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Abstract: The spatial resolution of in situ unmanned aerial vehicle (UAV) multispectral images has 
a crucial effect on crop growth monitoring and image acquisition efficiency. However, existing 
studies about optimal spatial resolution for crop monitoring are mainly based on resampled images. 
Therefore, the resampled spatial resolution in these studies might not be applicable to in situ UAV 
images. In order to obtain optimal spatial resolution of in situ UAV multispectral images for crop 
growth monitoring, a RedEdge Micasense 3 camera was installed onto a DJI M600 UAV flying at 
different heights of 22, 29, 44, 88, and 176m to capture images of seedling rapeseed with ground 
sampling distances (GSD) of 1.35, 1.69, 2.61, 5.73, and 11.61 cm, respectively. Meanwhile, the 
normalized difference vegetation index (NDVI) measured by a GreenSeeker (GS-NDVI) and leaf 
area index (LAI) were collected to evaluate the performance of nine vegetation indices (VIs) and 
VI*plant height (PH) at different GSDs for rapeseed growth monitoring. The results showed that 
the normalized difference red edge index (NDRE) had a better performance for estimating GS-NDVI 
(R2 = 0.812) and LAI (R2 = 0.717), compared with other VIs. Moreover, when GSD was less than 2.61 
cm, the NDRE*PH derived from in situ UAV images outperformed the NDRE for LAI estimation 
(R2 = 0.757). At oversized GSD (≥5.73 cm), imprecise PH information and a large heterogeneity 
within the pixel (revealed by semi-variogram analysis) resulted in a large random error for LAI 
estimation by NDRE*PH. Furthermore, the image collection and processing time at 1.35 cm GSD 
was about three times as long as that at 2.61 cm. The result of this study suggested that NDRE*PH 
from UAV multispectral images with a spatial resolution around 2.61 cm could be a preferential 
selection for seedling rapeseed growth monitoring, while NDRE alone might have a better 
performance for low spatial resolution images. 

Keywords: multispectral camera; ground sampling distance (GSD); unmanned aerial vehicle (UAV) 
remote sensing; growth monitoring; plant height (PH) 
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1. Introduction 

Nowadays, the food security challenge has become a major concern for many countries and 
regions in the light of changing climatic conditions, political instabilities, and increasing consumption 
of resources [1]. In order to ensure the stability of food production, it is important for farmers to 
quickly and accurately obtain crop growth information in the field and take effective measures 
accordingly [2]. Traditionally, crop growth information such as leaf area index (LAI) [3] and biomass 
[4] is mainly obtained by manual destructive sampling methods, which are time-consuming. 
Nowadays, many studies have reported that GreenSeeker (GS), ASD handheld spectrometers, plant 
canopy analyzer and other field-based remote sensing sensors can accurately acquire the normalized 
difference vegetation index (NDVI), LAI and other biophysical parameters related to crop growth [5–
8]. However, these methods still require manual operation and are labor-intensive for extensive 
sampling processes. Airborne and spaceborne remote-sensing technologies have been applied to a 
wide range of crop growth monitoring for decades [9], but the image resolution from this technology 
is too low to measure crop growth on fine scales [10].  

In recent years, the rapid development of unmanned aerial vehicle (UAV) remote sensing 
technology has provided an effective way of accurately obtaining crop growth information on a plot 
level. The imaging sensors mounted on the UAV mainly include hyperspectral, RGB, and 
multispectral sensors. They were reported to have a great performance for monitoring crop growth 
[11–16]. Compared with the former two, UAV-based multispectral sensors can acquire images with 
a spatial resolution from centimeter to decimeter level near the ground, achieving a better balance 
between cost and availability [17]. In previous studies, red edge (RE) and near infrared (NIR) 
vegetation indices (VIs) extracted from UAV multispectral images have been confirmed to be capable 
of precisely estimating crop-growth-related parameters such as the leaf area index (LAI) of wheat 
[18] and nitrogen status of rapeseed [19].  

