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Abstract: Hyperspectral remote sensing images (HSIs) have a higher spectral resolution compared
to multispectral remote sensing images, providing the possibility for more reasonable and effective
analysis and processing of spectral data. However, rich spectral information usually comes at the
expense of low spatial resolution owing to the physical limitations of sensors, which brings difficulties
for identifying and analyzing targets in HSIs. In the super-resolution (SR) field, many methods
have been focusing on the restoration of the spatial information while ignoring the spectral aspect.
To better restore the spectral information in the HSI SR field, a novel super-resolution (SR) method
was proposed in this study. Firstly, we innovatively used three-dimensional (3D) convolution based
on SRGAN (Super-Resolution Generative Adversarial Network) structure to not only exploit the
spatial features but also preserve spectral properties in the process of SR. Moreover, we used the
attention mechanism to deal with the multiply features from the 3D convolution layers, and we
enhanced the output of our model by improving the content of the generator’s loss function. The
experimental results indicate that the 3DASRGAN (3D Attention-based Super-Resolution Generative
Adversarial Network) is both visually quantitatively better than the comparison methods, which
proves that the 3DASRGAN model can reconstruct high-resolution HSIs with high efficiency.

Keywords: hyperspectral image; 3D convolution; generative adversarial networks; super-resolution;
spectral angle

1. Introduction

A hyperspectral image (HSI) is a three-dimensional data cube that records a set of two-dimensional
images (or bands), which represent the reflectance or radiance of a scene at various electromagnetic
wavelengths [1]. Unlike other forms of images, HSIs can provide a wider range of spectral information,
which can be used to distinguish the objects in the image scene. They have been extensively employed
in fields such as military object recognition [2], geological exploration [3], and target detection [4].
However, the spatial resolution of HSIs is rather low compared to multispectral images. This is because
when applied to the same region of the electromagnetic spectrum as multispectral sensors, hyperspectral
sensors capture bands with higher density. Therefore, only a relatively small number of photons are
collected within each narrowed band. To reduce the proportion of noise in the collected information, a
relatively large area of spectral information needs to be gathered together so it can be strong enough to
be detected, which will trade off spatial resolution [5]. In these low-spatial-resolution images, it is very
hard to utilize the spatial feature to identify objects on the ground with acceptable accuracy, which
limits the applications of HSIs. In this case, how to reconstruct HSIs into high-resolution images is a
significant task.
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Image super-resolution (SR) is proposed to reconstruct the corresponding high-resolution (HR)
image from the observed indistinct low-resolution (LR) image [6]. It is more economical to directly
utilize an image processing method to improve the resolution of images and also very helpful to
recover the images captured by existing LR imaging systems [7].

Great innovation and successful progress have been made in recent years in dealing with the SR
problems. There are two ways to solve SR problems in general, namely, the fusion HSI SR method and
the single HSI SR (SISR) method. The fusion method combines information from images with high
spatial resolution and low spectral resolution (such as the panchromatic image or multispectral image)
with the target image to reconstruct the HR HSI. This method has been proven to be useful in several
research studies [8–15]. Many research papers focus on how to better restore image quality [16] and
fuse various information of such data [17–19]. However, owing to the differences in imaging sensors
and collecting time of these images, the auxiliary images are not always available for the fusion process.
Therefore, the SISR method is increasingly gaining attention among researchers.

The improvement in computing power brought by the advancement of computer technology and
the emergence of more avant-garde ideas have made SISR based on machine learning methods flourish
in recent years. Deep learning is one of the most effective methods and many research achievements
have accomplished on its basis [20]. The application of deep learning in SR was first proposed by Dong
et al. [13]. They proposed a state-of-the-art Super-Resolution Convolutional Neural Network (SRCNN)
model, which is easy to train and works well. However, it only uses one layer of convolution layer for
the feature extraction, thus, there is a small perceptive field problem, that is, the extracted features are
very local and it does not lay emphasize on the spectral dimension. In order to enhance the SR effect
on the texture details of the images, Kim et al. [21] designed a deep SR VGG (visual geometry group)
network that combined VGGnet [22] with SRCNN. By using this method, the SR images can achieve a
better performance in the aspect of texture and details. Nevertheless, deep networks would bring more
parameters and slow the efficiency. Similar research has been conducted in [23–25]. One problem of
these methods is that they focus on SR for RGB images, which may not perform well for HSIs with
many interlinked bands. To address this problem, Han et al. [26] developed a model using spatial
and spectral fusion with CNN for HSI SR. CNN has some limitations in feature extraction: it only has
receptive field on the spatial dimension, thus, the feature may not be fully extracted, which would
weaken the impact of SR result. In another study, Luo et al. [27] developed a network HSI-CNN for
HSIs by making use of the deep residual convolutional neural network (ResNet). In this network, they
applied the ResNet structure in some layers and added spectral loss in the pixel space to quantify both
spatial and spectral quality. The reconstruction results indicated a high signal-to-noise ratio and good
image quality, particularly in the spectral dimension. Moreover, Mei et al. [28] made full use of the
characteristics of three-dimensional (3D) convolution to extract the features between the bands for
SR, and found that 3D convolution could effectively deal with the spectral problem for SR. It is an
inspiring method to solve the problem that arises in traditional two-dimensional (2D) convolution:
that it cannot get good feature extraction in the spectral dimension. However, their network structure
is based on SRCNN, which is not a map-to-map structure, and limits the input and performance of SR.

