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Abstract: Lack of accurate and up-to-date data associated with irrigated areas and related irrigation
amounts is hampering the full implementation and compliance of the Water Framework Directive
(WFD). In this paper, we describe the framework that we developed and implemented within the
DIANA project to map the actual extent of irrigated areas in the Campania region (Southern Italy)
during the 2018 irrigation season. For this purpose, we considered 202 images from the Harmonized
Landsat Sentinel-2 (HLS) products (57 images from Landsat 8 and 145 images from Sentinel-2).
Such data were preprocessed in order to extract a multitemporal Normalized Difference Vegetation
Index (NDVI) map, which was then smoothed through a gap-filling algorithm. We further integrated
data coming from high-resolution (4 km) global satellite precipitation Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks (PERSIANN)-Cloud Classification
System (CCS) products. We collected an extensive ground truth in the field represented by 2992 data
points coming from three main thematic classes: bare soil and rainfed (class 0), herbaceous (class 1),
and tree crop (class 2). This information was exploited to generate irrigated area maps by adopting
a machine learning classification approach. We compared six different types of classifiers through
a cross-validation approach and found that, in general, random forests, support vector machines,
and boosted decision trees exhibited the best performances in terms of classification accuracy and
robustness to different tested scenarios. We found an overall accuracy close to 90% in discriminating
among the three thematic classes, which highlighted promising capabilities in the detection of irrigated
areas from HLS products.
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1. Introduction

Availability of data about irrigated areas is of extreme importance in many different applications
including management of water resources [1], modeling of water exchange between atmosphere and
land surface [2], and impact of climate change on irrigation water supplies [3]. Despite the great effort
conducted in the literature in this direction, there is a general lack of accurate and up-to-date maps
about irrigated areas and related irrigation amounts, which is hampering the full implementation and
compliance of the Water Framework Directive (WFD). Current monitoring practices rely on acquiring
periodical surveys meant to give pictures at national scales. However, they are rather imprecise when
regional or local scale resolutions need to be achieved, as the case of management of water resources in
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hydrographic basins. At this regard, different actions have been conducted at both local and national
levels. An example is represented by the specific actions adopted by the Italian Ministry of Agriculture
(Decree 31/07/2015) aimed at monitoring irrigation areas and volumes on a regular basis in order to
improve the compliance to the WFD.

Multiple studies have been conducted in the literature to map irrigated areas using different
types of sensors, a task that has been frequently obtained through the development and application of
machine learning classification approaches. As example, random forests (RFs) were applied to Landsat
Thematic Mapped (TM)/Landsat Enhanced Thematic Mapper (ETM+) in conjunction with Moderate
Resolution Imaging Spectroradiometer (MODIS) monthly acquisitions to map irrigated areas and
summer crops in the Murray–Darling basin [4]. A threshold-dependent decision tree algorithm was
used to map irrigated areas in Afghanistan from 2000 to 2013 with 16-day composites of the Normalized
Difference Vegetation Index (NDVI) derived from MODIS [5]. A vegetation phenological-based method
was developed to differentiate soil water irrigated areas from surface water irrigated areas using
8-day time series from 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) data in the
Krishna River basin (India) during the 2000–2001 time span [6]. Combining geospatial irrigation
statistics with remotely sensed parameters describing vegetation growth conditions was adopted to
identify irrigated areas in agricultural regions with a 250-m spatial resolution in the United States in
2002 [7]. Landsat ETM+ images and MODIS time series data were used to map multiple land use/land
cover (LULC) classes including irrigated agricultural areas in Ghana [8]. Discrimination between
irrigated and not irrigated crops was done by extracting two metrics from evapotranspiration fluxes
and vegetation indices using empirical distribution functions [9].

In the very few last years, growing attention has been given to the Harmonized Landsat 8 OLI
and Sentinel-2 MSI (HLS) project, which has been launched with the aim at harmonizing data coming
from these two popular satellites [10,11]. Recent methodological advancements have allowed scientists
to use this type of product in a growing number of research areas. As example, an HLS dataset was
used to remotely control landscape dynamics in Central US grasslands, which improved the ability to
track grassland dynamics in season including areas vulnerable to cloud contamination [12]. HLS data
was also used to accurately classify land-surface phenology, while excluding imagery from either
sensors dramatically reduced the ability to monitor dryland environments [13]. Assessment of the
winter wheat yield at regional scale was done using HLS data in [14]. Field level phenologies were
captured through a new method optimized for HLS data and able to extract time series of consistent
reflectance compositions [15]. HLS datasets were also used to estimate the number and timing of
mowing events in Central European grasslands [16], detect crop intensities [17], map land surface
phenologies at continental scale with 30-m resolution [18], and compute seasonal vegetation index
dynamics for time series analysis [19]. Despite the growing interest in HLS products, there is the lack
of papers in the literature focused on their use for detection and characterization of irrigated areas.

