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Abstract: Sea surface temperature (SST) measurements from the geostationary satellite Himawari-8
Advanced Himawari Imager (AHI) are compared with in situ skin SSTs derived from shipboard
Infrared SST Autonomous Radiometers (ISAR) in the Australian region. The mean bias and standard
deviation of the differences between Himawari-8 AHI and ISAR skin SST of best quality are 0.09 K
and 0.30 K, with total matchups numbering 2701. Shipboard bulk SST measurements at depths
between around 7.1 and 9.9 meters are compared with the matchups in a case study. Analyses show
significant differences between skin and bulk SST measurements of maximum value 2.23 K under
conditions of high diurnal warming. The results also demonstrate that Himawari-8 AHI skin SST
with high temporal resolution has the ability to accurately measure diurnal warming events.

Keywords: sea surface temperature; ISAR; Himawari-8; Australian region; validation

1. Introduction

Sea surface temperature (SST) is used as a key variable in numerical weather prediction and
in global climate modeling. Satellite-derived SSTs cover large areas and worldwide SST products
have been created. The geostationary satellite has several important advantages over the polar
orbiter for monitoring SST variability, such as high temporal resolution [1]. The first Geostationary
Operational Environmental Satellite (GOES) was launched by the National Aeronautics and Space
Administration (NASA) in October 1975 and since then there have been many more meteorological
satellites in geostationary orbit. The first Japanese Geostationary Meteorological Satellite (GMS-1,
aka Himawari-1) was launched by the Japan Meteorological Agency (JMA) in 1977 and was followed
by five GMS units by 2003 [2]. The Stretched-Visible Infrared Spin Scan Radiometer (S-VISSR) onboard
GMS-5 (Himawari-5) provided SST estimation with a root mean square (RMS) error of 0.8 K [3].
The Multi-Functional Transport SATellite (MTSAT) series had two satellites MTSAT-1R (Himawari-6)
and MTSAT-2 (Himawari-7), which were in operation from 2005 to 2010 and 2010 to 2015 [2]. The SST
from the MTSAT-2 imager showed a bias of 0.26 K and a standard deviation of 0.48 K compared with
subsurface in situ temperature measurements in the Tropical Western Pacific Ocean from August to
October 2015 [4].
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A successor to MTSAT-2, the new generation Japanese geostationary satellite, Himawari-8, was
launched on 7 October 2014 and its geostationary position is on the equator at 140.7◦E. Himawari-8
began operational use on 7 July 2015 and was designed for a meteorological mission of 8 years or
longer [5]. The Advanced Himawari Imager (AHI) on board Himawari-8 provides full disk images
with 10-min sampling frequency in 16 spectral bands with 2 km spatial resolution for IR channels at
nadir. The Japan Aerospace Exploration Agency (JAXA) provides Himawari-8 AHI skin SST products
(at around 10 µm depth) calculated in near real time from 10.4, 11.2, and 8.6 µm radiances [6], to seek
synergies with Japan Aerospace Exploration Agency (JAXA)’s Low Earth Orbiting IR imagers, such as
the Second-Generation Global Imager (SGLI) onboard the Global Change Observation Mission-Climate
(GCOM-C). The SST were calculated using a new quasi-physical SST algorithm, which derives skin
SST by a parameterized IR radiative transfer equation [5]. The NOAA Center for Satellite Applications
and Research (STAR) also provides Himawari-8 AHI SST products using NOAA’s Advanced Clear-Sky
Processor for Oceans (ACSPO) [7], and the Australian Bureau of Meteorology produces various
Himawari-8 AHI SST products [8] for Australian applications.

Satellite SST used in Climate Data Records (CDRs) needs to be validated using in situ SST
measurements with high accuracy that are traceable to the International System of Units (SI) [9].
JAXA Himawari-8 AHI skin SST products were compared with drifting and tropical moored buoy
data. Results showed a root mean square difference (RMSD) of 0.59 K and a bias of −0.16 K [5].
The NOAA ACSPO Himawari-8 SST product was validated against in situ data in the NOAA SST
Quality Monitor (SQUAM, https://www.star.nesdis.noaa.gov/sod/sst/squam). The validation statistics
against drifters and tropical moorings showed a bias within ±0.2 K and standard deviation within
0.4–0.6 K from June to September 2015 [7]. The NOAA ACSPO Himawari-8 AHI SSTs have been
validated using comparisons with in situ measurements from the Triangle Trans-Ocean Buoy Network
(TRITON) moored buoys in the Tropical Atmosphere Ocean (TAO) array and from the self-recording
thermometers at the depths of corals over the Great Barrier Reef (GBR) [4]. The results were discussed
under various conditions of wind speed and diurnal heating. The data showed that NOAA ACPSO
Himawari-8 AHI had an average SST difference of 0.18 K with a standard deviation of 0.53 K and an
average median of 0.16 K from August to October 2015 [4].

