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Abstract: The recently released Landsat analysis ready data (ARD) over the United States provides the
opportunity to investigate landscape dynamics using dense time series observations at 30-m resolution.
However, the dataset often contains data gaps (or missing data) because of cloud contamination or
data acquisition strategy, which result in different capabilities for seasonality modeling. We present a
new algorithm that focuses on data gap filling using clear observations from orbit overlap regions.
Multiple linear regression models were established for each pixel time series to estimate stable
predictions and uncertainties. The model’s training data came from stratified random samples based
on the time series similarity between the pixel and data from the overlap regions. The algorithm
was first evaluated using four tiles (5000 × 5000 30-m pixels for each tile) from 2018 land surface
temperature data (LST) in Atlanta, Georgia. The accuracy was assessed using randomly masked
clear observations with an average Root Mean Square Error (RMSE) of 3.88 and an average bias of
−0.37, which were comparable to the product accuracy. We also applied the method on ARD surface
reflectance bands at Fairbanks, Alaska. The accuracy assessment suggested a majority RMSE of less
than 0.04 and a bias of less than 0.0023. The gap-filled time series can be of help for reliable seasonal
modeling and reducing artifacts related to data availability. This approach can also be applied to
other datasets, vegetation indexes, or spectral reflectance bands of other sensors.
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1. Introduction

Satellite images provide valuable geospatial data for characterizing land cover and land cover
dynamics. However, tradeoffs between spatial and temporal resolution often limit applications of
different types of satellite images. For example, the Advanced Very-High-Resolution Radiometer
(AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors can provide daily
global observations that are valuable for monitoring rapid land surface changes. But the coarse spatial
resolution is often inadequate for highly heterogeneous areas like urban landscapes. In contrast,
Landsat data provide sufficient spatial detail for monitoring land conditions [1,2], but the 16-day
revisit cycle has limited use for studying land changes like land surface temperature and vegetation
phenology; the revisit cycle is only eight days during times when two Landsat satellites have been
operating simultaneously.

Previous efforts have attempted to fuse MODIS and Landsat images to complement the
spatial resolution of Landsat with the temporal frequency of MODIS. For example, Gao et al. [3]
proposed a spatial and temporal adaptive reflection fusion model (STARFM) to estimate Landsat-scale
observations on MODIS acquisition dates. The enhanced STARFM ESTARFM was developed to handle
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heterogeneous landscapes [4] and flexible spatiotemporal data fusion (FSDAF) to handle spectral
changes [5]. However, the approaches were significantly affected by landscape heterogeneity [6]
and potential inconsistency in the imagery (e.g., view angle, geolocation accuracy) [7]. Moreover,
the methods are not applicable prior to the launch of MODIS in 1999 [8].

Recently, increasing activities have focused on integrating relatively high spatial resolution
images from multiple sensors to strengthen the temporal resolution, such as Google Earth Engine
(GEE) [9], Harmonized Landsat and Sentinel-2 (HLS) [10], and analysis ready data (ARD) [11]. ARD,
from the U.S. Geological Survey (USGS), comprises surface reflectance data from the Thematic
Mapper (TM) aboard Landsats 4 and 5, the Enhanced Thematic Mapper Plus (ETM+) aboard Landsat
7, and the Operational Land Imager aboard Landsat 8 over the United States [11]. Furthermore,
the USGS released a suite of Landsat-derived products in ARD format, such as Provisional Land
Surface Temperature [12,13], Dynamic Surface Water Extent [14], Fractional Snow Covered Area [15],
and Burned Area [16,17]. Another ARD-based product is the Land Change Monitoring, Assessment,
and Projection (LCMAP) [18,19]. LCMAP uses all available Landsat data to generate continuous
land cover trends information and current land change information, and to characterize land surface
conditions [20]. However, the availability of ARD varies considerably due to sensor orbit models
and cloud cover [21], which lead to different capabilities of land surface modeling [18,22]. Roy and
Yan [22] suggested at least 21 annual clear observations to fit a linear harmonic model or 15 annual
clear observations for the nonlinear harmonic model for annual crop modeling.