In this paper, we present the framework that we developed, implemented, and validated to map
the actual extent of irrigated areas in the Campania region (Southern Italy) during the 2018 irrigation
season. This was done by considering a machine learning classification-based approach based on time
series images coming from HLS data. The procedure described in this paper extended a preliminary
analysis that was conducted within the DIANA Project (http://diana-h2020.eu/) [20] aimed at mapping
irrigated areas within the extent of the Land Reclamation Consortium located in Campania region
using Sentinel-2 data, and that therefore was extended here to the mapping of the entire Campania
region through HLS data products.

HLS Project

Multispectral Earth Observation data derived from Landsat 8 NASA’s Satellite and Sentinel-2
ESA’s Satellite represent a precious information source for their large spectral range, from the visible to
the short-wave infrared, and the high revisit time. They are characterized by similar spectral and spatial
characteristics, which can result in a relevant increase in the number of observations when used together.

http://diana-h2020.eu/


Remote Sens. 2020, 12, 1275 3 of 20

The HLS project [10,11] is meant to harmonize data coming from both satellites programs to ease
their combined use. The program aims at removing the biases between the two sensors in terms of
different spectral band ranges and view geometries with the final goal to obtain a global land surface
coverage at 30 m spatial resolution with a time gap of 2–3 days.

The workflow for the HLS data is schematized in [11]. The process that leads to the final HLS
outputs starts by applying the same atmospheric correction algorithm to both Landsat 8 OLI (L1T) and
Sentinel-2 MSI (L1C) products. Then, Landsat 8 data are geographically divided in accordance with
Sentinel-2 data tiling, and both are geometrically resampled using the Automated Registration and
Orthorectification Package (AROP) [21]. This step arises from the fact that the view angles between
sensors can change for a given ground target, and therefore the angle effect (bidirectional reflectance
distribution function, or BRDF) needs to be normalized. The last step consists in applying the band
pass adjustment (based on a linear fit between equivalent spectral bands) to the Sentinel-2 data only
using the OLI spectral band passes as reference. The resulting outputs are the L30 (OLI NBAR 30m),
the S10 (MSI SR 10m), and the S30 (MSI NBAR 30m) data products, but only the first and third types of
products were considered in this work.

2. Materials and Methods

2.1. Dataset

The study area is the Campania region (Southern Italy), monitored through the 2018 irrigation
season (from April to October).

For this purpose, we considered the HLS data (version 1.4) that resulted in four distinct tiles
(T33TVE, T33TVF, T33TWE, and T33TWF) (Figure 1). We collected an initial number of 650 images
that spanned the four tiles in the January–December time span of year 2018. This number was reduced
to 210 images by removing those images that were partially or entirely covered by clouds or that
overlapped only marginally (<20%) with the area of interest. We further removed 12 images in which
both Sentinel-2 and Landsat 8 images were acquired at the same date, and the Sentinel-2 data was
kept in this case. We finally added one more image for each tile from the end of year 2017 in order to
prevent issues in applying the gap-filling algorithm due to cloud-covered data as we will describe later.
This resulted in a final number of 202 images, with 141 of them coming from Sentinel-2 and 57 from
Landsat 8. The inclusion of Landsat 8 data allowed us for more than 40% increase in the number
of images available in our study. Such images were spread across the four tiles as follows: T33TVE
(N = 42), T33TVF (N = 74), T33TWE (N = 45), and T33TWF (N = 41). The whole data selection process
is summarized in Table 1. The mean effective revisit time spanned was 4.9 and 8.9 for T33TVF and
T33TWF, respectively (Table 1), which highlighted a temporal resolution that was appropriate for the
application involved in this study.

Table 1. Summary of the Harmonized Landsat Sentinel-2 (HLS) data selection process. (a) Number
of initial images spanning year 2018. (b) Number of images after removing data covered by clouds
or marginally overlapping (<20%) with the area of interest. (c) Number of final images used in the
analysis in addition with the revisit time (in days) for each tile.