The generative adversarial networks (GAN) framework developed by Goodfellow et al. [29]
has provided more possibilities for the exploration of SR methods. Ledig et al. [30] proposed the
SRGAN framework based on the framework of GAN, which demonstrated a remarkable performance
in SR. In their work, they employed a perceptual-driven content loss, rather than remaining confined
to the similarity in the pixel space. SRGAN could reconstruct most of the detailed contents of an
image. Thus, the SR result displayed good visual effects and high quality. However, the SRGAN is
developed for handling the SR problem of natural images, and it only requires considering the spatial
similarity between the restored and real images. Compared to normal RGB images, HSIs contain much
more spectral information, which can be used later to differentiate among various ground objects.
Thus, it would cause spectral distortion and information loss if SRGAN is applied directly to the HSI
SR problem.
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To address the spectral-distortion problem, and to deal with the multiply feature produced by
the network, we introduced the 3D convolution into SRGAN. Additionally, we applied the attention
mechanism to the network to magnify the contribution of the features that matter; thus, we proposed a
novel 3DASRGAN model for the HSI SR problem. Firstly, the original convolution layers in the SRGAN
were replaced with 3D convolution layers to solve the spectral distortion problem. 3D convolution
layer can extract spectral information from adjacent bands together with spatial context from the
neighboring pixels. In this case, the spectral information can be better preserved. Secondly, a spectral
loss was introduced into the original loss of the structure to make it applicable to the HSI because
SRGAN fails to address the spectral discrepancy when defining the loss function. Spectral loss is
defined by the spectral angle (SA), which is used to measure the spectral similarity between the
generated image and the original image. The SRGAN network applied the BN layers. However, if the
differences between the training set and testing set are obvious, the use of the BN layer could limit the
generalization ability of the generator by creating undesirable effects, and this can occur under the
GAN framework. Moreover, the HSI dataset contains a relatively small amount of data, so that the
advantages of the BN layer could not be maximized. Owing to these reasons, we attempt to improve
the networks by removing all the BN layers. Finally, the 3D convolution layers will generate much
more features than the normal 2D convolution layers; if we treat them equally, it might not be positive
to the network. Thus, a feature attention mechanism was applied to help the network focus on the
features that attribute most to the SR task, which causes the network to have the potential of improving
the effect of SR and get a better result.

The three main contributions of our research are as follows:

1. Our 3DASRGAN model extracts the spatial and spectral features of HSIs using a 3D convolution
layer. It can reconstruct the LR HSIs by improving the network structure of the SRGAN to
obtain HR HSIs, and most importantly, it helps to minimize the spectral distortion effect of the
original SRGAN.

2. Our model attaches significance to the spectral similarity between the SR and the original image.
With the spectral loss calculated by adding SA to the generator loss function, the SR result is
improved in the spectral aspect.

3. To better use the extracted features from 3D convolution, we applied the features attention
mechanism on every resblock to acquire the accumulated and well-performed feature in the
network to improve the ability of the network for SR.

This paper is organized as follows. In Section 2, we describe the methods employed in this study.
In Sections 3 and 4, we present the experimental results and comparisons. In Section 5, we illustrate
our conclusions.

2. Methodology

Traditional super-resolution network models such as SRCNN and SRGAN often employ 2D
convolution layers to extract the spatial features of RGB images. These layers pay little attention
to the correlation between image bands, thus ignoring spectral information. Therefore, this type of
network is suitable only for images with few bands, such as RGB images or single-channel images.
If we want to preserve spectral information when dealing with HSI SR problems, we must not only
consider the spatial relation of the neighboring pixels, but also the spectral similarity of the neighboring
bands. The idea of generating confrontation in SRGAN is very conducive to the detailed reconstruction
of images. Drawing on previous studies and combining the characteristics of 3D convolution with
the application of attention mechanism, this study proposes a 3D attention-based super-resolution
generative adversarial network (3DASRGAN). Because the HSIs obtained by the same sensor have the
same distribution in hyper-dimensional space, when we narrow the dataset down to the HSIs obtained
by a specific sensor, the 3DASRGAN will have a clearer learning direction. Furthermore, this type of
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dataset has the same spectral resolution and band numbers, which facilitate the construction of an
end-to-end network structure.

2.1. Architecture of the Proposed 3DASRGAN

The 3DASRGAN contains two essential networks, a G(Generator) and a D(Discriminator). In SISR,
an LR data cube ILR is the input of G, and IHR represents the corresponding HR image. ISR is the output
of G. For a cube with C bands, we usually define ILR by a tensor whose size is W × H × C, in which W
and H stand for the weight and height, respectively. We also define IHR and ISR by the size of rW × rH
× C, where r represents the scale. Figure 1 illustrates the architecture of the proposed 3DASRGAN.
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Figure 1. The architecture of generator (a) and discriminator (b) networks with the corresponding
number of ResNet blocks (K), number of feature maps (n), and stride (s) are indicated for each
convolutional layer.

In this paper, the G contains a stage layer, followed by eight resblocks (K = 8). A resblock is
composed of two identical parts, each of those contains a 3D convolution followed by an attention layer.
There is a short skip connection between the resblocks and a long skip connection between the stage
layer output and the results of the resblocks. The summed element goes through a 3D convolution
layer first and, subsequently, the output is squeezed into a four-dimensional (4D) tensor that will be
transposed before the sub-pixel [22] layer. Finally, a 2D convolution with a large kernel size works on
the output tensor of the sub-pixel layer.

For the discriminator, there are eight 2D convolution layers with LeakyReLU activation, followed
by two dense layers. The output of the D is the probability for distinguishing the real HR image IHR

and the generated image ISR. The details of the framework will be provided in the following section.

