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Abstract: The credible urban heat island (UHI) trend is crucial for assessing the effects of urbanization
on climate. Land surface temperature (LST) and near surface air temperature (SAT) have been
extensively used to obtain UHI intensities. However, the consistency of UHI trend between LST and
SAT has rarely been discussed. This paper quantified the temporal stability and trend consistency
between Moderate Resolution Imaging Spectroradiometer (MODIS) LST and in situ SAT. Linear
regressions, temporal trends and coefficients of variations (CV) were analyzed based on the yearly
mean, maximum and minimum temperatures. The findings in this study were: (1) Good statistical
consistency (R2 = 0.794) and the same trends were found only in mean temperature between LST-UHI
and SAT-UHI. There are 54% of cities that showed opposite temporal trends between LST-UHI and
SAT-UHI for minimum temperature while the percentage was 38% for maximum temperature. (2) The
high discrepancies in temporal trends were observed for all cities, which indicated the inadequacy of
LST for obtaining reliable UHI trends especially when using the maximum and minimum temperatures.
(3) The larger uncertainties of LST-UHI were probably due to high inter-annual fluctuations of LST.
The topography was the predominant factor that affected the UHI variations for both LST and SAT.
Therefore, we suggested that SAT should be combined with LST to ensure the dependable temporal
series of UHI. This paper provided references for understanding the UHI effects on various surfaces.
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1. Introduction

The objective temporal characteristic of temperature is the key indicator for identifying the
interactions between urbanization and the climate. The urban heat island (UHI) derived from land
surface temperature (LST) and near surface air temperature (SAT) have been used extensively to assess
regional and global variations of terrestrial heat flux [1–3]. However, the physical differences and
natural environments create complex interactions between terrestrial surface and its upper air [4],
which may lead to disparities for LST and SAT when describing the urban thermal effects, and may
cause uncertainties for evaluating the impact of urbanization on environment.

Currently, many studies focused on the spatial distinctions between LST and SAT. Land cover
was thought to be the dominant factor to determine the relationships between LST and SAT [5,6].
Generally, it was thought that LST and SAT fitted better over agricultural and forest lands than barren
and impervious surfaces [7,8]. Conditions were complicated in urban areas. On the one hand, the study
in Bucharest city in Romania presented high correlations between LST and SAT [9]. Good consistency
between daytime SAT and LST was also observed in Los Angeles [10]. Similarly, good fittings between
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LST and SAT were reported at the neighborhood scale within the city, but the lower fitting coefficients
were concluded at the city scale [11]. At the global scale, it was concluded that LST could be used
to represent SAT at various land types [12]. On the other hand, several researchers also pointed out
that the discrepancies of UHI values derived from LST and SAT were not comparable because of
the significant distinctions of spatial structure and warming patterns [13]. Extremely weak LST-SAT
relationships were reported in both vegetated and barren lands in a developed Shenzhen megacity of
China [14]. The disagreements of absolute UHI values derived from LST and SAT have been reported in
Germany, and using multiple UHI indicators to obtain the reliable UHI effects has been suggested [15].
Mountainous terrains make the relationships more complex. LST has substantial distinctions with SAT
in high elevations [16–18], but the terrain effects have been denied within the city [14].

However, the consistency of inter-annual characteristics of UHI, which is crucial for evaluating
the depth of interactions between urbanization and climate, has been rarely discussed yet. The low
temporal stability of UHI derived from LST and SAT has been reported in biweekly data [19]. Then
another trend analysis work was conducted by using the two years’ surface temperature data [20].
The rather low temporal stability of the surface UHI was found between night and day and between
seasons, which was attributed to the land-use diversity of cities [21]. The inter-annual stability between
LST and SAT needs more investigation.