Ground sampling distance (GSD) was used to measure the spatial resolution of images. In 
previous studies, the impact of GSD on the estimation of plant biophysical parameters has rarely 
been discussed. However, GSD is crucial for the spectroscopic estimation of plant biochemical 
variables and affects the efficiency in UAV image acquisition [20]. Some studies have assessed the 
performance of VIs from images with different GSDs for estimating the leaf nitrogen concentration 
of rice [20] and the leaf chlorophyll content of sugar beet [21]. However, the images with different 
GSDs in these studies were obtained by resampling high-resolution images, so the conclusion based 
on resampled images might not be suitable for assessing the performance of VIs from in situ UAV 
images. In addition, VIs, combined with plant height (PH) from digital surface models (PHDSM), have 
also been utilized to estimate crop biomass to achieve higher accuracy [22–24]. The GSD of the UAV 
images is closely related to the accuracy of the PHDSM acquisition, thus affecting the crop growth 
estimation by VI*PHDSM (product of VI and PHDSM). The GSD of the image depended mainly on the 
sensor’s field of view (FOV) and the height of the observation platform. Images with larger GSDs 
were collected at higher flight altitudes, which could improve the efficiency of in situ UAV image 
acquisition and processing. However, oversized GSDs might result in instability for the spectroscopic 
estimation of biochemical variables [25] and PH estimation [26]. Therefore, it is of great importance 
to determine an optimal spatial resolution by sensitivity analyses and to achieve a balance between 
the measurement accuracy and measurement efficiency of in situ UAV images [27]. 

It is necessary to use field-based data as a reference, in order to evaluate the performance of in 
situ UAV images for estimating crop-growth-related parameters [28]. Ground-based sensors such as 
GreenSeeker and leaf area canopy analyzers are often used to obtain the NDVI (GS-NDVI) and LAI 
of crop canopy. GS-NDVI is measured by active remote sensing, and not affected by shadows and 
changes in lighting environments [29]. Therefore, the GS-NDVI is reliable in the inversion of crop 
growth parameters such as the yield of corn [30] and nitrogen content of rice [31]. LAI is an important 
indicator for describing vegetation biophysical processes such as photosynthesis [32]. 

Based on the above knowledge, the individual VIs and VIs*PHDSM derived from in situ UAV 
images with different GSDs were utilized to estimate the GS-NDVI and LAI of seedling rapeseed in 
our study. On this basis, the difference between VIs from the in situ UAV images and those from 
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resampled images was discussed and the impact of spatial resolution on PH extraction accuracy and 
VI generation was analyzed according to the semivariogram. Finally, an optimal spatial resolution 
was determined to achieve a balance between the measurement accuracy and measurement efficiency 
of in situ UAV images. 

2. Materials and Methods 

2.1. Study Area 

The study area (Figure 1) is located on the experiment station of Huazhong Agricultural 
University, Wuhan City, Hubei Province (30°28′8″ N, 114°21′18″ E). Three experiments were 
performed in 180 plots over the study area with each plot covering an area of 10 m2 (5.0 × 2.0 m). Each 
treatment of the three experiments was performed in triplicates. 

The first was a straw incorporation experiment on the rapeseed cultivar of “Huayouza No. 62”. 
Four treatments were set in this experiment: incorporating straw and fertilizing (A1), incorporating 
straw and not fertilizing (A2), not incorporating straw and fertilizing (A3), and not incorporating 
straw and not fertilizing (A4). The planting density was 50,000 plants/ha and the amount of straw 
was 800kg/ha. Eight N fertilization treatments were set for the full growth stage. The rates of basal 
fertilizer: tiller fertilizer: overwinter fertilizer: flower fertilizer were 100% : 0 : 0 : 0 (B1)，60% : 40% : 
0 : 0 (B2)，60% : 0 : 40% : 0 (B3)，60% : 0 : 0 : 40% (B4)，60%: 20% : 20% : 0 (B5)，60% : 20% : 0 : 20% 
(B6)，60% : 0 : 20% : 20% (B7), 60% : 40% : 0 : 0 (B8). In the first seven treatments, the amount of N 
fertilization (urea) was 16kg/ha. In the eighth treatment, the amount of N fertilization application was 
20kg/ha. However, only the basal fertilizer and tiller fertilizer were applied before the UAV data 
collection. 

 

Figure 1. Layout of study area. The white lines were the boundary of study areas of Experiments 1, 2 
and 3. The orange dots indicated the locations of ground control points (GCPs). The 11.0%, 31.0% and 
51.0% were the reflectance of calibration targets. 



Remote Sens. 2020, 12, 1207 4 of 18 

 

In the second experiment, the rapeseed cultivars of “Huayouza No. 62 (H)” and “Juayouza No. 
158 (J)” were sown on three different dates (20 September (S1), 1 October (S2), 10 October 2018 (S3)) 
with a planting density of 30,000 plants/ha. In the third experiment, the same two rapeseed cultivars 
were sown on 28 September 2018 with three different densities (30,000 plants/ha (D1), 40,000 
plants/ha (D2), and 50,000 plants/ha (D3)). Only the basal fertilizer and tiller fertilizer were applied 
in the second and third experiment. The basal fertilizer was the compound fertilizer with an amount 
of 50kg/ha. The till fertilizer was the N fertilization (urea) with amount of 10kg/ha. 