The validation results above were compared using in situ bulk SST measurements. Both the buoys
and temperature loggers measure SST at different depths. Due to the vertical distribution of SST [10], this
will introduce discrepancies compared to satellite-derived skin SST. Using well-calibrated shipboard
radiometers to validate satellite SST is the basis for generating the CDRs of SST [9]. Shipboard infrared
radiometers provide the potential to obtain a matched set of in situ and coincident satellite skin SST
data that can be used to validate the JAXA Himawari-8 AHI skin SST. The uncertainty introduced from
matching satellite IR skin SST with the different depths sampled by conventional in situ SST sensors can
be completely eliminated [11]. In October 2014, an infrared SST autonomous radiometer (ISAR) Model
5D was installed on the Australian Marine National Facility research vessel (RV), RV Investigator, by the
Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), and has operated
on most cruises of this vessel up to the present, covering seas around the Australian coast and south to
Antarctica (http://mnf.csiro.au/Voyages/Investigator-schedules/Plans-and-summaries.aspx). The ISAR
was developed by the University of Southampton (http://www.isar.org.uk). It is a self-calibrating
instrument and was designed for in situ skin SST measurements with an accuracy of around 0.1 K [12].
The ISAR has an infrared wavelength range from 9.6 to 11.5 µm to obtain both the sea surface radiance
and the downwelling atmosphere radiance, which are calibrated by two internal reference blackbody
cavities. Both of the blackbody cavities have an emissivity of >0.999 in the spectral range of the ISAR.
One cavity remains at an ambient temperature, while the other one is heated and maintained at about
12 K higher. The temperature of the two blackbody cavities are monitored by internal thermistors.
Radiances from the sea surface and atmosphere are self-calibrated using the linear relationship between
the voltage output of the radiometer and integrated incoming radiance [12]. Considering the ship
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structure and wake characteristics, the ISAR is mounted on the port bridge wing, approximately 19
meters above the summer load line, with sky and sea view angles of 25◦ and 155◦ from nadir [13].

In this paper, we compare JAXA Himawari-8 AHI skin SST with collocated ISAR skin SST
measurements over seven cruises of the RV Investigator. The next section introduces the matchup data
and validation method. Section 3 presents the results of the comparison and Section 4 discusses the
results. Finally, Section 5 provides a brief conclusion, which indicates future work.

2. Materials and Methods

ISAR skin SST measurements from seven cruises of the RV Investigator are used for the comparison
with JAXA Himawari-8 AHI skin SST products. The cruise data, including meteorological and bulk
SST observations, are provided by the Integrated Marine Observing System (IMOS), ranging from
January 2016 to March 2017 [14]. The seven cruises cover the area in the southwest, south and east
coast near Australia, including the GBR off the coast of Queensland, Australia. Details of the seven
voyage datasets are given in Table 1. The cruise tracks and SST measurements are shown in Figure 1a,b.
The main trend in the measurements is that SST becomes cooler as the latitude becomes higher. Before
and after each cruise, the ISAR radiometer is calibrated by CASOTS II, the National Oceanographic
Centre Southampton’s manufactured blackbody [12], while immersed in a water bath controlled with
a reference Hart Scientific platinum resistance thermometer [15]. The ISAR is maintained between
cruises by replacing the reflecting mirror when necessary, depending on the calibration results and
radiometer performance.

Table 1. Details of the research vessel (RV) Investigator’s Infrared sea surface temperature (SST)
Autonomous Radiometer (ISAR) cruises.