2.1.1. Generator Network Architecture

The purpose of the SRGAN network is to train a G that can simulate the corresponding HR HSI
from a sensor-specific LR HSI. We assume that the G function is parametrized by θG, which represents
all the weights and biases of the generator. With the training of the LR HSI dataset ILR

i , together with
corresponding HR HSI cubes IHR

i (i = 1, 2, 3, . . . ), we can solve the following function:

θ̂G = argmin [
1
N

N∑
i=1

loss(G(ILR
i ;θG), IHR

i )] (1)
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Thereafter, we can obtain the optimized G function (the generator). In Equation (1), G
(
ILR
i ;θG

)
is the output of the generator, which can also be described as ISR

i . As the key process of SR is based
on the deep convolution layers in G, 3D convolution is used in G. Generally, an HSI cube in the 3D
convolution network is described as a five-dimensional (5D) tensor N × B × H ×W × C. N represents
the batch size and B is the representative for the depth of the data, which is the band number of the
data cube here. When 3D convolution is used for processing the video, C is the number of channels.
However, for the HSI dataset, each band has only one channel. Therefore, C equals 1 when the 3D
convolution is applied in HSIs. The fundamental architecture of the generator is illustrated in Figure 2,
in which a very deep ResNet with eight blocks is used, and each block has an identical layout. Before
the deep network in the generator, there is a stage of convolution layer with larger kernels. According
to previous research, using a larger kernel layer before the deep network can usually help the network
achieve a better result. There is a one-kernel 3D convolution layer that follows the resblocks, and it is
used to make the number of channels of the output equal to 1 again. Additionally, a squeeze operation
was used to transform the 5D output tensor into a 4D tensor. To enhance the resolution of the input
HSI cube, a sub-pixel convolution layer is used in the network. The sub-pixel network was based on
2D convolution; therefore, the input needed to be a 4D tensor. In 2D convolution, the cube is described
as a 4D tensor N × H ×W × C, where C stands for the number of bands. Thus, following the squeezing
operation, the structure of the output cube is N × C × H × W. Therefore, a transpose operation is
required before the sub-pixel layer. The detailed structure of the network has shown in Figure 1a.

2.1.2. The Proposed Feature Attention Strategy

The feature attention mechanism is an in-place module, which means there is no dimension
change between the input and output. In the resblocks mentioned in the last section, each contains
two attention layers to help the network focuses on the well-performed feature generated by the 3D
network layer. We applied a squeeze-and-extracted strategy on the 4D tensor of the 3D network
output. Firstly, the network squeezes the 4D tensor into a vector by using the average pooling method.
Given the input tensor X ∈ RD×H×W×C after the average-pooling, we obtain the global average tensor
S ∈ RDx1, where:

S (l, :) =
1

C·H·W

C∑
i

H∑
j

W∑
k

X(l, i, j, k) (2)

and l is the index of the features, C, H and W are the band number, height and width of the tensor.
After the average pooling layer, two thin fully connection layers (nonlinear transformation FC layers)
are connected, which have a number of neural cell of N/2 and N, respectively. A sigmoid layer was
applied to the output vector to make sure every value was in the range of 0 to 1. Thus, this vector
T ∈ RDx1 represents the scaling coefficient of every feature, where:

T = sigmoid(Wθ2

(
Wθ1(S)

)
(3)

and θ1, θ2 are the parameters of the fully connection layers. Finally, the output O ∈ RD×H×W×C was
computed by a multiply operation of the output features and the scaling coefficient T. The detail of the
attention strategy is presented in Figure 2, where N represent the number of the features 3D-tensor
generated by the 3D convolution layers.
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2.1.3. Adversarial Network Architecture

A discriminator network is designed in [29] to solve the adversarial min-max problem:

minθGmaxθDEIHR∼Ptrain(IHR)

[
logDθD

(
IHR

)]
+ EILR∼P(ILR)

[
log(1−DθD

(
GθD(IHR)

)]
(4)

The general idea behind this formulation is to train the G function with the goal of fooling D,
which is used to distinguish the SR image from the real HR image. The stronger the G is, the weaker
D’s discrimination ability is. In this way, D encourages G to be optimized and generate images that are
highly similar with the real ones.

We expect a fully connected layer in D. Using 2D convolution can save much space that would
alternatively be used for storing the weights for D. Therefore, we retained the original architecture of D
in the SRGAN and reduce the number of kernels by half. We set α = 2 for LeakyReLU activation, which
is used to avoid max-pooling throughout the network. The entire architecture of D is also illustrated in
Figure 1b.

2.2. Optimization of 3DASRGAN

For the generator, the defining loss function (G loss) is significant, and it links to the effect of
G. The G loss should be designed carefully to quantify the difference between ISR and IHR. MSE
(mean squared error) is the general method used to describe the distance between two data points by
calculating the square of the difference between the real value and the estimated value; however, this
definition focuses only on the distance between two images in the pixel space without emphasizing
the essential similarity in spectral dimension in ISR and IHR. Thus, we modified the original G loss by
calculating the weighted sum of a spatial loss, a spectral loss and an adversarial loss represented by
LossSR

mse, LossSR
SA, and LossA, respectively:

LossG = α·LossSR
mse + β·LossSR

SA + γ·LossA (5)
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In the following discussion, we will explain how these loss functions are constructed.
The pixel-wise MSE is used as the spatial loss, which is calculated as:

LossSR
mse =

1
r3WHC

rW∑
x=1

rH∑
y=1

rC∑
z=1

(
IHR
x,y,z −GθG

(
ILR

)
x,y,z

)
(6)

This is the most common optimization target for a network. MSE can be calculated and formulated
simply; thus, in our study, we consider it the spatial loss.

The spectral loss should be able to measure the spectral similarity. In several studies, the
geometric measurement consists of distance and angular measurements. The angular measurement is
composed of a high-dimensional vector which is calculated using the origin and high-dimensional
space points, and the SA between two high-dimensional vectors is considered as the measuring
standard. The formula for calculating SA is:

LossSR
SA =

1
r2WH

rW∑
x=1

rH∑
y=1

arccos(

−−→

IHR
x,y ·
−−−−−−−−−→

GθG

(
ILR

)
x,y

‖

−−→

IHR
x,y ‖·‖

−−−−−−−−−→

GθG(I
LR)x,y‖

) (7)

The smaller SA is, the more similar is the spectrum. Therefore, this formula can be directly
considered as a spectral loss.

Adversarial loss is calculated on the discriminator. This loss encourages the generator network
to produce a more satisfying solution by fooling the discriminator network. Adversarial loss can be
calculated as follows:

LossA = −
N∑

n=1

log
(
DθD

(
GθG

(
ILR
n

)))
(8)

where DθD is the discriminator, which can output the probability that the reconstructed image cube ISR

is the real HR image IHR.