Hence, this paper focuses on the temporal stability and consistency between LST and SAT, and has
the following objectives: (1) to explore the relationships between LST and SAT in different temperature
variables of urban and rural areas; (2) to identify the differences of absolute values and temporal trends
of UHI intensities from LST and SAT; (3) to analyze the reasons that result in the UHI discrepancies.
The Beijing–Tianjin–Hebei (BTH) urban agglomeration in northern China has been used as the study
area because of the significant UHI effects [22] and various terrains. Regional, city and site scales were
calculated and analyzed. First, the regression analysis between LST and SAT was conducted separately
at the urban and rural sites. Second, the UHI intensities were compared between LST and SAT. Third,
the reasons that result in the discrepancies were discussed.

2. Materials and Methods

The Beijing–Tianjing–Hebei urban agglomeration region, located in the Huabei plain of northern
China, is one of the most important economic zones in China. This region has undergone rapid
urbanization since the 1990s. There are 13 cities in the BTH region with the urbanization rates varying
from 47% to 87% in 2015. As Table 1 shows, the varied population density from 89.3 to 1313 and the
different economic condition indicate the unbalanced developments among the 13 cities. As the first
two developed cities, Beijing and Tianjin had the first two population density and gross domestic
product (GDP) and accordingly presented the most significant UHI effects in BTH region [23].

As per the up to date Köppen–Geiger climate classification [24], the BTH region belongs to
monsoon-influenced hot-summer humid continental climate. According to statistical yearbook, from
1986–2015, the annual average precipitation of BTH region is 540 mm, the average summer maximum
temperature is 31.5 ◦C, and the average winter minimum temperature is –7.1 ◦C

Mountains and hills are distributed in the north and part of the west, the basins next to the
northeast highland and plains are extensively distributed across the central and southeastern areas
(Figure 1). Zhangjiakou and Chengde were considered mountainous cities in this study because 17 of
23 (74%) sites’ altitudes are greater than 700 m with rugged terrains. The maximum altitude in BTH is
2882 m, the plain counts 45% of total area in BTH region and the mean altitude of plain is <100 m.
Tianjin, Tangshan and Qinhuangdao are adjacent to the Bohai sea while other cities are inland cities.
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Table 1. Population density and gross domestic product (GDP) information for Beijing–Tianjing–Hebei
(BTH) cities in 2015 (Data came from the statistical yearbook of Hebei province, Beijing city and Tianjin
city, for example: http://tjj.beijing.gov.cn/English).

City Name Population Density
(Person/km2)

GDP
(Billion RMB Yuan)

Baoding 520.7 344.9
Beijing 1313 2800

Cangzhou 519.2 364.3
Chengde 89.3 146.5
Handan 781.5 337.9

Hengshui 501.9 152.3
Langfang 711.1 288.1

Qinhuangdao 394.4 150.1
Shijiazhuang 761.5 617.7

Tangshan 557.8 653
Tianjin 861 1859.5
Xingtai 586.7 209.1

Zhangjiakou 120.1 142.7
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Data and Methods

The field data of 174 sites were provided by the National Meteorological Information Center
(NMIC, https://data.cma.cn/). The air temperature was recorded at the height of 2 m above the ground.
The abnormal values (assigned 9999) in the field dataset have been excluded. The yearly mean air
temperature was averaged based on the daily mean temperature, and the maximum and minimum
air temperatures were extracted through daily maximum and minimum temperatures throughout a
year. Sites located in the urban areas were identified as the urban sites while the others located outside
the urban areas were grouped as rural sites. Except Beijing (3 urban sites) and Tianjin (2 urban sites),
there was only 1 urban site in other cities. The observations of urban sites in Beijing and Tianjin were
averaged, respectively. A total of 16 urban sites were chosen, and 158 rural sites were identified.