The growth of multi-sensor integrated datasets provides the opportunity to investigate landscape
dynamics and environmental changes at both high spatial resolution and temporal frequency, but also
urges approaches to reduce the inconsistency of data availability. Many gap-filling approaches were
developed for predicting missing values related to cloud contamination and Landsat 7 Scan Line
Corrector (SLC)-off data [22–26]. There are primarily two groups of approaches: temporal interpolation
and alternative similar pixel [8]. Yan and Roy [8] suggested that temporal interpolation relies on time
series statistical models to predict smooth seasonal variations, which is not suitable for landscapes with
abrupt changes or complex phenology. Alternative similar pixel integrates non-missing pixels with
similar spectral variation and close spatiotemporal distance, which is short for filling spatially extensive
gaps with heterogeneous land covers [27,28]. However, ARD often have a large proportion of data gaps
in both temporal and spatial dimensions. A recently developed algorithm, spectral-angle-mapper based
spatiotemporal similarity (SAMSTS), presented good results in filling large gaps [8]. The algorithm
filled the missing pixel value using an alternative similar pixel from the non-missing region of the
image; however, SAMSTS is less accurate in heterogeneous landscapes like urban areas.

The objective of this paper is to present a new approach to fill gaps in ARD and estimate the
uncertainties of filled data. We used time series from the orbit overlap region to predict values for
potential gaps. Similar to the SAMSTS model, we used clustering and temporal similarity to find
alternative pixels. However, we selected pixels from multiple clusters and generated multiple linear
models for robust estimation. We used the ARD land surface temperature (LST) product in Atlanta,
Georgia, to evaluate and validate the approach. We also applied the approach to fill gaps of surface
reflectance bands in Fairbanks, Alaska, and demonstrated the impacts of gap-filled reflectance products
to land change modeling.

2. Study Area

The first study area is Atlanta, Georgia, which extends over four ARD tiles (top left: H23V13,
top right: H23V14, bottom left: H24V13, bottom right: H24V14) (Figure 1a). Atlanta has a humid
subtropical climate with short, mild winters and long, hot summers. The monthly average temperature
in 2018 ranged from 4.7 ◦C in January to 27.2 ◦C in July [29]. According to the National Land
Cover Database (NLCD) 2016 [30,31], the primary land covers are forest (deciduous forest 26.6%,
evergreen forest 19.2%) and pasture/hay (13.6%), while the total developed area covers 12.8% (Figure 1a).
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Figure 1. The first study area is Atlanta, Georgia. Panel (a) shows land cover types from National 
Land Cover Database (NLCD) 2016. The black lines are boundaries of the four Analysis Ready Data 
(ARD) tiles (Top left: H23V13, top right: H23V14, bottom left: H24V13, bottom right: H24V14). Panel 
(b) shows the number of clear observations based on the ARD pixel QA band. Panel (c) shows the 
second study area in Fairbanks, Alaska. The background image is the true color combination of ARD 
Landsat 8 on July 6, 2017. Panel (d) shows the Landsat acquisition dates in each tile. 

3.2. Surface Reflectance Data for Fairbanks 

The Landsat ARD surface reflectance data (tile H07V05) in 2017 were acquired from USGS 
EarthExplorer [11]. The data were processed to the highest level of geometric and radiometric quality. 
The tile has a total of 175 scenes with clear observations, with as many as 37 in a single year. The 
acquired images were clipped to the study area, and only observations that were flagged as clear or 
water in the pixel QA band were used (Figure 1c). 