For image mosaicking and rectification, seven ground control points (GCPs) were distributed 
evenly in the study area (Figure 1). The position information of GCPs was collected with a global 
navigation satellite system real-time kinematic (GNSS RTK) instrument (UniStrong Science and 
Technology Co., Ltd, Beijing, China). This instrument had a horizontal accuracy of 1.0 cm and a 
vertical accuracy of 2.0 cm. 

2.2. UAV Image Acquisition. 

A MicaSense RedEdge 3 (MR) camera (MicaSense, Inc., Seattle, WA, USA) was mounted on the 
Matrice 600 hexacopter UAV (DJI, Shenzhen, China) to capture multispectral images. MR camera was 
a 12-bit multispectral imager with five channels (i.e., blue (475 ± 20nm), green (560 ± 20 nm), red (668 
± 10 nm), NIR (840 ± 40 nm), and RE (717 ± 10 nm)) at 1.2 megapixel (1280 × 960 pixels) resolution. 
The spectral response curves of the five channels are shown in Figure 2, which was measured in 
reference to a previous study [33]. 

 
Figure 2. Spectral response curves of MicaSense RedEdge 3. 

The UAV campaign was conducted under clear and calm weather conditions on December 13, 
2018. Due to different experimental treatments, the growth stage of seedling rapeseed in the study 
area was slightly different, mainly in the eight-leaf to 10-leaf stage. Five flights were recorded 
between 10:00 and 14:00 h local time. An automatic mode was utilized to acquire multispectral 
images, which was recommended by MicaSense for normal exposure. The images were captured 
every 1 s with an 85.0% forward overlap and a 70.0% side overlap. The altitude, acquisition time, 
image processing time, and image GSD for each flight are given in Table 1. Finally, the acquired 
images were stored in 16-bit tiff format. Image processing time only included the time when images 
were automatically processed in the PIE-UAV software (Beijing Piesat Information Technology Co., 
Ltd., Beijing, China). 
  



Remote Sens. 2020, 12, 1207 5 of 18 

 

Table 1. Parameters of data acquisition and processing for each flight. 

Flight 
Number 

Altitude 
(m) 

Image Acquisition 
Efficiency (min) 

Number of 
Images 

Image Processing 
Efficiency (min) 

Image GSD 
(cm) 

1 22 7.45 2400 100 1.35 
2 29 4.02 1300 59 1.69 
3 44 2.02 760 35 2.61 
4 88 1.45 550 30 5.73 
5 176 0.7 470 25 11.61 

2.3. Field Data Acquisition 

Ground sampling measurement was conducted on the same day as the UAV flights (Figure 3). 
The GS-NDVI readings were measured by a GreenSeeker® Handheld Crop Sensor (Trimble 
Navigation Limited, Sunnyvale, CA, USA) between 8:30 and 10:00 h. This instrument worked in an 
active remote sensing mode with a red wavelength range of 660 ± 25 nm and an NIR wavelength 
range of 780 ± 25 nm. The LAI and field-based hyperspectral reflectance data were obtained between 
10:00 and 14:00 h. LAI readings were measured by an AccuPAR LP-80 plant canopy analyzer 
(Decagon Devices, Inc., Pullman, WA, USA). The instrument probe included 80 independent sensors 
spaced 1 cm apart to measure the photosynthetically active radiation intensity in the spectral range 
of 400-700 nm. Field-based hyperspectral reflectance was measured by a FieldSpec HandHeld 2 
portable spectroradiometer (ASD Inc., Boulder, CO, USA). The ASD spectrometer was placed above 
the canopy to collect spectral data ranging from 325 to 1075 nm with a spectral resolution of < 3 nm 
at 700 nm and a sampling interval of 1 nm. PH was measured by ruler with a minimum measurement 
unit of 1 mm. The GPS information at each sampling point was collected using the GNSS RTK receiver 
to associate the GS-NDVI, LAI, PH, and canopy reflectance data with the corresponding pixel 
locations in the UAV image. In this study, there were 90 plots, with a total of 180 sampling points 
which were all used for subsequent analysis. Descriptive statistics for ground measured data are 
shown in Table 2. 