Voyage No. Time Range ISAR Skin SST Range Longitude Range Latitude Range

IN2016_V01 1.08–2.26, 2016 275.18 K–296.13 K 71◦E~148◦E −55◦S~−32◦S
IN2016_V02 3.14–4.15, 2016 280.18 K–293.19 K 141◦E~152◦E −53◦S~−42◦S
IN2016_T02 8.25–8.28, 2016 282.34 K–293.31 K 147◦E~152◦E −44◦S~−33◦S
IN2016_V04 8.31–9.22, 2016 288.47 K–296.79 K 150◦E~156◦E −38◦S~−26◦S
IN2016_V05 9.27–10.24, 2016 293.53 K–302.08 K 145◦E~155◦E −28◦S~−16◦S
IN2016_V06 10.28–11.12, 2016 294.96 K–298.68 K 153◦E~156◦E −28◦S~−21◦S
IN2017_V01 1.14–3.01, 2017 271.45 K–288.31 K 113◦E~148◦E −66◦S~−43◦S
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Figure 1. (a) The RV Investigator ISAR cruise tracks included in this study; (b) cruise tracks with ISAR
skin SST measurements (K).

In order to conform to metrological standards, an ISAR skin SST uncertainty model is used to
estimate a quality indicator for each skin SST measurement [16], using the version 3.1 uncertainty
code developed by Werenfrid Wimmer (University of Southampton). In the uncertainty model, all
sources contributing to the uncertainty of each measurement were analyzed and a total expanded
uncertainty was assigned to each ISAR SST measurement. The total expanded uncertainty estimate
is a combination of random (type A), systematic (type B), instrument and measurement uncertainty
(including the uncertainty of the CASOTS II blackbody, set at 0.05 K), and varies with the roll of the ship
and the internal ISAR temperature [17]. The ISAR total uncertainty corresponds to an estimate of the
SST that differs from its true value by less than the stated uncertainty in 95% of cases, and in this case
can be considered as about two times the standard deviation (SD) of the measurement [16]. In addition
to the IMOS format ISAR_QC files used in this study [14], all reprocessed and quality-controlled
measurements from the RV Investigator ISAR back to 2014 are also provided in the International SST
Fiducial Reference Measurement Radiometer Network “L2R” data format [18] from Commonwealth
Scientific and Industrial Research Organization (CSIRO)’s Marlin Data Portal [19]. These ISAR L2R files
contain a variable named “quality_level” (QL) which is derived from the total expanded uncertainty
estimate (variable “TEMP_2_SD” in the IMOS ISAR_QC files) as follows: QL = 0 to 2 corresponds to
uncertainty >0.2 K, QL = 4 corresponds to 0.1 K < uncertainty ≤ 0.2 K, and QL = 5 (best) corresponds
to uncertainty ≤0.1 K [16]. The RV Investigator CSIRO ISAR temperature readings were compared
with a National Physical Laboratory reference blackbody in laboratory tests during June 2016 and
exhibited relatively low biases (<0.15 K) over normal operating temperatures [20].

JAXA provides Himawari-8 AHI skin SST products, which are available at the JAXA Himawari
Monitor P-Tree System [6]. Himawari-8 AHI skin SST used in this validation are JAXA Level 2 products.
The Himawari-8 AHI skin SST products are extracted within the region covered by the RV Investigator
ISAR cruises and remapped by the nearest neighbor method with a 0.02◦ equal angle projection.
In the JAXA Himwari-8 files, each SST value has an associated quality level (QL), based on cloud
probability calculated using satellite data, ancillary data and empirically generated probability density
functions for those data [5]. We use the Himawari-8 AHI data with the highest quality level of five in
the validation.

A temporal window of 5 minutes and spatial window of 0.02◦ are used to select the matchup
data. All ISAR skin SST measurements located in the same satellite 0.02◦ grid cell are averaged, then
matched with quality level five Himawari-8 AHI skin SST data.
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Sea Bird SBE 38 (https://www.seabird.com) is a water injection temperature sensor deployed on
the RV Investigator and is located in the thermosalinograph water intake pipe within the drop keel.
The SBE 38 measures SST at depths of around 7.1–9.9 meters below the vessel’s summer load line,
depending on the position of the drop keel during each voyage. The SBE 38 sensor is calibrated on
an annual basis over the range −1.5–32 ◦C by the CSIRO Oceanographic Calibration Facility and, in
September 2017, had a calibration uncertainty of around 0.002 K. SBE 38 bulk SST measurements are
compared with both ISAR and Himawari-8 AHI skin SST for a case study. SBE 38 SST are included
with the IMOS meteorological data and reprocessed ISAR data from the RV Investigator [13], available
from the "ISAR_QC" sub-directories of the Australian Ocean Data Network THREDDS server [14].
The temporal resolution of the ISAR data is ~2.5 minutes and is reported to the closest minute in
the IMOS ISAR_QC files [14]. The ship’s wind speed data, measured from sensors ~25 m above the
summer load line, from the meteorological dataset [14] are also used in the analysis.