According to the site locations, maximum, minimum and mean temperatures were extracted
based on latitude/longitude (lat/lon) points. To match with the remote sensing data, the time scope of
this study was from 2001 to 2015. The five-year moving average method was employed to smooth the
variant field temperatures (Equation (1)):

TMA =
Tk−2 + Tk−1 + Tk + Tk+1 + Tk+2

5
(1)

TMA is the averaged value, Tk−2 . . .Tk . . .Tk+2 indicates the time series of 5-year temperatures.
The Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A2 from the Terra
satellite) was utilized to extract the surface UHI values and to compare with the SAT. The up-to-date
(version 6) 8-day composite 1 km data were downloaded from https://earthdata.nasa.gov/. The Terra
MODIS transits at local time of 10:30 AM and 10:30 PM, which produced the daytime and nighttime
LST, respectively. Mean LST was averaged between daytime and nighttime LST retrievals, maximum
and minimum LST values were extracted from daytime and nighttime layers of the LST product,
respectively. The images were averaged from 8-day to yearly with arithmetic mean method. The failed
retrieval pixels (Fill value) were assigned as ‘NoData’ by python and were excluded.

To match with the locations of field observations, the LST values in urban and rural areas were
extracted according to the field site locations. In particular, to avoid the potential erratic maximum LST
values, we sorted the extracted pixels within each year (there were 44 images per year) and averaged
the first 5 maximum values as the maximum temperature in the current year, which produced the
average max temperature for 40 days (8 day × 5).

Linear fitting, histogram statistics and trend analysis were combined to evaluate the temporal
tendencies of LST and SAT. The fitting slope (◦C/year) was used as the main indicator to compare
the temporal trends. The linear fitting model was utilized and analysis of variance (ANOVA) was
conducted in Originpro software. The coefficient of determination (R2) and root-mean-square errors
(RMSE) were used to evaluate the correlations and the discreteness of regression, respectively. The
UHI effects were calculated by absolute differences of urban and rural site temperatures. The nighttime
UHI was calculated from the minimum temperature values, the daytime mean and maximum UHI
intensities can be characterized by mean and maximum temperatures, respectively. The coefficient
of variation (CV) measured the dispersion of time series data, and was calculated to distinguish the
potential impact factors. The effects of topography and parameter stability were evaluated by CV
values between LST and SAT for all the cities.

3. Results

3.1. Regression Characteristics between Land Surface Temperature (LST) and Surface Air Temperature (SAT)

The regression fittings of minimum, mean and maximum temperatures were compared between
SAT and LST (Figure 2). The columns in the figure indicate mean, minimum and maximum temperatures,
and the rows indicate the regional, city and site scales. The best agreements were observed for yearly
mean temperature, with the highest determination coefficients (R2 = 0.613, 0.931 and 0.835) and the

https://data.cma.cn/
https://earthdata.nasa.gov/
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lowest fitting discreteness (RMSE = 0.347, 0.577 and 0.883) at region, city and site scales (Figure 2a,d,g),
followed by the yearly minimum temperatures (Figure 2b,e,h). Yearly maximum temperatures show
the lowest determination coefficients (R2 = 0.198, 0.199 and 0.099) and high discreteness (RMSE =

1.26, 2.042 and 2.536) (Figure 2c,f,i). The highly variations of maximum LST values and relatively
concentrated field maximum air temperatures combined to produce the poor fittings. Although the
thermal environment may contribute to the maximum temperature, the climatic impacts were thought
as the main reason that produced the highly variations of the maximum temperatures for both LST
and SAT [25].

Among the three scales, LST and SAT show the best consistency at the city scale, with determination
coefficients R2 of 0.93 and 0.81 for the mean and minimum temperatures, respectively (Figure 2d,e);
Moderate results were observed at the site scale, with R2 of 0.84 and 0.66 for the mean and minimum
temperatures (Figure 2g,h). It was the lowest at the regional scale, with R2 below 0.65 for all
three temperatures.