Table 2. Descriptive statistics for ground measured data. 

Ground Measured Data Sample Number Min Max Mean Std CV (%) 
NDVI measured by GreenSeeker (GS-NDVI) 180 0.53  0.78  0.72  0.06 8 

Leaf area index (LAI) 180 0.41  6.15  3.17  1.20 38 
Plant height (PH) (m) 180 0.10  0.63  0.35  0.12 34 
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Figure 3. Measurement mode of field-based sensors. 

2.4. Data Pre-Processing 

UAV-based multispectral images captured at the five different flights were processed separately. 
UAV multispectral images underwent a series of pre-processing including vignetting correction, lens 
distortion correction, image mosaicking, band registration, and radiometric calibration. Except for 
radiometric calibration, all the other pre-processing steps were performed using the PIE-UAV 
software (Beijing Piesat Information Technology Co., Ltd., Beijing, China). The relative differences 
between the initial and optimized internal camera parameters for flights 1 to 5 (Table 1) were small 
(0.49%, 0.50%, 0.60%, 0.61%, 0.94%, respectively), indicating that the initial parameters were accurate 
for image mosaicking. During the image mosaicking, the GPS information of the seven control points 
(Figure 1) measured by GNSS RTK was imported into the PIE-UAV to improve the spatial accuracy 
of the generated orthomosaics and point clouds. The GSDs of the five orthomosaics were 1.35, 1.69, 
2.61, 5.73, and 11.61cm, respectively. Based on geo-referenced point clouds, the digital surface models 
(DSMs) were generated and exported in the TIF format with the same GSDs as the corresponding 
orthomosaics. Three calibration targets with nominal reflectance values of 11.0%, 31.0%, and 51.0% 
were placed in the study area and the photos of these calibration targets were captured by the MR 
sensor (Figure 1). The actual reflectance of the targets was measured with the ASD spectrometer and 
the digital numbers (DNs) of the corresponding areas were extracted from the orthomosaics. The 
DNs in the orthomosaics were then transformed into the reflectance by applying an empirical linear 
correction method [34]. Since the MicaSense RedEdge 3 camera produced an excellent linear response 
[35], the calibration equations of the MicaSense multispectral images were linear. 
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2.5. Regression Models of GS-NDVI and LAI 

2.5.1. Estimation of GS-NDVI and LAI by UAV-VIs 

In order to assess the effects of different GSD images on LAI and GS-NDVI estimation, some 
commonly used VIs were calculated by the formulas shown in Table 3. All the VIs were confirmed to 
be a useful indicator for vegetation growth. A circular buffer with a diameter of 50cm was generated 
for each sample, and the reflectance values of all the pixels within the area were averaged to represent 
the reflectance value for the sample. Then, the VIs were calculated in terms of different mathematical 
combinations of the reflectance. On this basis, regression models between each of the two ground 
measured crop parameters (GS-NDVI and LAI) and each of the UAV-VIs were established using 
MATLAB R2013a (MathWorks, Inc. Natick, Massachusetts, USA) and the coefficients of 
determination (R2) were computed to assess the accuracy of the regression models. 

Table 3. Formulas of nine different VIs. 

VI Formula 1 NIR-VI RE-VI RGB-VI 
Normalized difference vegetation Index NDVI = (NIR – R) / (NIR + R) [36] √   

Green Normalized Difference Vegetation Index GNDVI = (NIR – G) / (NIR + G) [37] √   
Difference Vegetation Index DVI = NIR − R [38] √   

Optimized Soil Adjusted Vegetation Index 
OSAVI = (1 + 0.16) × (NIR-R) / (NIR + R + 0.16）

[39] 
√   

Excess Green index ExG = 2G* – R* – B* [40]   √ 
Excess Red index ExR=1.4R* – G* [41]   √ 

ExG – ExR ExG – ExR [42]   √ 
Normalized Difference Index NDI = (G-R) / (G + R) [43]   √ 

Red-edge Normalized Difference Vegetation 
Index 

NDRE = (NIR-RE) / (NIR + RE) [44]  √  

1. Wavelengths of B, G, R, RE, and NIR were 474, 560, 668, 717, and 840 nm. G* = G / (R + G + B), R* = R/ (R + G + 
B), B* = B / (R + G + B) 

2.5.2. Estimation of GS-NDVI and LAI by ASD-VIs 

In order to evaluate the effect of VI types on canopy GS-NDVI and LAI estimation, the canopy 
reflectance measured by the ASD spectrometer was used to simulate the equivalent reflectance of the 
five bands by the following formula (1) [45]. The VIs (Table 3) were calculated based on the ASD data 
(ASD-VIs), and the coefficients of determination (R2) between each of the two measured parameters 
(GS-NDVI and LAI) and each of the five ASD-VIs were also computed. 