Satellite/Tile T33TVE T33TVF T33TWE T33TWF Total

(a)
L30 49 44 42 44 179
S30 118 117 121 115 471

Total 167 161 163 159 650

(b)
L30 11 16 17 13 57
S30 30 57 27 27 141

Total 41 73 44 40 198

(c)

L30 11 16 17 13 57
S30 31 58 28 28 145

Total 42 74 45 41 202
Revisit time 8.7 4.9 8.1 8.9 –
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Figure 1. The four tiles on Campania region from Harmonized Landsat Sentinel-2 (HLS) products 
that we considered in this work. Colored points represent ground truth samples that will be further 
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2.2. Satellite Data Collection and Preprocessing 

The full set of bands and associated wavelengths acquired by Sentinel-2 and Landsat 8 are listed 
in [11]. We considered here the red (0.64–0.67 µm) and NIR narrow (0.85–0.88 µm) bands, which were 
used to compute the NDVI [22]. The NDVI can be used as a good indicator for irrigated areas since 
it represents the amount of green biomass that varies in response to changes in vegetation conditions 
[23]. 

Figure 1. The four tiles on Campania region from Harmonized Landsat Sentinel-2 (HLS) products
that we considered in this work. Colored points represent ground truth samples that will be further
described in Figures 7 and 8.

2.2. Satellite Data Collection and Preprocessing

The full set of bands and associated wavelengths acquired by Sentinel-2 and Landsat 8 are listed
in [11]. We considered here the red (0.64–0.67 µm) and NIR narrow (0.85–0.88 µm) bands, which were
used to compute the NDVI [22]. The NDVI can be used as a good indicator for irrigated areas since it
represents the amount of green biomass that varies in response to changes in vegetation conditions [23].

The raw NDVI values were processed through a gap-filling algorithm in order to overcome the
presence of missing data generated from cloud covers. For this purpose, we first considered the Quality
Assessment (QA) layer derived from the cloud masks [11] (Table 2). From this, we extracted integer
values (Table 3), and derived the Binary Mask to discriminate between Land (1) and no-Land (0) classes,
with the latter one dominated by the information on the cloud cover.

Table 2. Description of the bits in the one-byte Quality Assessment layer for the three products.

Bit Number QA Description Bit Combination (Description)

7–6 Aerosol quality 00 (Climatology), 01 (Low), 10 (Average), 11 (High)
5 Water 0 (No), 1 (Yes)
4 Snow/ice 0 (No), 1 (Yes)
3 Cloud shadow 0 (No), 1 (Yes)
2 Adjacent cloud 0 (No), 1 (Yes)
1 Cloud 0 (No), 1 (Yes)
0 Cirrus 0 (No), 1 (Yes)
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Table 3. Integer values selected from the Quality Assessment (QA) layer in order to derive the no-Land
class associated with the binary mask.

Integer Value Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0

64 0 1 0 0 0 0 0 0
68 0 1 0 0 0 1 0 0
128 1 0 0 0 0 0 0 0
132 1 0 0 0 0 1 0 0
192 1 1 0 0 0 0 0 0
196 1 1 0 0 0 1 0 0

At this point, the NDVI value of pixels belonging to the no-Land class was estimated through
the smoothing and gap-filling process based on the Whittaker smoother (WS) [24] function available
in the MODIS package [25] into the R environment [26]. In the WS filtering process, we set the main
parameters empirically as follows: (i) the number of iteration = 1, which implied to perform two
running cycles; (ii) the lambda value (i.e., the smoothing factor) = 10, which guaranteed to preserve
the temporal variability of specific phenological patterns; and (iii) the number of days = 5. Finally, in
order to avoid artifacts in the NDVI values resulting from undetected cloud and poor atmospheric
conditions, we forced their values to be constrained in a range defined on the cloud-free multitemporal
NDVI series. An example of the derived product is shown in Figure 2.
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Figure 2. Example of derived product referred to the area of interest (tile T33TVF) from Landsat 8 
acquired on the day-of-the-year 48 of year 2018: (a) raw Normalized Difference Vegetation Index 
(NDVI) data, (b) Cloud Mask, and c) filtered NDVI. 

Figure 2. Example of derived product referred to the area of interest (tile T33TVF) from Landsat 8
acquired on the day-of-the-year 48 of year 2018: (a) raw Normalized Difference Vegetation Index
(NDVI) data, (b) Cloud Mask, and (c) filtered NDVI.