The absolute values between SAT and LST were compared via 1:1 lines in Figure 2. At the regional
scale, SAT was higher than LST with more scatter points at the side of SAT for yearly mean and
maximum temperatures (Figure 2a,c). At the city scale, more fitting points showed higher values in LST
than those in SAT for yearly mean and minimum temperatures, and more points in SAT were higher
than LST for yearly maximum temperature. At the site scale, most LST values were higher than SAT in
yearly mean and minimum temperatures, and SAT was higher than LST in maximum temperatures.
Some poorly fitted points, which belong to the mountainous Zhangjiakou city (Figure 2g,i), caused low
coefficients and high discreteness of fittings, which hints at the large discrepancies between LST and
SAT over the rugged terrains.
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The urban and rural sites were separated and the relations of LST and SAT were regressed
in Figure 3. Similar fitting patterns were observed between urban and rural sites for maximum
(Figure 3a,d) and minimum temperatures (Figure 3c,f). The minimum temperature performed better
fittings than the maximum temperature in both urban and rural sites. The mean temperature in
urban sites presented the exponential pattern between LST and SAT with the higher fitting coefficient
(Figure 3b, R2 = 0.88) and lower discreteness (RMSE = 0.649) than rural mean temperature (Figure 3e).
LST increased faster than SAT when the mean air temperature exceeds 11 ◦C in urban sites, which
indicates the higher surface temperature than the air temperature in warmer urban environments.
In Figure 3b, mean LST kept around 11 ◦C when SAT increased from 8 ◦C to 10 ◦C. These scattered
points belong to mountainous Zhangjiakou city and part of Chengde city. This insensitive performance
indicated the uncertainties of mean LST in mountainous areas.
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3.2. Urban Heat Island (UHI) Consistencies between LST and SAT

Statistical Distributions of UHI Values

The UHI intensities of LST and SAT were calculated and are illustrated as the density histograms
in Figure 4 as well as the differences between SAT-UHI and LST-UHI. The linear fittings between
LST-UHI and SAT-UHI of each temperature type are shown as the subplots.

For mean temperature (Figure 4a), the general statistical consistency between LST-UHI and
SAT-UHI was observed (R2 = 0.794, RMSE = 1.072). SAT presented broader UHI ranges than LST. SAT
showed that 45% of urban sites are 1 to 2 ◦C higher than rural sites while the proportion was 30% for
LST. Both the Gaussian-like distribution and the scatter plot indicated the large discrepancies between
LST and SAT when UHI > 4 ◦C. In terms of the UHI histogram, many UHI values fell between –2 ◦C to
2 ◦C, which accounted for 84.1 % of the total UHI values. SAT got larger UHI range with more values
aggregated to 0 to 2 ◦C. SAT presented higher UHI values than LST over some sites, which belong to
the mountainous cities Zhangjiakou and Chengde.

For minimum temperature (Figure 4b), more obvious discreteness and lower fitting accuracy were
observed (R2 = 0.405, RMSE = 2.444). The peaks of histograms were also different between LST-UHI
and SAT-UHI. The peak of SAT-UHI was 3 ◦C with 18% UHI values while the peak of LST-UHI was
2 ◦C with 16% UHI values. A broader range [–6, 6] of differences between SAT and LST for minimum
temperature was presented, which implies the significant disparities between SAT and LST in denoting
the UHI. Only 55.3% of minimum UHI values fell in the range of [–2, 2 ◦C].
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The maximum temperature (Figure 4c) performed the lowest consistency between LST-UHI and
SAT-UHI with the lowest fitting results (R2 = 0.164, RMSE = 2.762). Nearly 28% of SAT-UHI values
and 13% of LST-UHI values were close to 0 ◦C, respectively. Moreover, there were 56.9 ◦C % LST-UHI
values greater than 0 ◦C and the percentage was 77.4% for SAT-UHI. The differences between SAT and
LST of maximum temperature also presented the broad range [–5, 5 ◦C] and only 58.4% of differences
UHI values fell in the [–2, 2◦C]. From the subplot of Figure 4c, the overestimations were obvious for
LST-UHI when SAT-UHI was nearby 0 ◦C.Remote Sens. 2020, 12, x 7 of 13 
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Dotted lines are references of 0.0 for X axis and 1:1 line for subplots. The vertical dotted line indicated
the zero reference.