𝑅 = ∑ 𝑆  𝑅   𝑑λ∑ 𝑅  𝑑λ  (1) 

where 𝑅  represents the reflectance corresponding to band i, and 𝑅  represents the reflectance 
measured by the spectroradiometer at wavelength λ . 𝑆  is the spectral response at wavelength λ of band 𝑖. λ and λ  are the lower limit and upper limit wavelengths, respectively, for band i. 

2.5.3. Estimation of LAI by UAV-VIs*PHDSM 

PH is a descriptor of plant growth. To get the PH information, the digital surface models (DSM) 
generated from point clouds at different GSDs were subtracted by a bare ground DSM [22] (Figure 
4). The bare ground model was represented by a constant, which was the mean pixel value of bare 
soil in the DSM at a GSD of 1.35cm. The bare soil was separated from NIR images at 1.35 cm GSD by 
using the Ostu method [46], which was reported to be able to efficiently and quickly determine the 
threshold and realize the segmentation of soil and seedling rapeseed [47]. Then, the average PHDSM 
within each circular buffer was calculated. On this basis, the VIs and PH were combined in the form 
of multiplication (VIs*PHDSM) to establish LAI regression models, and the corresponding R2 was also 
calculated in MATLAB R2013a. 
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Figure 4. PHDSM at different ground sampling distances (GSDs). The red solid circles represented the 
buffers in Zonal Statistics as Table in ArcGIS for pixel value extraction. 

3. Results  

3.1. Performance of Different UAV-VIs for LAI and GS-NDVI Estimation 

In this study, most VIs showed a linear relationship with GS-NDVI and an exponential 
relationship with LAI. However, the DVI showed a logarithmic relationship with GS-NDVI and LAI. 
The coefficients of determination and root mean square error (RMSE) between the two ground 
measured parameters (GS-NDVI and LAI) and the UAV-based VIs (UAV-VIs) under all GSDs are 
presented in Table 4 and Table 5. Analysis results indicated that the NIR-VIs (OSAVI, NDVI, DVI, 
and GNDVI) and the RE-VI (NDRE) performed better than the RGB-VIs (ExG, ExR, ExG-ExR, and 
NDI). Among them, the VI with the strongest correlation with GS-NDVI was NDVI (R2 = 0.826, 
RMSE=0.024). The NDRE exhibited a great performance for estimating both LAI and GS-NDVI, and 
it provided the most accurate estimation with an R2 of 0.717 and RMSE of 0.695.  

Table 4. Coefficients of determination between ground-measured parameters (GS-NDVI and LAI) 
and nine UAV-VIs 1. 

VI Type VI Name 
R2 

GSD = 1.35 cm 
GS-NDVI/LAI 

GSD = 1.69 cm 
GS-NDVI/LAI 

GSD = 2.61 cm 
GS-NDVI/LAI 

GSD = 5.73 cm 
GS-NDVI/LAI 

GSD = 11.61 cm 
GS-NDVI/LAI 

RGB-VIs 

EXG 0.055/0.011 0.061/0.014 0.061/0.013 0.002/0.007 0.063/0.015 
EXR 0.292/0.166 0.317/0.186 0.313/0. 179 0.237/0.101 0.308/0.209 

EXG-EXR 0.135/0.055 0.148/0.063 0.148/0.061 0.051/0.005 0.155/0.076 
NDI 0.344/0.208 0.384/0.240 0.362/0.218 0.292/0.137 0.280/0.184 

RE-VI NDRE 0.790/0.712 0.808/0.717 0.812/0.716 0.760/0.698 0.706/0.670 

NIR-VIs 

NDVI 0.817/0.664 0.826/0.666 0.821/0.651 0.804/0.661 0.664/0.609 
DVI 0.728/0.558 0.712/0.554 0.713/0.501 0.740/0.587 0.655/.605 

GNDVI 0.787/0.714 0.794/0.704 0.806/0.700 0.763/0.699 0.630/0.627 
OSAVI 0.782/0.621 0.774/0.621 0.773/0.573 0.777/0.634 0.667/0.617 

 
 RGB-VIs  RE-VI  NIR-VIs 

1. The numbers before and after “/” were the R2 for GS-NDVI and LAI with each UAV-VI, respectively. 
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Table 5. Root mean square error (RMSE) between ground-measured parameters (GS-NDVI and LAI) 
and nine UAV-VIs 1. 