3. Data Description and Experiment Setting

3.1. Data and Description of Experiment

In this study, we used the Washington DC Mall dataset obtained from the Hydice sensor and the
Urban dataset to construct a sensor-specific 3DASRGAN. The wavelengths of the two datasets are both
from 0.4–2.5 um. The Washington DC Mall dataset image is a widely-used hyperspectral dataset; it
contains 191 bands, formed by removing the H2O, H2, and O2 absorption bands from the original 224
atmospherically corrected bands, and each band has 1280 × 307 pixels. The Urban dataset is also a
widely-used hyperspectral dataset. There are 210 bands, 307 × 307 pixels in each band, and each pixel
corresponds to a 2 × 2 square meter area. These two datasets are used as the ground truth for HR HSIs,
and we used them to train and evaluate the performance of our 3DASRGAN framework.

In this experiment, we divided the dataset into two parts—the larger part was used for training
the networks and the remaining was used for testing and evaluating the performance of the networks.

The LR data cube was generated by down-sampling the original dataset by a scale of 2. In general,
datasets such as Urban and Washington DC Mall do not have high spatial resolutions. According to
existing works, the larger the down-sampling scale is, the harder is the SR process.

The training procedure can be divided into three steps as below. First, we conducted the
preprocessing, in which the dataset was divided into equal parts. Then, we carried out the training by
randomly choosing some parts of the dataset and using them to generate and optimize the output of the
networks. After that, we tested the networks to see if they are appropriately built. When the networks
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were built, we applied them to the rest of the dataset and evaluated their impact. The calculation time
of the whole experiment was about 22 h.

The whole process of the experiment is depicted in Figure 3.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 27 
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3.2. Training Details and Parameters

We trained all the networks on an NVIDIA GeForce GTX 1070Ti GPU. We split the DC Mall
dataset into 16 equal parts, randomly chose one for testing, and used the rest and their correlative
LR for training. For the Urban dataset, every part has 75 × 75 × 210 pixels. For the DC Mall dataset,
every part has 150 × 160 × 224 pixels, as shown in Figure 4. The generator network, also known as
3DASRResNet in this study, should be trained independently at first to avoid a local optimum [29].
We limited the range of the LR input image to (0,1) using linear stretching. For the weights of the
generator loss, after several batches of experiments, we trained the networks with α = 0.75, β = 0.25,
and γ = 0.08. For optimization, we used the Adam (Adaptive Moment Estimation) optimizer [31],
setting the parameter to 0.9. The 3DASRResNet was trained with a learning rate of 10−4 and 104 updated
iterations. After 5 × 104 steps of training the 3DASRResNet, we collected all the weights and restored
them to the generator part of the 3DASRGAN. Next, we trained it for 3 × 104 steps with a learning rate
of 10−4 and 104. Goodfellow et al. [29] suggested that in the GAN, the generator, and discriminator
should be updated alternately, and the gap steps between each instant of generator and discriminator
update should be represented by a parameter k. In our experiment, k = 1. Because the input tensor
was very large and required a lot of memory to store, we used only eight identical residual blocks as
the original SRGAN in which the number was 16, and thus avoided the “resource–exhausted” error in
the training. The same training process was also applied to the Urban dataset for the experiment.
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3.3. Evaluation of Performance of 3DASRGAN

To evaluate our framework’s performance accurately, we compared the performance of the
3DASRGAN and the 3DASRResNet with other methods. Two indexes—peak signal-to-noise ratio
(PSNR) and structure similarity (SSIM) [32]—were used to quantify the spatial reconstruction quality
of the SR image. PSNR is the most popular and widely used objective evaluation index of the image.
However, it is only based on the error between corresponding pixels. Because the visual characteristics
of human eyes are not considered, the evaluation results are often inconsistent with human subjective
feelings. SSIM is mainly used to measure the integrity of image structure, which is another commonly
used objective evaluation index. This index takes the structural distortion of the image into account so
that it can better reflect the judgment of the human visual system on the similarity of the two images.

The calculation formula for these two indexes is:

PSNR = 10× log10

(
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where µISR and µIHR represents the mean value of the image ISR and IHR, σISR, IHR is the covariance of
ISR and IHR, and σISR and σIHR represent the variance of the image ISR and IHR. Constants c1 and c2
are added to avoid the divide-by-zero error, in which c1 = (k1L)2, c2 = (k2L)2, and usually k1 = 0.01,
k2 = 0.03 by default, and L is the extent of pixel value, which equates to 1 in our study.

To evaluate the spectral reconstruction quality, the spectral angle mapper (SAM) value between
the reconstructed SR image and its corresponding ground-truth HR image were used. The SAM value
is calculated using the following formula:
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In general, higher PSNR and SSIM values imply better visual quality and spatial reconstruction
quality, and a lower SAM value implies low spectral distortion and higher spectral reconstruction quality.

4. Result

To better evaluate the performance of our 3DASRGAN, we compared our model with several
different HSI SR methods, which can be divided into two types. The first type contains machine-learning
methods, including 3DASRGAN, 3DASRResNet (which is the G part of the 3DASRGAN model),
SRCNN [13], and 3D-FCNN [28]. The second type contains the traditional methods, which include
bicubic interpolation, bilinear interpolation, and nearest-neighbor interpolation. These methods are
often used when addressing SR HSI problems. The resultant images and the real high-resolution
images (ground truth HR) are presented in false color composite to better distinguish different objects
and do analysis in Figures 5 and 6.