To further compare the trends of LST-UHI and SAT-UHI, the slopes of temporal UHI were
calculated in Figure 5. The trend consistency was observed in mean temperature between LST-UHI and
SAT-UHI. For mean temperature (Figure 5a), both LST and SAT show increasing UHI tendencies for
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most of the cities, suggesting both of them could capture the accelerated urbanization effects. However,
discrepancies of slopes were found in most of the cities. LST-UHI shows higher increasing slopes than
SAT-UHI in 6 cities, which were Beijing, Baoding, Shijiazhuang, Handan, Qinhuangdao and Tangshan.
Baoding recorded the largest discrepancy of trend slopes between LST-UHI (0.09) and SAT-UHI (0.01).
Another 6 cities, Tianjin, Chengde, Cangzhou, Langfang, Xingtai and Zhangjiakou showed higher
SAT-UHI trends. Hengshui city presents the same slopes between LST-UHI and SAT-UHI (0.02).

In addition to the slope values, the disparities of trend direction were observed in maximum and
minimum temperatures (Figure 5b,c). The opposite UHI trends were observed in 7 of 13 cities for
minimum temperature and in 5 of 13 cities for maximum temperature. Therefore, the inconsistencies
of temporal trends between LST-UHI and SAT-UHI hinted that more considerations are needed to
conduct further applications by using minimum and maximum temperatures directly.
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Figure 6 illustrates the temperature slopes of LST and SAT in city and rural sites, which is used
to explain the variations of UHI tendencies in Figure 5. For mean temperature in most of the cities,
both urban and rural temperatures showed increasing tendencies and most of urban sites have higher
increasing trends than rural sites. For maximum temperature, the increasing UHI slopes in Figure 5
resulted from the decreased rural maximum temperatures for both LST and SAT, and which also
presents the decreasing maximum temperature over the entire BTH region. In addition, the minimum
temperature slopes in urban and rural areas have increased significantly, which indicates regional
climate warming.
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3.3. Effects of Parameter Stability and Topography

LST stability and the topography combined impact the relationships between LST and SAT.
Hence, we further conducted examinations of CV for temperatures and UHI values to distinguish
the roles of these two factors (Figure 7). Both urban and rural LST values presented higher temporal
variabilities than SAT values in Figure 7a, which caused the higher variabilities of derived LST-UHI
than SAT-UHI values. Therefore, the temporal instability of LST was the main reason that caused the
larger uncertainties of LST-UHI than SAT among most of cities (Figure 7b). This result implies that it is
better to use SAT as the reference to ensure the reliability of the LST-derived UHI in indicating the
urbanization thermal effects.

Both SAT and LST in mountainous areas were affected significantly by the topography (Figure 7a).
Much higher variabilities (CV) in mountainous rural sites of Chengde and Zhangjiakou cities were
observed. Even for the urban sites, the CV values of SAT in mountainous cities were higher than cities
located in plain areas. Beijing also presented the topography effects because several rural sites were
located on the northern mountain, which also showed higher variabilities than urban site in both LST
and SAT. Given the much higher CV values, we concluded that topography is an important factor that
influences the relationships between LST and SAT. Cloud and direct solar insolation may contribute to
the variability in rugged terrains [12].

The temporal UHI values were illustrated to further explain the high CV of LST and SAT in
mountainous areas (Figure 8). The lower variations of UHI in Chengde and Zhangjiakou were observed
in Figure 7b. The temporal changes of UHI derived from LST and SAT were presented in Figure 8 to
explain the fluctuations in Figure 7b. The smooth trends of SAT-UHI and the significant variability
of LST-UHI were observed in both cities. The higher CV value for SAT in Chengde came from the
obvious increasing SAT-UHI values, which was due to the decreased rural temperatures in Chengde
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(not presented in the paper). For the other Zhangjiakou city, the lower CV value of SAT came from the
mild decreasing of SAT-UHI, which was mainly due to the slowly increased rural temperatures (not
presented in this paper). Hence, how the rugged terrains affect LST and SAT still need more research.
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4. Discussion