Figure 1. The first study area is Atlanta, Georgia. Panel (a) shows land cover types from National Land
Cover Database (NLCD) 2016. The black lines are boundaries of the four Analysis Ready Data (ARD)
tiles (Top left: H23V13, top right: H23V14, bottom left: H24V13, bottom right: H24V14). Panel (b)
shows the number of clear observations based on the ARD pixel QA band. Panel (c) shows the second
study area in Fairbanks, Alaska. The background image is the true color combination of ARD Landsat
8 on July 6, 2017. Panel (d) shows the Landsat acquisition dates in each tile.

The second study area is Fairbanks, Alaska (Figure 1c), and comprises 689 × 472 30-m pixels.
Fairbanks has a subarctic climate with severe winters, no dry season, cool, short summers, and
strong seasonality. Fairbanks is the second most populous metropolitan area in Alaska. The monthly
average temperature in 2017 ranged from −22.9 ◦C in January to 18.7 ◦C in July [29]. According to the
NLCD 2016 [30,31], the primary land covers include woody wetland (23%), deciduous forest (17.9%),
low density developed (15.7%), and evergreen forest (15.4%).
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3. Data

3.1. Landsat Land Surface Temperature (LST) for Atlanta

The Level-2 Provisional Surface Temperature in 2018 was acquired from USGS
EarthExplorer [12,13]. The product was processed to a 30-meter spatial resolution in Albers Equal
Area (AEA) projection and gridded to the ARD tiling scheme (5000 × 5000 30-m pixels). Four tiles
were acquired: H23V13 and H23V14 each have 76 scenes, and H24V13 and H24V14 each have 80
scenes. A validation study suggested that the product had a mean bias (root mean square error) of
0.7 K (2.2 K) and 0.9 K (2.3 K) for the four surface radiation budget network sites, and −0.3 K (0.6 K)
and 0.4 K (0.7 K) for inland water bodies (Salton Sea and Lake Tahoe, respectively, in the USA) [32].
The pixel quality assurance (QA) band was also acquired along with the LST product, which flagged
cloud-contaminated observations at the pixel level. We used the pixel QA to extract clear observations
or water observations that were considered cloud-free in this study. Figure 1b shows the number of
clear LST observations in 2018 for the four tiles.

3.2. Surface Reflectance Data for Fairbanks

The Landsat ARD surface reflectance data (tile H07V05) in 2017 were acquired from USGS
EarthExplorer [11]. The data were processed to the highest level of geometric and radiometric
quality. The tile has a total of 175 scenes with clear observations, with as many as 37 in a single year.
The acquired images were clipped to the study area, and only observations that were flagged as clear
or water in the pixel QA band were used (Figure 1c).

4. Method

The orbit overlap region often offers better capability in annual land surface modeling because of
higher data density [22]. We assume that a given pixel time series in the ARD tile can be modeled
as a linear combination of a set of pixel time series from the orbit overlap region. Therefore, we can
utilize the time series seasonality from the overlap region to model time series of the given pixel in the
same tile [33]. The time series model contains predictions at each time stamp of the overlap region,
which is used to fill data gaps in the given pixel. The single band LST was used to test and validate the
method at broader and heterogeneous regions; thereafter, the method was applied to multi-bands of
surface reflectance for Fairbanks. It is worth noting that this method aims to improve the capability of
seasonal modeling. Though LST could change quickly in time and space, we assume that the observed
LST from the same date can be used to estimate LST at another location with similar seasonal patterns.
For example, the reconstructed LST is derived from LST under clear sky rather than the actual cloudy
LST, which could lead to biased LST estimation at the daily scale but have a limited impact on the
seasonal modeling.

4.1. Gap Filling

In this study, the data gap is defined as absent observations due to the orbit coverage or
cloud-contaminated observations based on the pixel QA information. Figure 2 illustrates the overall
conceptual approach used in the study. First, we used time series from the orbit overlap region to
select the training data source. Second, the training data sources were clustered based on the Euclidean
distance (time series similarity), so the training samples could be stratified based on their similarity to
the target pixel. Third, we sampled training data from multiple clusters because some mixed pixel time
series could have combined seasonality from different landscapes. After that, these training samples
were used to create linear regression models to predict time series of any target pixel.
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Figure 2. Illustration of the conceptual approach of gap filling. (a) The time series images with non-
clear observations masked. (b) The orbit overlap region with a high density of clear observations. (c) 
The clustered training data depending on time series similarity. (d) Stratified random samples for a 
target pixel depending on the time series similarity between the target pixel and cluster centers. (e) A 
regression model built using the clear observations of samples and the target pixel. The gaps in the 
target pixel are then predicted from the regression model. 