4.1. Visual Performance Comparison

Figure 5 illustrates all the reconstruction results of the various SR methods. Figure 5c,d
demonstrates better visual impacts by 3DASRResnet and 3DASRGAN. In these two images, the
contours and shapes of the corresponding ground objects have a relatively high spatial recognition, and
there is no significant spatial position error or distortion in the SR image. Among these two images, the
result of 3DASRGAN perform better in the spatial details than 3DASRResnet, especially in the edge of
the objects such as buildings and roads, which is similar with the HR. Therefore, we know that there is
improvement done by the network with D rather than the network that only has the G. Figure 5e also
shows a good visual effect but not as good as that of the proposed method. However, Figure 5f does
not display a good visual result for SRCNN. Compared to the results obtained from other machine
learning methods, the images are more blurred. No clear boundary exists among the various ground
objects. Moreover, it is difficult to discern the small differences among various types of the same
ground feature, such as in the lower left quarter, which displays a complex of buildings. In Figure 5f,
the roofs of the various buildings are not clear but jumble together. In Figure 5g–i, which presents
the results of traditional SR methods, the visual impacts are not as good as the others. Among these,
the nearest neighbor method has the worst impact, because it is visually the same as the original HR
image. The other two methods have the same impact, and their visual impact seems to be better than
that produced by the SRCNN method.

To compare the performance of the various methods in terms of the different objects, we selected
an area with a relatively complex spatial texture, including buildings, vegetation, and roads. The results
produced by the various methods are presented in Figure 6, which demonstrates that the various
methods can create distinct visual impacts on various ground features. To start, let us examine the
building parts. In Figure 6d, which presents the results of the 3DASRGAN method, the edges of
buildings are the most distinct, and they resemble that of the HR image more. Furthermore, the
building contours are also clearly distinguishable with higher resolution. In other images, however,
the shapes of buildings are difficult to distinguish. As for roads, we can see from Figure 6b, which
presents the HR image, that there are some vehicles on the roads. In the result of 3DASRGAN, the
vehicles are most distinguishable. From 3DASRGAN’s result, we can easily identify the boundaries
of roads. However, in other images, the roads’ edges become fuzzy and shattered. In images such
as Figure 6e–i, the range of pixels occupied by the single-vehicle is larger, and the color of the pixels
is closer to the color of the road, which means that it is more difficult to identify the vehicles. Some
parts of the roads are difficult to be separated from the vegetation. The restoration of the vegetation
is also considered. Because there are some different types of vegetation in this area, the shade of the
color should be different; there are also some shadows within the vegetation part. In 3DASRGAN’s
result, the heterogeneity among the pixels representing vegetation is the most evident. We can see
the light and dark red portions, which represent different types of vegetation, and the parts under
the shadow are quite easy to distinguish from the vegetation. Among the results of deep-learning
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methods, the difference within the vegetation is also clearly presented, although the best effect goes the
result of 3DASRGAN. Furthermore, among the results of traditional methods, the difference between
the vegetation, even that under the shadows, is not evident, which indicates that these methods are not
effective in identifying the plant types. Thus, from the detailed part, it is clearly showed that SRGAN
has the best visual impact.
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The results from the other dataset, Urban, also demonstrate a similar performance as dataset DC
mall. Figure 7 provide a visual presentation of different SR method in false color, which demonstrates
that the results of the machine-learning methods provide better visual impacts. In this testing area,
roads and buildings have the most distinguishable features, which can easily reflect the visual impact of
the SR by comparing the clarity of road and building edges. In Figure 7c–e, the results of 3DASRGAN,
SRResNet, and 3D-FCNN stand out as the most similar with the ground truth. As it shows in the
images, the result of 3DASRGAN has the best visual effect, which demonstrates the reconstruction
ability to the details in the areas with fragmented objects. The edge of the roads are sharp and different
objects do not mix together, especially for vegetation and buildings. The image produced by SRCNN,
however, is slightly fuzzy in some parts; especially in the junction of vegetation, buildings, and roads,
some pixels are mixed and are hard to distinguish from one another. Figure 7g–i demonstrates that the
three traditional methods, Nearest, Bilinear, and Bicubic, have the most unsatisfying visual impacts.
The image produced by the Nearest method is very fuzzy, and that makes it very difficult to distinguish
the features; in some way it is also suggesting that those tradition method for up-sampling are not
suitable for the SR of such images with abundant spectral information.

Figure 8 displays the local scene of the testing area that contains typical ground objects as buildings,
vegetation, and roads. From these results, we can distinguish between the impacts of these methods
more carefully. First, the edges of roofs in the HR image contain light and dark colors, but in Figure 8f–i,
which present the images produced using the nearest neighbor, bilinear, bicubic, and SRCNN methods,
the differences are eliminated and the color of edges is the same; furthermore, they do not resemble the
HR image. The edges of the roads and roofs are roughly showed as the edges of pixels rather than
their natural forms. Moreover, the vegetation part of the HR image has different colors. However, in
Figure 8f–i, the color of the pixels representing vegetation is nearly the same, blending in with the
building pixels, along with some obvious noise. In Figure 8c–e, the heterogeneity within the vegetation
is better preserved. Moreover, roads are much clearer in these images. In other images, roads are
difficult to distinguish and appears to be broken.
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4.2. Quantitative Comparison

We chose three measurement values—PSNR, SSIM, and SAM—to estimate the quantitative
similarity for the methods discussed.

The higher the value of PSNR is, the higher the proportion of effective information in the image is,
and thus, the better the image quality is. According to Tables 1 and 2, the PSNR values of 3DASRGAN,
3DASRResNet, and 3D-FCNN are the highest, which indicate that the images reconstructed by these
three methods can more effectively reflect the real surface conditions. The PSNR value of SRCNN is
smaller than that of other machine-learning-based methods; in other words, the response-ability to the
real information of ground objects is not good enough, which reflects that the method used for SR for
traditional images with fewer wavebands is not suitable for hyperspectral reconstruction. Among
the results of the traditional methods, the Bicubic and Bilinear methods both result in high PSNR and
SSIM values; however, their results are worse than those of 3DASRGAN and 3DASRResNet.

SSIM is used to compare the image distortion from three levels: brightness, contrast, and structure.
It mainly aims at evaluating the visual quality of images. The higher the value is, the higher the
image visual quality is. Among the machine learning methods, the highest SSIM value goes to the
3DASRGAN method, representing the superiority of the 3DASRGAN model from the visual aspect.
The SSIM values of 3DASRResNet, 3D-FCNN, and SRCNN all show relatively high results. It means
that these models can all obtain fine results in terms of human visual effects, but their results are not as
excellent and steady as that of the 3DASRGAN model. Compared with machine learning methods,
the results of traditional methods are not effective in representing the good visual effect, as the SSIM
values of these models are quite low.