It was thought that the ‘LST-SAT’ relationship can be affected by urban environment via the
extensive impervious surface in [26]. However, we found the fittings between LST and SAT in urban
sites also had high determination coefficients (R2 = 0.794) through the exponential model, which
indicated that the urban environment may modify the LST-SAT relationship, but not to depreciate
the close connections between LST and SAT. As to the UHI, the faster increasing urban mean LST in
Figure 3 will not definitely cause the higher UHI intensities than SAT due to the higher LST values in
rural areas.
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In addition to the CV variations of topography effects, the weaker temporal trends for LST-UHI
than SAT-UHI in mountainous Chengde and Zhangjiakou also provided evidence for the complex
terrain effects on the LST-UHI (Figures 5 and 6). Weaker effects caused by the complex terrain on
the relationships between LST and SAT have been reported [16,17] and confirmed in this study.
Furthermore, we found that the rugged terrains impacted the temporal UHI effects through the large
uncertainties of LST. The poor fitting results for the maximum temperature were different from some
previous studies [5,7]. In this paper, although we used the time series average method to smooth
the maximum LST, strong temporal variations were still observed. The various types of underlying
surfaces and the fluctuations of maximum temperature are the potential reasons for the poor fitting
coefficients. Therefore, we argue that the LST values need more examination especially for minimum
and maximum values.

Several studies believed that LST can represent the characteristics of air temperature through
diurnal [27] and monthly [12] direct comparisons, but the temporal representativeness of LST to the
distribution of terrestrial heat flux was doubted in [28], which produced the SAT by hierarchical
Bayesian method from MODIS LST. According to our evaluations, high connections and the same
trends for UHI effects of mean temperature have been found between LST and SAT, but the large
discrepancies of UHI magnitudes have been observed temporally, which were caused by the temporal
instability of LST values and the complex terrains. Hence, the intrinsic differences between LST
and SAT told that the LST results should be carefully extended as the attributes of SAT in urban
thermodynamic research.

In addition, climate zones, cloud, solar irradiance, vegetation cover and seasonality variations of
urban and rural environments are potential factors that may affect the UHI trends between LST and
SAT. The daily and seasonal UHI characteristics between LST and SAT may have different performance
because the yearly results will smooth the daily and seasonality attributes. This study hinted at further
research directions to explore the mechanism of variations of urban heat island.

5. Conclusions

For evaluating the UHI effects credibly, the temporal characteristics between LST and SAT need
more examination. In this paper, yearly mean, maximum and minimum temperatures were extracted
to assess the consistencies between LST and SAT. The paper found: (1) LST and SAT obtained the best
regression fittings (R2 = 0.931) from mean temperature at the city scale. LST and SAT had similar fitting
results in urban sites and rural sites. LST increase faster than SAT in warmer urban environments
making it less useful for UHI calculation and prediction. (2) As for the UHI effects, good statistical
consistency between LST-UHI and SAT-UHI was observed only in mean temperature (R2 = 0.794).
Lower and discrete fitting results were shown in minimum (R2 = 0.405) and maximum (R2 = 0.164)
temperatures. There are 84.1% of different values between SAT-UHI and LST-UHI in the range of
[–2, 2◦C] while the proportions were only 55.3% and 58.4% for minimum and maximum, respectively.
(3) Same UHI temporal trends were found in mean temperatures between LST and SAT, but highly
different trend slopes hinted the inadequacy to reveal the UHI variations only from LST, especially for
nighttime (minimum) and daytime (maximum) UHI intensities. The opposite trends between LST-UHI
and SAT-UHI showed the limited reliability of LST in indicating the long term variations of urban
thermal effects. (4) The temporal fluctuations of LST caused the higher uncertainties of LST-UHI than
SAT-UHI. The rugged terrain was an important factor to affect the UHI intensities for both LST and
SAT. In this paper, we suggest that the SAT should be combined with LST to present more credible
UHI characteristics. This paper can be a reference for understanding the UHI effects at different scales
and will help in understanding of the connections between surface and near-surface temperatures in
various natural conditions.
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