Figure 3 illustrates the workflow of the gap-filling algorithm. In the first step, the overlap region 
in each tile is extracted using the threshold that divides two peaks (overlap and non-overlap region) 
in the histogram of clear observations. Because time series images in overlap regions also have cloud-
contaminated data, those training data need to be preprocessed. Roy and Yan [22] suggested that the 
7-parameter linear harmonic model (Equation (1)) can well represent the annual Landsat time series 
variation when there are at least 21 annual clear observations. For this study, all overlap regions have 
more than 21 clear observations, while non-overlap regions often have insufficient data. Thus, the 7-
parameter linear harmonic model is used to replace those cloud-contaminated data, which maintains 
the details of seasonality in the training data (Equation (1)) [20,22]. = + 2 + 2

 (1) 

where f(t) is the modeled time series for a single pixel location in the overlap region; a0 describes the 
mean of f(t) over the time series; am and bm are coefficients for harmonic component m; t is day of year; 

Figure 2. Illustration of the conceptual approach of gap filling. (a) The time series images with
non-clear observations masked. (b) The orbit overlap region with a high density of clear observations.
(c) The clustered training data depending on time series similarity. (d) Stratified random samples for a
target pixel depending on the time series similarity between the target pixel and cluster centers. (e) A
regression model built using the clear observations of samples and the target pixel. The gaps in the
target pixel are then predicted from the regression model.

Figure 3 illustrates the workflow of the gap-filling algorithm. In the first step, the overlap region
in each tile is extracted using the threshold that divides two peaks (overlap and non-overlap region)
in the histogram of clear observations. Because time series images in overlap regions also have
cloud-contaminated data, those training data need to be preprocessed. Roy and Yan [22] suggested
that the 7-parameter linear harmonic model (Equation (1)) can well represent the annual Landsat
time series variation when there are at least 21 annual clear observations. For this study, all overlap
regions have more than 21 clear observations, while non-overlap regions often have insufficient data.
Thus, the 7-parameter linear harmonic model is used to replace those cloud-contaminated data,
which maintains the details of seasonality in the training data (Equation (1)) [20,22].
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f (t) = a0 +
M∑

m=1

(amcos
2πt
L

+ bmsin
2πt
L

) (1)

where f(t) is the modeled time series for a single pixel location in the overlap region; a0 describes the
mean of f(t) over the time series; am and bm are coefficients for harmonic component m; t is day of
year; and L is the length of the time period (L = 365.25). Parameter M (M = 3) determines the highest
frequency used for modeling.
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Figure 3. Workflow of the gap-filling algorithm.

After the training data were prepared, we used the ensemble method to estimate values at gaps
in any target pixel. First, we built multiple independent prediction models from randomly selected
training data. Then we used the median of multiple model outputs as the final prediction. The median
was used to reduce the impact of anomalies in predictions. This model ensemble concept is robust to
occasional outliers in the training data (i.e., cloud-contaminated data) [34]. Following is the detailed
procedure for each target pixel:

1. Cluster the training data—We clustered the training data into 20 groups using the KMeans
analysis [35] and estimated the averaged time series for each cluster as centers.
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2. Stratified random selection for the target pixel—We calculated the Euclidean distances from cluster
centers to the target pixel and used inverse distances as the weights to randomly sample a total
of 100 pixels from the training data. The stratified sampling strategy emphasizes training data
with similar seasonality but is not restricted by clusters. Therefore, the approach is robust when
the target pixel has a similar distance to multiple cluster centers, which could be the case for
mixed pixels.