VI Type VI Name 
RMSE 

GSD = 1.35 cm 
GS-NDVI/LAI 

GSD = 1.69 cm 
GS-NDVI/LAI 

GSD = 2.61 cm 
GS-NDVI/LAI 

GSD = 5.73 cm 
GS-NDVI/LAI 

GSD = 11.61 cm 
GS-NDVI/LAI 

RGB-VIs 

EXG 0.058/1.235 0.058/1.235 0.058/1.235 0.059/1.216 0.058/1.236 
EXR 0.050/1.208 0.049/1.205 0.049/1.205 0.052/1.219 0.049/1.191 

EXG-EXR 0.055/1.232 0.055/1.230 0.055/1.230 0.058/1.234 0.055/1.229 
NDI 0.048/1.193 0.047/1.184 0.047/1.190 0.050/1.207 0.050/1.200 

RE-VI NDRE 0.027/0.701 0.026/0.695 0.025/0.697 0.029/0.732 0.032/0.741 

NIR-VIs 

NDVI 0.025/0.742 0.024/0.744 0.025/0.769 0.026/0.767 0.034/0.777 
DVI 0.032/0.897 0.033/0.906 0.033/0.967 0.032/0.888 0.035/0.838 

GNDVI 0.027/0.696 0.027/0.704 0.026/0.714 0.029/0.731  0.036/0. 772 
OSAVI 0.028/0.817 0.028/0.821 0.028/0.890 0.028/0.821 0.034/0.782 

 
 RGB-VIs  RE-VI  NIR-VIs 

1. The numbers before and after “/” were the RMSE for GS-NDVI and LAI with each UAV-VI, respectively. 

3.2. Performance of Different ASD-VIs for LAI and GS-NDVI Estimation 

Our result indicated that the UAV-based NIR-VIs and RE-VI were better than the UAV-based 
RGB-VIs for LAI and GS-NDVI estimation. To further verify this result, the ASD reflectance was 
analyzed. As shown in Figure 5, the ASD-based NIR-VIs and RE-VI were obviously better than the 
ASD-based RGB-VIs. Among them, the ASD-VI with the strongest correlation with GS-NDVI and 
LAI was NDVI (R2 = 0.797) and NDRE (R2 = 0.624), respectively.  

 

Figure 5. Correlation (R2) between ground-measured parameters (GS-NDVI and LAI) and different 
ASD-VIs. 

3.3. Performance of Optimal VIs under Different GSDs for LAI and GS-NDVI Estimation 

The NDVI and NDRE that had the strongest correlations with GS-NDVI were selected for 
assessing the effects of different GSDs on GS-NDVI estimation (Table 4). The R2 between GS-NDVI 
and either of the two VIs was almost unchanged when GSD increased from 1.35 to 5.73 cm (R2 > 0.76 
for NDRE, R2 > 0.804 for NDVI), whereas a decrease in R2 was observed at 11.61 cm GSD (R2 = 0.706 
for NDRE, R2 = 0.664 for NDVI). The GNDVI and NDRE that had the strongest correlations with LAI 
were selected for evaluating the effects of different GSDs on LAI estimation. As shown in Table 4, R2 
between LAI and either VI also remained almost unchanged when GSD changed within 1.35–5.73 cm 
(R2 > 0.698 for NDRE, R2 > 0.699 for GNDVI), but it decreased sharply at 11.61 cm GSD (R2 = 0.670 for 
NDRE, R2 = 0.627 for GNDVI). Overall, the oversized GSD (11.61 cm) had an adverse effect on GS-
NDVI and LAI estimation, while this trend was not obvious when the GSD was small (1.35-5.73 cm). 