According to Tables 1 and 2, the highest PSNR and SSIM values are also obtained from 3DASRGAN,
and the results obtained from 3DASRResNet and 3D-FCNN are also relatively high. However, the
SRCNN method does not achieve a good result compared to other machine learning methods, thus, this
method is not effective when dealing with the HSI SR problem. Among the results of the traditional
methods, the Bicubic and Bilinear methods both result in high PSNR and SSIM values; however, their
results are worse than those of 3DASRGAN and 3DASRResNet.
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For HSIs, spectral information is essential. Therefore, the impact of spectral reconstruction cannot
be ignored. When the SAM value is closer to 0, it indicates that the SR image is close to HR in the
spectral dimension. As listed in Tables 1 and 2, the 3DASRResNet and 3DASRGAN methods have
the lowest SAM values; thus, these two methods are more accurate in terms of the spectrum. For the
performance of PSNR and SSIM, the results of 3D-FCNN are also good; however, it is far inferior to the
3DASRResNet and 3DASRGAN methods for the value of SAM. The SAM value of the SRCNN method
is the highest among the results of machine learning methods. However, compared with the results of
non-machine-learning methods, we can see from Tables 1 and 2 that the machine-learning methods all
perform better in the restoration of spectral information.

Table 1. Quantitative comparison results of different SR methods based on the Washington DC
Mall dataset.

PSNR SSIM SAM

3DASRResNet 31.0576 0.966 5.203
3DASRGAN 32.2701 0.971 5.269

3D-FCNN 29.5369 0.966 5.216
SRCNN 28.7258 0.942 5.866
Bicubic 27.8104 0.937 6.683
Bilinear 28.4136 0.861 10.514
Nearest 27.2407 0.725 22.759

HR ∞ 1 0

Table 2. Quantitative comparison results of different SR methods based on the Urban dataset.

PSNR SSIM SAM

3DASRResNet 30.1022 0.908 2.838
3DASRGAN 33.2755 0.911 2.694

3D-FCNN 30.4639 0.901 3.074
SRCNN 28.0737 0.916 3.717
Bicubic 28.5427 0.866 4.552
Bilinear 27.1950 0.781 6.798
Nearest 27.0478 0.702 15.179

HR ∞ 1 0

Figures 9–11 and Figures 12–14 present the spectral curves of several typical ground
objects—grassland, roof, and road—after hyperspectral reconstruction, using various methods based
on the two datasets. Overall, it can be observed from the positions of the peaks and valleys of the curves
and the shapes of the curves that none of the seven methods produces a severe spectral distortion,
and they are consistent with the spectral characteristic curves of the specific types of ground objects.
However, when taking a closer look, we can see that the degree of deviation of the four curves varies.
The red line represents the spectral curve from the HR image, which is the real image. The deep
blue and green lines represent spectral curves from the proposed 3DASRGAN and 3DASRResNet,
respectively. In Figures 9–11, we can see that the red line is the closest to the deep blue line and
the second-closest one is the green line, which means that the proposed 3DASRGAN model and
3DASRResNet model can create the most similar spectral information as real ground objects. For
example, Figure 11 shows the spectral curves of roads based on the Washington DC Mall dataset. In
the visible and near-infrared band, the spectral curves are quite different. It is seen that in the overall
shape of each curve, the positions of the wave peak and valley are not quite different, which indicate
that there is no serious deviation. The deep blue and green lines are closer to the red HR line, and
their curves are relatively smooth and continuous. The next results, close to the red line, are that of
3D-FCNN and SRCNN. In contrast, the curves of bilinear, bicubic, and nearest methods show some
irregular jitters, the overall curves are not smooth, and the differences are obvious.
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In Figures 12–14, the red lines are closer to both the deep blue and green lines. Therefore, the
results obtained from both the 3DASRResNet and 3DASRGAN are effective because 3DASRResNet
has the smallest SAM value and 3DASRGAN has the highest PSNR and SSIM values. Compared with
these two methods, the spectral curves of other methods are quite different from those of real ground
objects. Thus, the impacts are not very good.

4.3. DASRGAN and the Original SRGAN

In this section, we applied our 3DASRGAN model and the original SRGAN model to the
Washington DC Mall dataset. By comparing their results, it can be proven that 3DASRGAN can apply
to the HSI SR problem better than the original SRGAN. In this comparative experiment, in order to
adapt SRGAN to the training of hyperspectral data, we made the following improvements to the
original SRGAN model: firstly, because the original SRGAN is designed for the SR of RGB color image
which has a small number of bands, it is necessary to adjust the number of output channels of the
related layers in the network structure. Secondly, in the composition of the original loss function,
content loss is used to limit the detail difference between the reconstructed image and the original
image, which can reflect the subjective visual feeling of the image to a certain extent. Content loss
makes use of the preprocessed, well-known VGG (visual geometry group) network, which has been
trained to fully extract the feature map of pictures. The calculation process of content loss is as follows:
firstly, the generated image and the real image are put into the VGG19 network, respectively, and a
certain layer of the feature map of the network is extracted from their results. Then, the feature map of
the two constructs MSE, after that the content loss is generated. The process can be explained by the
following formula:

Losscontent =
1

Wi, jHi, j

Wi, j∑
x=1

Hi, j∑
y=1

(
Φi, j

(
IHR

)
x,y
−Φi, j

(
G
(
ILR

))
x,y

)2
. (12)

where Φi, j indicates the feature map obtained by j-th convolution network within the VGG19 network
and Wi, j and Hi, j describe the dimensions of the feature maps.

This can be applied to the HSIs. In order to make the comparative test more convincing and
effective, we kept such content loss in the training of the original SRGAN, and added two groups of
comparative tests, to use the VGG network to construct content loss and to directly use MSE as content
loss. The formula of MSE is the same as Equation (6). The experimental results are described in the
following paragraphs.