3. Predict the full time series via linear regression—We created a regression model in Equation (2)
and predicted values at gaps based on clear observations from the target pixels. In this study,
we used the LASSO regression [36] to build regression models, which automatically selects the
most relevant training samples.

y = β0 +
∑
βiXi + ε (2)

where β0 and βi represent the linear parameter to be estimated and ε represents the error terms. Xi and
y are sampled training data and the target pixel time series at y are clear observations dates.

We repeated the last two steps 10 times for each target pixel and used the median value at each
time step as the final prediction. Moreover, we calculated the standard deviation (STD) of iterations for
each prediction as an indicator of uncertainty. The results have the same structure as ARD tiles with all
missing data filled.

4.2. Implementation of the Method on Surface Reflectance

We collected training data from the whole tile to fill in gaps in the study area. This tile has 6
orbit overlaps, but no distinctive overlap versus non-overlap regions. Thus, we used 21 as the region
threshold, which is the majority of clear observations and the minimum of clear observations to build
the harmonic model (Equation (1)) as suggested by Roy and Yan [22]. As a demonstration, we applied
the method to the blue, green, red, near-infrared (NIR), Shortwave infrared 1 (SWIR1), and Shortwave
infrared 2 (SWIR2) bands.

4.3. Validation Strategies

The algorithm was tested with randomly selected clear observations. In detail, we randomly
masked 1,000 clear observations from each tile as reference data to validate model predictions of LST at
Atlanta, Georgia. Fairbanks is a much smaller region, so we randomly masked 100 clear observations for
validation and conducted the validation 10 times, which also resulted in 1000 validation observations.
The root mean square error (RMSE) between the observed and filled pixel values was calculated with
respect to the LST and each spectral band.

5. Results

5.1. Gap-Filled LST

Based on the histogram of clear observations, the minimum value between the two peaks (overlap
and non-overlap region) was selected as the threshold (H23V13 > 21, H23V14 > 23, H24V13 > 25,
H24V14 > 27). In order to avoid possible boundary issues between tiles, we combined all overlap
regions as the training data. Figure 4a shows an example of the model-predicted LST for June 18,
2018, in tile H23V13 for Atlanta. The original Landsat LST only covered the eastern part of the tile
(Figure 4c) and was contaminated by scattered clouds (Figure 4d). By closely comparing the two
maps, the predicted LST (left side of the dashed line in Figure 4f showed a similar value range to the
Landsat LST observations (right side of the dashed line in Figure 4f. Both observations and predictions
showed high LST at bare surface and low LST along the river (Figure 4f,g). The spatial distribution
is smoother on the left side of Figure 4f than the right side. The uncertainty map (Figure 4b) shows
51.3% of total pixels have the prediction uncertainty less than 4◦ Kelvin, and 47% of total pixels have
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valid observations. The spatial pattern of high uncertainty pixels (>4◦ Kelvin, brown color in Figure 4b
matches cloud edge in the 19 July image, where cloud shadows are labeled as clear observations by
pixel QA. But the predicted LST does not show those patterns.
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except for several scattered outliers in Figure 5d,f, while both observed and predicted summer LSTs 
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from two Landsat 8 images (26 May 2018 and 29 July 2018) that were mostly covered by clouds, but 
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of the summer in Figure 5f also came from a cloud-contaminated observation (Landsat 7 image from 
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Figure 4. Land surface temperature from June 18, 2018 (Atlanta, GA) (a) predicted in this study and (c)
ARD land surface temperature (LST). Panel (b) shows the model uncertainty of predictions. Panel (d)
shows the distribution of valid data (black) and cloud (white) based on the Landsat pixel QA band.
(Panel (e) and (f) are zoom-in views of (a) and (c), and the black dashed line shows the boundary
between the observed and predicted data. Panel (g) is a high-resolution image of the same region from
Esri, DigitalGlobe.

