied Research on Anti-multipath Interference GPS Signal Based on
Narrow-related. In Proceedings of the 2014 IEEE 5th International Conference on Software Engineering and
Service Science, Beijing, China, 27–29 June 2014; pp. 771–774.

14. Suberviola, I.; Mayordomo, I.; Mendizabal, J. Experimental Results of Air Target Detection with a GPS
Forward-Scattering Radar. IEEE Geosci. Remote Sens. Lett. 2011, 9, 47–51. [CrossRef]

15. Lashley, M.; Bevly, D.; Hung, J. Performance Analysis of Vector Tracking Algorithms for Weak GPS Signals
in High Dynamics. IEEE J. Sel. Top. Signal Process. 2009, 3, 661–673. [CrossRef]

16. Liu, M.; Gao, Z.; Chen, Y.; Song, H.; Li, Y.; Gong, F. Passive Detection of Moving Aerial Target Based on
Multiple Collaborative GPS Satellites. Remote. Sens. 2020, 12, 263. [CrossRef]

17. Liu, M.; Yi, F.; Liu, P.; Li, B. Cramer-Rao Lower Bounds of TDOA and FDOA Estimation Based on Satellite
Signals. In Proceedings of the 2018 14th IEEE International Conference on Signal Processing, Beijing, China,
12–16 August 2018; pp. 1–4.

18. Masjedi, S.; Moddares-Hashemi, M. Theoretical Approach for Target Detectionand Interference Cancellation
in Passive Radar. IET Radar Sonar Navig. 2013, 7, 205–216. [CrossRef]

19. Zhang, Y.; Xi, S. Application of New LMS Adaptive Filtering Algorithm with Variable Step Size in Adaptive
Echo Cancellation. In Proceedings of the 2017 IEEE 17th International Conference on Communication
Technology, Chengdu, China, 27–30 October 2017; pp. 1715–1719.

20. Niranjan, D.; Ashwini, B. Noise Cancellation in Musical Signals Using Adaptive Filtering Algorithms.
In Proceedings of the 2017 International Conference on Innovative Mechanisms for Industry Applications,
Bangalore, India, 21–23 February 2017; pp. 82–86.

21. Mugdha, A.; Rawnaque, F.; Ahmed, M. A Study of Recursive Least Squares (RLS) Adaptive Filter Algorithm
in Noise Removal from ECG Signals. In Proceedings of the 2015 International Conference on Informatics,
Electronics Vision, Fukuoka, Japan, 15–18 June 2015; pp. 1–6.

22. Cardinali, R.; Colone, F.; Ferretti, C.; Lombardo, P. Comparison of Clutter and Multipath Cancellation
Techniques for passive Radar. In Proceedings of the 2007 IEEE Radar Conference, Boston, MA, USA,
17–20 April 2007; pp. 469–474.

http://dx.doi.org/10.3390/rs11070787
http://dx.doi.org/10.3390/rs10071164
http://dx.doi.org/10.1109/LGRS.2011.2159477
http://dx.doi.org/10.1109/JSTSP.2009.2023341
http://dx.doi.org/10.3390/rs12020263
http://dx.doi.org/10.1049/iet-rsn.2012.0200


Remote Sens. 2020, 12, 1150 26 of 26

23. Liu, M.; Zhang, J.; Li, B. Feasibility Analysis of OFDM/OQAM Signals as Illuminator of Opportunity for
Passive Detection. In Proceedings of the 2018 14th IEEE International Conference on Signal Processing,
Beijing, China, 12–16 August 2018; pp. 1–4.

24. Hong, J.; Wang, S.X.; Lu, H.J. An Effective Direction Estimation Algorithm in Multipath Environment Based
on Fourth-order Cyclic Cumulants. In Proceedings of the IEEE 5th Workshop on Signal Processing Advances
in Wireless Communications, Lisbon, Portugal, 11–14 July 2004; pp. 263–267.

25. Yan, X.; Wang, S.; Wang, K.; Jiang, H. Localization of Near field Cyclostationary Source Based on Fourth-order
Cyclic Cumulant. In Proceedings of the 2008 9th International Conference on Signal Processing, Beijing,
China, 26–29 October 2008; pp. 1629–1632.

26. Jun, H. A proper integral representation of Marcum Q-Function. In Proceedings of the 2014 XXXIth URSI
General Assembly and Scientific Symposium, Beijing, China, 16–23 August 2014; pp. 1–3.

27. Bocus, M.; Dettmann, C.; Coon, J. An Approximation of the First Order Marcum Q-Function with Application
to Network Connectivity Analysis. IEEE Commun. Lett. 2013, 17, 499–502. [CrossRef]

28. Ermolova, N.; Tirkkonen, O. Laplace Transform of Product of Generalized Marcum Q, Bessel I, and Power
Functions With Applications. IEEE Trans. Signal Process. 2014, 62, 2938–2944.

29. Hu, B.; Liu, M.; Yi, F.; Song, H.; Jiang, F.; Gong, F.; Zhao, N. DOA Robust Estimation of Echo Signals Based on
Deep Learning Networks with Multiple Type Illuminators of Opportunity. IEEE Access 2020, 8, 14809–14819.
[CrossRef]

30. Liu, M.; Zhang, J.; Tang, J.; Jiang, F.; Liu, P.; Gong, F.; Zhao, N. 2D DOA Robust Estimation of Echo Signals
Based on Multiple Satellites Passive Radar in the Presence of Alpha Stable Distribution Noise. IEEE Access
2019, 7, 2169–3536.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LCOMM.2013.011513.122462
http://dx.doi.org/10.1109/ACCESS.2020.2966653
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Model
	Interference Suppression
	Direct Wave Signal Separation in the Reference Channel
	DPI and MPI Suppression Based on NLMS Adaptive Filter

	Detection Statistics Construction
	Detection Statistic Construction Based on CAF
	Detection Statistic Construction Based on FOCCCAF
	Detector Design

	Moving Aerial Target Detection Performance Analysis
	Performance Analysis of Detection Based on CAF
	Performance Analysis of Detection Based on FOCCCAF

	Numerical Results and Discussion
	Conclusions
	
	Proof of Lemma 1
	Proof of Lemma 2

	References