Figure 15 shows the results of 3DASRGAN, SRGAN-VGG, and SRGAN-MSE together with the
HR image. From Figure 15c,d, we can see that the difference between SRGAN-VGG and SRGAN-MSE
are not evident; the two results showed about the same blurring in the whole images. Compared with
the results of SRGAN, the results of 3DASRGAN is a little clearer, but not significant. In order to better
evaluate the effect of these methods, we chose a typical part to look at in detail, which is demonstrated
in Figure 16.

In Figure 16, the difference of the 3DASRGAN and SRGAN methods are much clearer. Firstly, let
us examine the results of SRGAN-VGG and SRGAN-MSE, which are shown in Figure 16c,d. In these
results, the visual effect in 16c is slightly better than 16d, which is best illustrated by the shadows on the
building’s roof and those of trees. However, the difference is not distinct. To some extent, this shows
that the content loss constructed by VGG has no obvious effect on the HSI SR. The result of 3DASRGAN
in 16b performs a little better and it is more similar to the HR image. The edges of the building are
more distinct, the shadows of the trees and buildings are darker and more distinguishable. Spatial
heterogeneity shows better in 3DASRGAN results. Nevertheless, the disparity between the results of
3DASRGAN and SRGAN have some difference in detail from the HR image. The similarity among
SRGAN-VGG, SRGAN-MSE, and 3DASRGAN in the spatial aspect means that the space reconstruction
ability of 3DASRGAN is better.
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and the spectral distortion of these two methods are obvious. Compared to the SRGAN methods, the 
SAM value of 3DASRGAN method is much closer to 0. The smaller SAM value shows the spectral 
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Table 3 shows the PSNR, SSIM, and SAM values of 3DASRGAN, SRGAN-VGG, SRGAN-MSE,
and the HR image; our focus is the SAM value, which indicates the disparity of these methods. The
SAM values of SRGAN-VGG and SRGAN-MSE are approximately the same, and they are both too high,
which means that the spectral restoration ability of VGG and MSE methods are both ineffective and the
spectral distortion of these two methods are obvious. Compared to the SRGAN methods, the SAM
value of 3DASRGAN method is much closer to 0. The smaller SAM value shows the spectral curves of
3DASRGAN are more similar to the HR image, and thus, proves a better spectral reconstruction ability.
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Table 3. Quantitative comparison results of 3DASRGAN and SRGAN based on the Washington DC
Mall dataset.

PSNR SSIM SAM

3DASRGAN 32.2701 0.971 5.269
SRGAN-MSE 28.3744 0.952 5.583
SRGAN-VGG 28.5017 0.966 5.470

HR ∞ 1 0

Meanwhile, Figures 17–19 show the spectral curves of different objects. In general, both
3DASRGAN and the original SRGAN have many similarities with the HR; however, after close
observation, for example the curves of grass, which show some difference at bands 1–10 and 40–50,
the 3DASRGAN’s curve has almost uniform tendency with the HR’s. Contrastingly, the other two
original SRGAN’s curves present a lower angle and a steeper slope than HS’s, while missing a local
peak around the band 55. The same circumstance also occurs in the figure of the roof curves; it shows a
lot of discordance at the band 30–50, with some notable malposition of peak and trough.
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4.4. Discussion

In general, the 3DASRGAN is proposed to learn an end-to-end full-band mapping between low
and high spatial-resolution HSIs. It makes full use of 3D convolution to fully extract the features
between wavebands of HSIs. While ensuring the reconstruction effect on the spatial dimension, a 3D
convolutional network can also improve the spectral approximation between the reconstructed image
and the original image, which has little possibilities to cause problems such as spectral distortion.
Compared with other super resolution reconstruction methods, it has a relatively small SAM value.
Additionally, the method makes use of the characteristics of GAN framework. By generating an
adversarial network, it can further reduce the difference between the generated image and the original
image. Moreover, it is a sensor-specific task; thus, it can do the fine-tuning and expand the use.

According to previous experiments, 3DASRGAN achieves a great result in both spatial aspect and
spectral aspect, while other methods such as CNN and the original SRGAN cannot take both aspects into
account simultaneously. The result of 3DASRGAN has the lowest SAM, and according to Figures 9–14,
the impact of spatial reconstruction is much more excellent. The original SRGAN could not achieve a
good result when it is directly applied to the HSIs mostly because it is mainly designed for RGB images,
but it also could reach a fine result in some ways. However, since the 3DASRGAN is based on the 3D
convolution, the number of kernels used in it is much more than those used in the original SGRAN.
Moreover, the computation of the 3D convolution is more complex and heavier, thus, it will spend
much more time on training 3DASRGAN than on the original SRGAN and other 2D-convolution-based
methods like SRCNN. The 3D-FCNN model also uses the 3D convolution layers but with fewer
number of layers and kernels; thus, when training 3D-FCNN in the experiment, it takes less time than
3DASRGAN. In Table 4, we conclude the average time that different machine-learning-based methods
use in training and testing.

Table 4. The occupied memories of different SR methods on the Washington DC Mall dataset.

Parameters Memories

3DASRGAN 118.37M
SRGAN 46.32M

3D-FCNN 39.40M
SRCNN 12.27M

Due to the complexity of the network, there is also some obvious differences in the memory that
different methods used to store the parameters of a model. It is also a fundamental factor that limits
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the speed of training and testing. Table 5 also presents the memory that the parameters of different
methods occupies (the GAN network only includes the generator part).

Table 5. The computation time of different SR methods on the Washington DC Mall dataset.

Training Test

3DASRGAN 26h 5s
SRGAN-MSE 16h 3s
SRGAN-VGG 16h 3s

3D-FCNN 20h 3s
SRCNN 6h 2s

5. Conclusions

In this study, we proposed a 3DASRGAN model for SR of HSIs by identifying the end-to-end
full-band mapping between LR and HR HSIs. The 3D convolution layer is applied in the SRAGAN
network instead of 2D convolution layer, which explored both the spatial information in adjacent
pixels together with the spectral correlation in adjacent bands. For better using the multiply features
generated by the 3D convolution layers, we proposed the feature attention mechanism to weighting the
features to expect the network can focus on those really matter for the SR task. Moreover, we altered
the G loss by adding spectral loss to it; thus, the generator will trend to recover the band information
more for HSIs SR.