Figure 5 represents the time series of observed and predicted land surface temperature at eight
ground station locations in Atlanta. The air temperature is also displayed as a reference of the seasonal
temperature pattern at the study area. The predicted values followed well with observations except for
several scattered outliers in Figure 5d,f, while both observed and predicted summer LSTs are higher
than the station air temperatures. The two outliers in Figure 5d with very low LST came from two
Landsat 8 images (26 May 2018 and 29 July 2018) that were mostly covered by clouds, but pixel QA only
flagged part of the images as cloud or cloud shadow. Similarly, the low LST at the peak of the summer
in Figure 5f also came from a cloud-contaminated observation (Landsat 7 image from 12 July 2018).
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The orange stars are valid Landsat observations, and blue dots are model-predicted values at each 
Landsat acquisition date. The black lines are station air temperatures [37] 
(https://www.ncdc.noaa.gov/ghcn-daily-description). The station ID and latitude–longitude are (a): 
USW00053863(33.875, -84.302); (b): USW00013874(33.630, -84.442); (c): USW00003888(33.779, -84.521); 
(d): USC00098740(34.579, -83.332); (e): USC00097600(34.245, -85.151); (f): USC00096335(33.454, -
84.818); (g): USC00094170(33.284, -83.468); (h): USC00093621(34.301, -83.860). 

5.2. Validation Against the Landsat LST Observations 

Figure 6 shows the model-estimated LST in relation to 1000 randomly masked clear observations 
from each tile in Atlanta. All the data in the scatterplots fall close to the 1:1 line, indicating the 
algorithm can capture the diverse LST caused by seasonality and cover types. In order to assess the 
accuracy quantitatively, the RMSE and bias (average difference) of observed and predicted LST were 
calculated (Table 1). The model-estimated LST has a similar range of RMSE and bias compared to the 
Landsat LST product accuracy, indicating the algorithms have successfully predicted the LST. The 
dot colors in Figure 6 represent the standard deviation of predictions. Those predictions with high 
uncertainty or observations distant from the linear relationship mostly occurred at low temperature 

Figure 5. Time series of land surface temperature and air temperature at eight stations in Atlanta, GA.
The orange stars are valid Landsat observations, and blue dots are model-predicted values at each
Landsat acquisition date. The black lines are station air temperatures [37] (https://www.ncdc.noaa.gov/

ghcn-daily-description). The station ID and latitude–longitude are (a): USW00053863(33.875, -84.302);
(b): USW00013874(33.630, -84.442); (c): USW00003888(33.779, -84.521); (d): USC00098740(34.579,
-83.332); (e): USC00097600(34.245, -85.151); (f): USC00096335(33.454, -84.818); (g): USC00094170(33.284,
-83.468); (h): USC00093621(34.301, -83.860).

5.2. Validation Against the Landsat LST Observations

Figure 6 shows the model-estimated LST in relation to 1000 randomly masked clear observations
from each tile in Atlanta. All the data in the scatterplots fall close to the 1:1 line, indicating the algorithm
can capture the diverse LST caused by seasonality and cover types. In order to assess the accuracy
quantitatively, the RMSE and bias (average difference) of observed and predicted LST were calculated
(Table 1). The model-estimated LST has a similar range of RMSE and bias compared to the Landsat
LST product accuracy, indicating the algorithms have successfully predicted the LST. The dot colors in

https://www.ncdc.noaa.gov/ghcn-daily-description
https://www.ncdc.noaa.gov/ghcn-daily-description
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Figure 6 represent the standard deviation of predictions. Those predictions with high uncertainty or
observations distant from the linear relationship mostly occurred at low temperature observations that
might come from cloud-contaminated observations that were labeled as clear by pixel QA.
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Figure 6. Model-estimated land surface temperature compared to the Landsat observations for four
tiles in Atlanta, GA. The color suggests the standard deviation of predictions through iterations.