3. Results

Statistics are derived from the matchup data. We calculated the number (N), mean, median,
standard deviation (SD), robust standard deviation (RSD), maximum (Max), minimum (Min) and the
percentage within 0.3 K (P(±0.3K)) and 0.5 K (P(±0.5K)) of the SST difference (Himawari-8 AHI skin
SST–ISAR skin SST) for the matchups. Himawari-8 SST, from matchups where any of the surrounding
7 × 7 grid cells have invalid data, are removed to reduce the influence of cloud detection failure at the
edge of the cloud. Table 2 shows the statistics of the SST difference in the matchup data for each RV
Investigator cruise studied. The upper rows in Table 2 correspond to all matchups, and the lower rows
correspond to matchups centered in the 7 × 7 grid cloud-free cells.

Table 2. Statistics of the SST difference of the matchups for each cruise (number of matchups (N);
standard deviation (SD) and robust standard deviation (RSD); maximum (Max) and minimum (Min)
values; P(±0.3K) and P(±0.5K) are the percentages within 0.3 K and 0.5 K, which are the matchups.).

Voyage No. N Mean
(K)

Median
(K)

SD
(K)

RSD
(K)

Max
(K)

Min
(K)

P
(±0.3K)

P
(±0.5K)

IN2016_V01
all 246 −0.50 −0.47 0.77 0.67 1.30 −2.80 26% 42%

7 × 7 46 −0.27 −0.23 0.47 0.40 1.13 −1.18 46% 61%

IN2016_V02
all 907 −0.67 −0.53 0.59 0.47 0.59 −3.21 27% 48%

7 × 7 181 −0.31 −0.30 0.25 0.22 0.31 −1.10 50% 78%

IN2016_T02
all 376 −0.01 0.04 0.40 0.36 0.87 −1.71 58% 83%

7 × 7 155 0.14 0.20 0.30 0.31 0.61 −1.39 60% 91%

IN2016_V04
all 1850 −0.01 0.01 0.46 0.35 4.58 −2.01 60% 80%

7 × 7 977 0.05 0.04 0.34 0.30 1.63 −1.52 69% 89%

IN2016_V05
all 2830 0.05 0.06 0.40 0.30 3.77 −1.66 65% 84%

7 × 7 1263 0.08 0.08 0.27 0.24 1.13 −1.32 75% 92%

IN2016_V06
all 1282 0.08 0.11 0.39 0.32 1.90 −1.69 58% 83%

7 × 7 718 0.19 0.20 0.26 0.25 0.83 −0.93 60% 89%

IN2017_V01
all 315 −0.64 −0.53 0.51 0.41 1.45 −2.35 23% 47%

7 × 7 34 −0.41 −0.39 0.54 0.23 1.45 −1.74 32% 62%

Total
all 7806 −0.09 −0.02 0.53 0.40 4.58 −3.21 55% 76%

7 × 7 3374 0.07 0.08 0.32 0.28 1.63 −1.74 67% 89%

As shown in Table 2, the total number of all matchups is 7806 and matchups show a mean bias
of −0.09 K and median bias of −0.02 K, with a P(±0.3K) of 55% and P(±0.5K) of 76%. The standard
deviation and robust standard deviation are 0.53 K and 0.40 K, respectively. After removing the
matchups close to any cloudy grid cells, 3374 matchups remained with mean and median bias increasing
to 0.07 K and 0.08 K. The standard deviation and robust standard deviation decreased to 0.32 K and
0.28 K. P(±0.3K) increased from 55% to 67% and P(±0.5K) increased from 76% to 89%. The changes in
the statistics indicate that some extreme values of Himawari-8 AHI skin SST contaminated by clouds

https://www.seabird.com
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were eliminated. The maximum and minimum SST differences changed from 4.58 K and −3.21 K to
1.63 K and −1.74 K. Hereafter, we use the matchups centered within 7 × 7 grid cells containing only
valid data for the following analyses.