In addition, the difference between the VI derived from the UAV images (VItrue) and that from 
resampled images (VIres) was analyzed in this study (Figure 6). Resampled images were generated 
from the UAV image at 1.35 cm GSD by the nearest neighbor method [48]. Taking the optimal VI, 
NDRE, as an example, when GSD changed from 2.61 to 5.73 cm, NDREres was similar to NDREtrue 
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with an R2 larger than 0.956 and nRMSE less than 4.09%. However, at 11.61 cm GSD, the difference 
between NDREres and NDREtrue was obvious (R2 = 0.789, nRMSE = 8.99%). Considering this issue, 
this study examined the effect of GSD on in situ VI generation by semivariograms. Taking the NDRE 
(best-performing VI) as an example, 1-m2 images cropped from the NDRE images with different 
GSDs were used for semivariance calculation, in which the step size was set as 50 cm. As shown in 
Figure 7, the ratio of the nugget value (Co) to the base value (Sill) was less than 25.0% when the GSD 
was small (1.35–5.73 cm). However, when the GSD was 11.61 cm, the Co/Sill ratio was larger than 
75.0%, indicating that there were many mixed pixels at 11.61 cm [49]. This might be the reason that 
the NDRE values of 180 samples were excessively concentrated within 0.5–0.6 at 11.61 cm GSD 
(Skewness = −1.398, Kurtosis = 1.599) (Figure 7). 

 
Figure 6. Scatter plots and regression lines of NDRE from in situ UAV image (NDREtrue) versus 
NDRE from resampled images (NDREres) at different GSDs. 
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Figure 7. Semivariograms and distributions of NDRE values from in situ UAV images at different 
GSDs. 

3.4. Performance of PHDSM Under Different GSDs for PH Estimation 

The correlations between ground measured PH and DSM-derived PHDSM are shown in Figure 8. 
The performance of PH estimation was similar at GSDs of 1.35 cm (R2 =0.871), 1.69 cm (R2 =0.859), 
and 2.61 cm (R2 = 0.856), which were slightly better than that at 5.73 cm (R2 = 0.800) and better than 
that at 11.61 cm (R2 = 0.351). 
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Figure 8. Relationships between ground-measured PH and DSM-derived PH (PHDSM) at different 
GSDs. 

3.5. Performance of VIs*PHDSM Under Different GSDs for LAI Estimation 

Since NDRE exhibited the optimal performance among all the VIs, it was selected to represent 
the VI in the combination of VI*PHDSM for LAI estimation. As shown in Figure 9, all the R2 values 
between NDRE*PHDSM and LAI were larger than 0.75 when GSD was between 1.35 and 2.61 cm. 
However, the R2 showed a decreased trend at 5.73 cm (R2 = 0.717) and 11.61 cm (R2 = 0.412). The 
performance of NDRE* PHDSM was better than that of NDRE alone when GSD was between 1.35 and 
5.73 cm, but it was worse at 11.61 cm. In general, PHDSM was helpful for LAI and GS-NDVI estimation 
when GSD was between 1.35 and 5.73 cm, while it was not useful for the estimation at 11.61 cm GSD. 

 

Figure 9. LAI estimation by NDRE*PHDSM and NDRE. The scatter plots and regression lines show the 
relationship between NDRE*PHDSM and ground-measured LAI. The histograms show the R2 values 
between ground-measured LAI and either NDRE*PHDSM or NDRE at different GSDs. 
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4. Discussion 

4.1. Effect of VI Type on GS-NDVI and LAI Estimation 

For GS-NDVI and LAI estimation, the ASD-based NIR-VIs and RE-VI were found to be better 
than the ASD-based RGB-VIs, which was consistent with the UAV-based result. On the one hand, the 
reason that GS-NDVI correlated better with RE-VI and NIR-VI was that they were computed from 
similar wavelengths. On the other hand, the RE and NIR bands were linked to plant structure, and 
thus to biophysical parameters such as LAI. In addition, the imaging quality was an important factor 
affecting the recording of spectral information [50,51], which might also affect the performance of 
RGB-VIs. In this study, we used an auto-exposure mode to acquire images using the multispectral 
sensor with its five channels working independently. Under this mode, the exposure parameters in 
each channel were adjusted according to the intensity of light reflected by ground objects. Therefore, 
the exposure parameters were determined by the reflection characteristics of the main ground objects, 
which might make the spectral information of monitoring objects difficult record well [52]. For 
example, the study area was covered with dry grass, cement surface, and other ground objects on the 
edge of the field. The light reflection intensity of these objects within the visible bands was higher 
than that of the rapeseed leaves (Figure 10). When image acquisition was performed at the edge of 
the field, a large proportion of image pixels would be occupied by the above-mentioned objects. In 
this case, the sensor automatically set a shorter exposure time or a smaller gain, resulting in a dark 
gray tone for rapeseed leaves in the visible images (Figure 11). 