Currently, the studies about 3D convolutional layers and channel attention mechanisms have
done a lot of works regarding the SR problem and GAN, though there are still problems unsolved like
the scale problem of SR and so on. We are certain this study can inspire the explorations in the further
studies about SR problem of HSIs.

6. Support Materials

6.1. GAN and SRGAN

The GAN framework developed by Goodfellow et al. [29] has remarkably improved the learning
ability of many networks. GAN is an adversarial generation model architecture that consists of two
parts: a generator (G) and a discriminator (D). The task of G is to learn the real distribution from the
input data and that of D is to distinguish whether the sample created by G is the real HR data or a
generated one. The final goal of GAN is to let G learn the data distribution of the real HR image, which
can be applied to LR images, by mutual gambling with D, which can be applied to LR images, and
guarantee D to have a discrimination probability of 50% at the same time.

The development of the GAN framework provides a new approach to solve SR problem. In 2016,
Ledig et al. [26] applied GAN to SR problems and formulated SRGAN model, which achieved excellent
results. They identified the fact that most recent studies on SR use mean squared error (MSE) as loss
function, which causes over-smoothening and thus the loss of high-frequency details. A perceptual
loss is used in SRGAN to solve these problems, which is made up of adversarial loss and content loss.
The objective of adversarial loss is ensuring realistic-looking output image with higher resolution
generated by G that maintains the pixel space to resemble the LR version. The content loss is based on
similarity in perception rather than similarity in pixels, making the generated HR image more visually
appealing. Therefore, this method can solve the problem of unrealistic visual effects effectively.

6.2. GAN Applications

Although SRGAN has demonstrated the remarkable potential to solve the SR problem, there is still
space for improvement. Several researchers are searching for means to enhance this structure to make it
more effective. Wang et al. [33] made some changes to the original SRGAN and built a new model called
ESRGAN. They removed the BN layer and employed residual scaling to improve the performance and
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realize lower initialization when training a deep network structure, and improved the D using the
relativistic average GAN. In this way, the G can provide more realistic texture details. Finally, they
used the VGG features before activation and, thus, enhancing the perceptual loss. At the same time,
ESRGAN demonstrates better performance with improved visual effects and lower perceptual index.

Meanwhile, Tran et al. [34] proposed a new architecture that incorporated the component of the
adversarial networks form the SRGAN and the multi-scale learning component from the multiple
scale super-resolution networks (MSSRNet). They improved the convolution layer in SRGAN with
dilated convolution modules, which was also used in MSSRNet, and their networks were capable
to extract the features of the images in different scales and recovering smaller objects in the images.
To enhance the impact and the stability of their networks, they used WGAN (Wasserstein GAN) [35],
which improved the performance.

More recently, Zhang et al. [13] proposed a ranker SRGAN, which could optimize the generator by
using indifferentiable perceptual metrics and it worked well. By augmenting the training dataset with
the results of other SR methods, this method was able to combine the strengths of various SR methods
and improved the performance. Moreover, this SR structure could generate diversified results from
different rank datasets, perceptual metrics and loss combinations.

6.3. Two-Dimensional and Three-Dimensional Convolution

To extract the features in pixel level, 2D convolution uses a kernel to frame an extent and calculates
the sum of the product of pixel and corresponding kernel value. The kernel is two-dimensional while
the size of the kernel is flexible, depending on the size of the convolution. Every pixel value of the
output of the 2D convolution is the sum of the product of kernel values and pixel values of the input.
Figure 20a,b illustrates how a 2D convolution works. The convoluting process only occurs in the X
and Y dimensions (the spatial dimensions), and the convoluted elements of the spectral dimension
are summed together. If the kernel has the size of F × F, and the input image’s size is W × W, the
stride is S, and the number of padding pixels is P, then the output size is reduced to N × N, in which
N = (W − F + 2P)/(S + 1).
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Figure 20. The difference between two-dimensional (2D) convolution and three-dimensional (3D)
convolution; (a) 2D convolution extracted features; (b) 2D convolution with multiply kernels; (c) 3D
convolution extracted features; (d) 3D convolution with multiply kernels.

3D convolution, on the other hand, has a 3D kernel, which helps to achieve the convolution
process to acquire features of the spatial as well as the spectral dimension. The main difference
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between 3D convolution and 2D convolution is that one more dimension is available for convolution
in 3D convolution. 3D convolution is mainly used for video processing, when the convolution is
applied to the frames of the video, it is also applied between these frames at the same time. Based
on such characteristics, 3D convolution can simultaneously extract information along the spatial and
spectral dimensions of HSIs. Figure 20c,d illustrates how a 3D convolution works by convoluting a
3D kernel with a cube formed by stacking multiple contiguous spectral bits of information together
in both spatial and spectral dimensions. The size of each dimension of output N is calculated as
N = (W − K + 2P)/(S + 1).

Either in 2D or 3D convolution, each convolution kernel is repeated on the whole image, and these
repeated units share the same parameter settings including weight and bias, which is known as the
weight sharing technique, and one kernel can extract the only feature of one kind from the entire data
cube. To collect the various types of feature patterns, we normally use multiple 2D or 3D convolutions
with various kernels in the network, as shown in Figure 20b–d.

In [25], Mei et al. also applied 3D convolution to the SR for HSIs. In their study, they expanded
the size of LR using bicubic interpolation and then constructed an end to end 3D convolution network
with four convolutional layers, where different numbers and sizes of kernels were used in different
layers. In the end, the network was applied to the processed images; after the training process they
could get a network for SR problem. Our network also contains 3D convolution, thus, it is meaningful
to compare the impacts of both methods for solving the SR problem of HSIs.
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