For the comparison results shown above, we used all ISAR cruise data without any quality level
classification. There are differences between the various cruise results. The main reason causing these
differences is that ISAR data quality varies within and between cruises, with the quality level (QL)
depending on the total expanded uncertainty (see Section 2), which is strongly dependent on the roll
of the ship, which highly depends on sea surface roughness [16] and therefore surface wind speed,
as demonstrated in Figure 2 in [17]. The numbers of matchups after QL classification are shown in
Table 3. As shown in Table 3, after ISAR QL classification, most cruises have very few matchups
with the highest ISAR quality (QL = 5). Cruise IN2016_V05 has the most matchups of higher quality
levels, i.e., QL equal to four and five, namely 1261. Table 4 shows the total statistics for each ISAR
QL classification. As the quality level increases from three to five, the mean and median bias increase
from −0.04 K and −0.02 K to 0.10 K and 0.09 K, respectively. The reason for the increase in warm
bias is that some matchups of the negative discrepancies were removed by using high QL data. The
standard deviation and robust standard deviation decrease from 0.37 K and 0.33 K to 0.27 K and 0.24 K.
P(±0.3K) increases from 64% to 72% and P(±0.5K) increases from 85% to 91%. Some of the extremely
high and low values were eliminated. The number of matchups with ISAR QL equal to four and five
is 2701 (about 80% of total matchups), which has a mean and median bias of 0.09 K and 0.10 K, a
standard deviation and robust standard deviation of 0.30 K and 0.27 K. The results were classified
using quality levels in Tables 3 and 4, indicating that the quality of shipboard ISAR SST measurements
varies widely for different cruises and it is important to conduct quality control of data for validation.
Since the requirement is for 0.1 K RMSE accuracy for ISAR SST measurements [12] and from the results
shown above, we suggest using ISAR QL ≥ 4 when applying satellite SST validation. Zhang et al.
(2020) showed the effect of wind speed on ISAR total uncertainty and also demonstrated that 0.2 K is a
reasonable threshold, which refers to QL ≥ 4 [17]. Scatterplots of the matchups with ISAR QL ≤ 3 and
QL ≥ 4 are shown in Figure 2a,b. The histogram for the SST differences with ISAR QL ≥ 4 is shown
in Figure 2c. The skin temperature values range from around 277 K to 302 K. The temperatures of
matchups with ISAR QL ≤ 3 are relatively low due to the data measured near the Antarctic. Results
show good agreement between JAXA Himawari-8 AHI skin SST and ISAR skin SST, with a positive
mean and median bias in Himawari-8 compared to ISAR temperatures below 0.1 K.

Table 3. Number of matchups for different ISAR quality levels (QLs).

Voyage No. All QL ≤ 3 QL = 4 QL = 5

IN2016_V01 46 43 3 0
IN2016_V02 181 124 57 0
IN2016_T02 155 15 138 2
IN2016_V04 977 420 550 7
IN2016_V05 1263 2 469 792
IN2016_V06 718 35 612 71
IN2017_V01 34 34 0 0

Table 4. Statistics of SST difference of the matchups for different ISAR QLs.

QL N Mean
(K)

Median
(K)

SD
(K)

RSD
(K)

Max
(K)

Min
(K)

P
(±0.3K)

P
(±0.5K)

QL ≤ 3 673 −0.04 −0.02 0.37 0.33 1.45 −1.74 64% 85%
QL = 4 1829 0.09 0.10 0.31 0.28 1.63 −1.52 66% 90%
QL = 5 872 0.10 0.09 0.27 0.24 1.13 −1.32 72% 91%
QL ≥ 4 2701 0.09 0.10 0.30 0.27 1.63 −1.52 68% 90%
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Figure 2. (a) ISAR QL ≤ 3 matchups with both Himawari-8 AHI skin SST and ISAR skin SST
measurements; (b) ISAR QL ≥ 4 matchups with both Himawari-8 AHI skin SST and ISAR skin SST
measurements; (c) histogram of the differences between Himawari-8 AHI skin SST and ISAR skin SST
measurements with ISAR QL ≥ 4.