In this study, NDVI and GS-NDVI were computed from similar wavelengths. Therefore, both 
UAV-NDVI and ASD-NDVI exhibited the optimal performance for GS-NDVI estimation, which was 
consistent with the result of a previous study for rapeseed GS-NDVI estimation [53]. In addition, 
different treatments, including sowing dates, sowing densities, and straw incorporation in the study 
area, resulted in obvious differences in rapeseed growth and canopy structure (Table 2). NDRE was 
a VI that was less affected by the canopy structure [54], which might explain why this index had the 
best performance for LAI estimation. 

 

Figure 10. Reflectance curves of different ground objects. 
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Figure 11. Visible band images at 1.35 cm GSD: (a) Red band; (b) Green band; (c) Blue band. 

4.2. Effect of VIs Under Different GSDs on GS-NDVI and LAI Estimation 

In this study, VItrue, with the large GSD of 11.61 cm, was found to have an adverse effect on GS-
NDVI and LAI estimation, but this adverse effect was not obvious when the GSD was small (1.35-
5.73 cm). Some previous studies reported that VIres was not affected by GSD [55]. Resampled images 
were always generated from original images by nearest neighbor, bilinear interpolation or cubic 
convolution [48,56,57], which represented a mathematical transformation process. Theoretically, the 
reflectance derived from resampled images would not change after radiometric calibration (Figure 
12). Therefore, the VIs of the original UAV images should be similar to those of the resampled 
imagery. 

 
Figure 12. Reflectance generation process based on 2 × 2 and 4 × 4 pixels. 

However, the VIres derived from a UAV image obtained at a certain flight height was not 
necessarily similar to the VIres from a resampled image with the same GSD (Figure 6). At the GSD of 
11.61 cm, the difference between NDREres and NDREtrue was obvious and there were many mixed 
pixels. Due to the limitation of the gray level, the mixed pixels of in situ UAV images might result in 
large random errors in the acquired spectral information [25], making it difficult to discern the small 
spectral difference between the samples. This might be the reason that the NDRE values of 180 
samples were excessively concentrated within 0.5–0.6, and why the LAI and GS-NDVI estimation 
results were undesirable at 11.61 cm. 
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4.3. Effect of PHDSM Under different GSDs on LAI Estimation 

Normally, the VIs were extracted from a rapeseed canopy, thus the lower leaves in a canopy 
might not be detected. Considering this, PH was utilized to make up the deficiency. Rapeseed is a 
dicotyledonous cruciferous crop [58]. As the main stem grows, new leaves will grow in branches 
(Figure 13), indicating that there is a relationship between PH and the number of middle- and lower-
layer leaves. Therefore, when the GSD was between 1.35 and 5.73 cm, the LAI estimation was better 
with NDRE*PHDSM than with NDRE (Figure 9). However, precise PH information could not be 
extracted from DSM images at 11.61 cm (Figure 8), resulting in an undesirable LAI estimation (Figure 
9). Moreover, the performance of PH estimation was similar at small GSDs (1.35–2.61 cm), which was 
slightly better than that at 5.73 cm. Therefore, the estimation performance by NDRE*PHDSM was best 
at small GSDs (1.35–2.61 cm), slightly worse at 5.73 cm and the worst at 11.61 cm. 

 

Figure 13. Sketch map of vertical layers of a rapeseed plant at the seedling stage. 

5. Conclusions 

The effects of UAV-VIs and UAV-VIs*PHDSM at different GSDs on seedling rapeseed growth 
monitoring were assessed in this study. The results indicated that NDRE had a better performance 
for GS-NDVI and LAI estimation than other VIs, and that the NDRE*PHDSM derived from in situ UAV 
images with suitable spatial resolution (1.35–2.61 cm) could achieve a higher accuracy for LAI 
estimation than NDRE alone. Moreover, spatial resolution is directly proportional to UAV flight 
height and it affects the efficiency of image acquisition and processing. The image collection and 
processing time at 1.35 cm GSD was about three times as long as that at 2.61 cm. Therefore, selecting 
a relatively low spatial resolution that ensures monitoring accuracy can reduce time and cost. In this 
study, the optimal spatial resolution was determined to be about 2.61 cm for rapeseed LAI estimation. 

The multispectral images with different GSDs were obtained through in situ collection in this 
study. The images with the actual GSDs were compared with images with the resampled GSDs to 
assess the effect of spatial resolution on rapeseed growth monitoring. Therefore, our findings could 
provide an accurate and practical reference for crop growth monitoring using UAV multispectral 
remote sensing technology. 
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