Table 1. Root Mean Square Error (RMSE) and average difference (observed minus predicted) of land
surface temperature (Kelvin) for four tiles in Atlanta, Georgia.

TILE RMSE AVERAGE DIFFERENCE (AD)

H23V13 3.21 −0.79
H23V14 4.09 0.54

H24V13 3.71 −0.68
H24V14 4.49 −0.56

5.3. Gap-Filled Surface Reflectance

Figure 7a,d shows examples of ARD surface reflectance on June 5 and June 6, respectively,
using the true color combination. Figure 7b,e are gap-filled images with uncertainty maps of the
red band shown in panels (c) and (f). Differing from the LST gap-filled map (Figure 4), there are
no visible boundaries between the raw and gap-filled pixels. Some black spots, however, occur in
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panel (b) because those cloud shadow pixels are flagged as clear or water observation in the pixel QA.
The uncertainty maps show there is 55% valid observation plus 45% pixel uncertainty of less than 0.1
in the June 5 image (Figure 7b), and 73% valid observation plus 27% pixel uncertainty of less than 0.1
in the June 6 image (Figure 7f).
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Figure 7. Fairbanks (Alaska) gap-filling example, 689 × 472 30-m pixel area. Panels (a,d) show
examples of ARD surface reflectance on 5 June and 6 June, respectively, using the true color combination.
Panels (b,e) are gap-filled images with uncertainty maps of the red band shown in panels (c,f).

The validation shows that the estimated surface reflectance closely matches the actual observations
(1:1 line) (Figure 8). Some estimations show large variation while observations are consistent at low
or high values in visible bands. As those validation data were randomly picked during the process,
it is impossible to examine their condition. However, we went through all 175 gap-filled images and
found cloud or cloud shadows were sometimes labeled as clear observation by the Landsat pixel QA
band, which could lead to the consistently high or low values at the visible bands. The cloud impact
also occurred at shortwave infrared (SWIR) bands as negative values. For all six bands, the majority
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of RMSEs are less than 0.04 and all biases was less than 0.003 (Table 2). We also conducted t-tests
(Table 2) that evaluated whether the predicted values were significantly different from the observations.
As p-values suggested, the prediction and observations had no significant difference at the 1% level,
though they tended to differ in bands with a small value range.
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Table 2. RMSE and average difference (real reflectance minus predicted reflectance) of the blue, green,
red, and near-infrared (NIR), shortwave infrared 1 (SWIR1), and shortwave infrared 2 (SWIR2) bands
for Fairbanks, Alaska.

BAND RMSE AVERAGE DIFFERENCE (AD) P-VALUE (T-TEST)

BLUE 0.0261 −0.0019 0.070
GREEN 0.0224 0.0012 0.116

RED 0.0300 −0.0022 0.040
NIR 0.0621 −0.0010 0.774

SWIR1 0.0327 0.0002 0.906
SWIR2 0.0137 0.0007 0.231

6. Discussion

Filling data gaps and reducing the variation of data availability is essential for common time
series studies [18,22]. Many gap-filling approaches have been developed to fill missing data [22–26],
but gap filling in large areas is often challenging using those approaches, especially in heterogeneous
regions [8]. This paper presents an effective method to fill gaps in the Landsat ARD products. We used
clustering analysis to find orbit overlap region pixels with similar time series to the given pixel and
used LASSO regression to estimate their weights. More importantly, we iteratively predicted values
using multiple random selections of pixels, which reduced the potential impacts of noise in training
data and allowed us to estimate the uncertainty of model predictions. The model uncertainty revealed
the stability of model predictions instead of the prediction error. Qualitatively, the results for predicted
LST are promising when compared to the spatial patterns of the high-resolution image (Figure 4).
The predicted LST showed more spatial detail and variation than LST observations because the raw
LST product was resampled to 30-m from 60-m Landsat 7 and 100-m Landsat 8 while the gap-filling
procedure was conducted at the 30-m scale. Temporally, the gap-filled data revealed more detailed
seasonal variation (Figure 5), which was also confirmed by Yan and Roy [38].