4. Discussion

We used results from cruise IN2016_V05, which has the greatest number of ISAR QL ≥ 4 matchups,
for further analysis. In order to compare both in situ skin and bulk SST together with Himawari-8
AHI skin SST, SBE 38 bulk SST measurements were collocated with the same matching procedure,
which resulted in 1220 matchups of the three kinds of data. Here, we used QC flag “Z” of the SBE 38
bulk SST measurements in the matchup, which means SST data passed all QC tests. The locations of
matchups with SST differences between Himawari-8 AHI skin SST and ISAR skin SST measurements,
SST differences between Himawari-8 AHI skin SST and SBE 38 bulk SST measurements are shown in
Figure 3a,b, respectively. The matchups are located near the GBR in the eastern coastal ocean area of
Australia, and the measurements were made in Austral spring.
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Figure 3. (a) Locations of matchups with the SST differences between Himawari-8 AHI skin SST
and ISAR skin SST measurements (K); (b) Locations of matchups with the SST differences between
Himawari-8 AHI skin SST and SBE 38 bulk SST measurements (K).

The SST differences between the 1220 matchups against local time are shown in Figure 4a,b. There
is no significant local time dependence for Himawari-8 AHI and ISAR skin SST differences. However,
large Himawari-8 AHI skin SST and SBE 38 bulk SST differences appear during 11 a.m. to 5 p.m. local
time. The peak value reaches 2.23 K.

Table 5 shows the statistics of the 1220 matchups both at daytime and nighttime. The mean and
median biases are 0.13 K and 0.13 K in daytime and 0.00 K and 0.02 K in nighttime for Himawari-8
AHI and ISAR skin SST matchups. Daytime Himawari-8 skin SST are biased and are 0.13 K warmer
than ISAR skin SST. The standard deviation and robust standard deviation are relatively close at 0.27 K
and 0.26 K in daytime, and 0.25 K and 0.21 K during nighttime. As for Himawari-8 AHI skin SST and
SBE 38 bulk SST matchups, the mean and median biases show large differences between day and night.
The absorption of solar radiation heats the sea surface skin layer and causes skin SST to be higher than
the bulk SST under high solar insolation and low surface wind speeds during daytime, a phenomenon
known as diurnal warming [21]. Temperatures in the ocean thermal skin layer, extending to depths
of around a tenth of a millimeter, are generally cooler than the underlying water because of both the
radiant heat loss and the sensible and latent heat losses, referred to as the cool skin effect [10]. The
depth of SBE 38-measured bulk SST in IN2016_V05 is approximately 7.9 meters. Both short-wave



Remote Sens. 2020, 12, 1237 10 of 16

radiation and wind speed data [14] in the IMOS meteorological files show clear sky and low wind
speeds during some days of IN2016_V05. In daytime, some of the SBE 38 bulk SST are much cooler
than the Himawari-8 AHI skin SST, likely due to diurnal warming, with the maximum value of 2.23 K.
The mean and median biases during daytime are 0.18 K and 0.13 K. On the contrary, the cool skin effect
during nighttime contributes to the negative mean and median biases of −0.23 K and −0.22 K. The
standard deviation and robust standard deviation are 0.43 K and 0.28 K in daytime, much higher than
the 0.25 K and 0.25 K in nighttime.
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Figure 4. (a) Himawari-8 AHI and ISAR skin SST matchups against local time; (b) Himawari-8 AHI
skin SST and SBE 38 bulk SST matchups against local time.

Table 5. Statistics of SST difference of the matchups for cruise IN2016_V05.

N Mean
(K)

Median
(K)

SD
(K)

RSD
(K)

Max
(K)

Min
(K)

P
(±0.3K)

P
(±0.5K)