Quantitative validations were undertaken to gain insights into the LST prediction accuracy.
Randomly masked 1000 LST observations were compared to model-estimated LST for each tile.
The average −0.37 bias and 3.88 RMSE was comparable to the LST product bias (RMSE) of 0.7 K
(2.2 K) and 0.9 K (2.3 K) for the four surface radiation budget network sites [32]. For all six spectral
bands, the majority of RMSEs were less than 0.04 and all biases were less than 0.0023. In contrast,
the MODIS fusion method spatial and temporal adaptive reflectance fusion model (STARFM) had
prediction biases of 0.0026 (green band), 0.0040 (red band), and 0.0060 (NIR band) [4]. The enhanced
spatial and temporal adaptive reflectance fusion model (ESTARFM) had prediction biases of 0.0028
(green band), 0.0021 (red band), and 0.0022 (NIR band) [4]. Some cloud-contaminated observations
were labeled as clear by pixel QA (Figure 8), which could lead to the overestimation of RMSE in both
LST and surface reflectance bands in this study.

Some concerns need further investigation. The first concern is data gaps in the overlap region,
which could also be considerable. For the current study areas and target time, the number of clear
observations (>21) within a year is enough to generate seven-parameter harmonic models for all four
Atlanta tiles. According to Egorov et al. [21], the average annual numbers of clear observations are 4.85
(Landsat 4 TM), 16.41 (Landsat 5 TM), 15.03 (Landsat 7 ETM+), and 21.22 (all three Landsat sensors)
across the contiguous United States. Therefore, it could be challenging to model observations before
1999 when only one Landsat sensor was available, or for areas with frequent cloud cover or snow cover.
An alternative solution is to use the five-parameter nonlinear harmonic model, which needs at least
15 clear observations [22]. Another concern is abrupt changes and short-term changes in data gaps.
Conceptually, predicting those changes relies on whether they are captured by training data. But the
temporal fitting in the training data may overlook abrupt changes [8]. Using auxiliary data such as
climate information or MODIS LST may help avoid the issue. For example, Zhu et al. [5] attempted to
predict the changes by fusing MODIS data.



Remote Sens. 2020, 12, 1192 14 of 16

With more and more sensors (e.g., Landsat, Sentinel-2) harmonized, characterizing landscape
dynamics at high spatiotemporal resolution attracts groundbreaking attention. However, it also causes
complicated data availability variance, while the most traditional time series analysis was designed
for data with the same data availability. Our approach attempts to solve the issue, which could be a
critical preprocessing step for many time series analyses. Our approach makes the most of original
Landsat observations from the same acquisition date, and its cloud-contaminated training data is
robust. The current approach used 20 clusters, 100 random samples for each of the 10 iterations,
which can be customized according to the computation efficiency. The source code will be available at
the GitHub. Finally, Landsat ARD were used in this study for availability and validation convenience,
but the approach can be easily applied to another dataset and other vegetation indexes or spectral
reflectance bands.

7. Conclusions

This paper presents the results of a new method of time series gap filling that is designed for
multi-sensor and multi-time data harmonization. This method uses pixels from the orbit overlap
region to fill data gaps based on time series similarity, which retains the observation variation.
Model assembling procedures were used to estimate stable predictions, which is not only robust
to occasionally cloud-contaminated training data, but also allowed us to estimate the uncertainty of
the predictions.

The LST from four ARD tiles (5000 × 5000 30-m pixels for each tile) for Atlanta, Georgia, was tested
and validated; the tiles contained heterogeneous land cover types and various temporal variations.
The validation procedure suggested good linear relationships with 1000 randomly masked clear
observations. More importantly, the application on spectral bands in Fairbanks, Alaska, showed that
this approach can effectively fill data gaps related to cloud contamination and sensor orbit models.
The gap-filled time series can be of help with reliable seasonal modeling and reducing artifacts related
to data availability.
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