AHI-ISAR
Day 685 0.13 0.13 0.27 0.26 1.13 −1.05 68% 91%

Night 535 0.00 0.02 0.25 0.21 0.68 −1.32 83% 95%

AHI-SBE 38
Day 685 0.18 0.13 0.43 0.28 2.23 −1.04 65% 85%

Night 535 −0.23 −0.22 0.25 0.25 0.56 −1.18 60% 86%

Figure 5a,b show the wind speed dependence of Himawari-8 AHI skin SST matchups with both
ISAR skin SST and SBE 38 bulk SST. The red triangles represent matchups in daytime and blue squares
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represent matchups in nighttime. Because both are skin SST measurements, Himawari-8 AHI skin SST
and ISAR skin SST differences do not show a significant wind speed dependence in either daytime or
nighttime. However, Himawari-8 AHI skin SST and SBE 38 bulk SST differences show some higher
values at low wind speed (approximately less than 5 m/s) during daytime. For increasingly moderate to
high wind speeds (approximately greater than 7 m/s), the differences between day and night matchups
are relatively small. This is likely due to the heat in the skin layer being mixed by wind-generated
turbulence and wave effects under high wind conditions [10,21,22].
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Figure 6 shows, plotted against local time, the values of ISAR skin SST, SBE 38 bulk SST and
Himawari-8 AHI skin SST matchups on 12 October 2016, a day which exhibited significant diurnal
warming. The missing data correspond to no matchups fitting the quality criteria at those times. We
can see there is strong diurnal warming influencing the observations on this date. The skin SST of
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both Himawari-8 AHI and ISAR reaches approximately 301.5 K at local times of 12 p.m. to 1 p.m.,
compared with SST of around 299 K during the preceding pre-dawn period. The close agreement
with in situ skin SST indicates that the JAXA Himawari-8 skin SST has excellent sensitivity to diurnal
warming events in the GBR region. SBE 38 bulk SSTs are lower than the skin SST measurements and
are around 300 K at midday. The cool skin effect during nighttime is also evident in this figure, from
the cool bias between the ISAR skin SST and SBE 38 bulk SST. The highest difference of 2.23 K between
Himawari-8 AHI skin SST and SBE 38 bulk SST in the middle of the day demonstrates that validation
using in situ bulk SST would display errors in such cases, and that skin SST measured by shipboard
infrared radiometers has significant advantages.
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Figure 6. Matchups (red: ISAR skin SST, green: SBE 38 bulk SST, blue: Himawari-8 AHI skin SST) on
12 October 2016 against local time.

The matchup locations for 12 October 2016 local time are shown in Figure 7. RV Investigator
moved from the northwest (146.35◦E, −18.05◦S) of the displayed region to the southeast (147.00◦E,
−18.65◦S) during this period. The Himawari-8 AHI skin SSTs at 6 a.m., 12 p.m. and 6 p.m. local time
in this region are shown in Figure 8a–c. SST differences between 12 p.m. and 6 a.m., and 12 p.m.
and 6 p.m. are shown in Figure 8d,e. We can see that, in the region of the ISAR measurements, SST
differences caused by the geographic location are around 0.5 K and relatively smaller than the SST
differences of about 2.5 K due to the diurnal warming effect on the skin bulk temperature difference.
This indicates that high temporal resolution JAXA Himawari-8 AHI skin SST products show a good
ability to observe diurnal warming events. It also highlights that caution is necessary when using
satellite SST observations depending on the contemplated use. The specific observation time of satellite
SST should be considered by the researchers.
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Remote Sens. 2020, 12, 1237 15 of 16

5. Conclusions

Seven cruises of shipboard infrared radiometer ISAR skin SST data are compared with JAXA
Himawari-8 AHI skin SST products in the Australian region. The results demonstrate that it is necessary
to use quality control of both ISAR skin SST and Himawari-8 AHI skin SST measurements to effectively
validate satellite SST using ISAR data. Using Himawari-8 AHI skin SST (quality level 5) centered in
cloud-free 7 × 7 grid cells and ISAR skin SST with QL ≥ 4, the results show good agreement. The mean
bias and standard deviation are 0.09 K and 0.30 K with a total matchup number of 2701. The case
study on cruise IN2016_V05 shows that the ISAR skin SST measurements are a more accurate way to
validate satellite skin SST products than using SBE 38 SST measurements made by the ship at almost 8
m depth, which is deeper than the depth of typical moored buoys. The analysis of the 12 October 2016
data indicates that, under diurnal warming conditions, temperature differences between skin and bulk
SST measurements reached a maximum value of 2.23 K at midday. A strong diurnal warming event
observed by both Himawari-8 AHI and ISAR skin SST of approximately 2.5 K amplitude is observed
on 12 October 2016 along the RV Investigator cruise track. The results indicate that Himawari-8 AHI
skin SST with high temporal resolution and SST accuracy provides a highly effective means to measure
diurnal warming. The advantage of this validation using shipboard measurements of in situ skin SST
is that the bulk and skin temperature difference was removed from the error budget. However, the
limited study area and temperature range also contribute to the better statistics. Future studies would
increase the spatial coverage of validation with larger temperature ranges and more high-quality
shipboard skin SST measurements.
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