At this stage, we obtained a multitemporal, filtered, and cloud-free NDVI series data with a 5-day
time step. This resulted in a total of 75 observations (features) per pixel spanning the entire year 2018,
which were able to preserve crop phenologies and limit differences in terms of revisit time existing
across the four tiles covering the Campania region. An example of the NDVI time series product is
shown in Figure 3 for different crop types. In such an example, we can observe the distinctive NDVI
patterns that distinguish the herbaceous (two cases in panels a and b) from the tree class (one case in
panel c). Of relevance is also the importance of the WS algorithm. The raw NDVI decreases when
clouds are present with an intensity proportional to the density of the cloudy body. On the other hand,
it increases in shadowed areas created by clouds as the values in the red band have larger decreases
than in the NIR band. Therefore, the application of the WS algorithm is relevant to smooth such
inconsistencies that may occur in the data due to the presence of clouds.
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the effect of undetected clouds and poor atmospheric conditions. The smoothing parameter (lambda) 
was limited to 10 in order to preserve the fidelity of the input data in the final resulting curve, which 
was particularly relevant for the alfalfa herbaceous class as shown in panel b. The gray line indicates 
the presence (value = 0) or absence (value = 1) of clouds for a specific date. 

  

Figure 3. NDVI (left panel) and picture (right panel) for different crop types: (a) herbaceous (maize),
(b) herbaceous (alfalfa), and (c) tree crop. In the NDVI panel, the red line represents the raw NDVI
data, the blue line shows the NDVI after applying smoothing and gap-filling based on the by Whittaker
smoother (WS) algorithm on the original dates (i.e., using the acquisition dates with variable time
sampling), and the green line depicts the NDVI by running WS with a constant sampling of 5 days.
The WS algorithm was run by applying two filtering iterations (niter = 1) in order to limit the effect of
undetected clouds and poor atmospheric conditions. The smoothing parameter (lambda) was limited to
10 in order to preserve the fidelity of the input data in the final resulting curve, which was particularly
relevant for the alfalfa herbaceous class as shown in panel (b). The gray line indicates the presence
(value = 0) or absence (value = 1) of clouds for a specific date.
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As final step, we applied a regional-scale spatial aggregation algorithm. The four tiles were
merged together into a single mosaic layer using GDAL [27] for each time step (Figure 4).
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Figure 4. (a) The different tiles and images involved in the spatial aggregation process. (b) The final
product after the spatial aggregation algorithm composed by a total of 75 images/observations spanning
the year 2018.

2.3. Satellite Precipitation Data Collection and Preprocessing

The NDVI product described in the previous section was integrated with satellite precipitation
data in order to ease the discrimination between irrigated and not irrigated areas. For this purpose,
we considered the Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN)-Cloud Classification System (PERSIANN-CCS), a real-time global
high-resolution (0.04◦ × 0.04◦ or 4 km × 4 km) satellite precipitation product developed by the Center
for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) that
reports the cumulative daily rainfall [28]. The raw PERSIANN-CCS data was processed to be consistent
with the NDVI data. More specifically, we first performed a temporal aggregation with a time interval
of 5 days, and then cropped and reprojected it in accordance with the HLS grid (merging of tiles
T33TVF, T33TWF, T33TVE, and T33TWE) derived as described in the previous sections. An example of
the PERSIANN-CSS product is shown in Figure 5.

We further reported an example of the NDVI time series product overlapped with the accumulated
rainfall data (Figure 6). Such example highlighted the improved capabilities in discriminating between
rainfed and irrigated areas when the two data types were integrated. When the NDVI trend was in
phase with the accumulated rainfall, the area was considered as “not irrigated or rainfed” as the crop
growth was strictly correlated to the rainfall events (Figure 6a). On the other hand, when the NDVI
trend was not synchronized with the accumulated rainfall, the area was considered as “irrigated” as
the crop growth resulted independent from the accumulated rainfall (Figure 6b).
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2.4. Ground Truth Acquisition

An extensive ground truth was collected in the study area by field inspection using the app
mapitGIS [29]. More specifically, we collected a total of 2992 samples spanning the three thematic
classes: bare soil and rainfed (class 0, N = 336), herbaceous (class 1, N = 1897), and tree crop (class 2,
N = 759). The acquired points are shown in Figure 7 and more detailed in Table 4.

Table 4. Number of reference data acquired per tile and per class.

Class/Tile T33TVE T33TVF T33TWE T33TWF Total

0 39 233 33 31 336
1 378 1179 244 96 1897
2 50 626 72 11 759

Total 467 2038 349 138 2992
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bare soil and rainfed (class 0), herbaceous (class 1), and tree crop (class 2).

We note that we acquired one single label/sample per parcel at best in order to limit the spatial
correlation among the collected labeled samples. This a relevant aspect to take into consideration
in order to avoid an overestimation of the classification accuracies. An example is represented in
Figure 8, in which, we show some of the collected samples acquired in an agricultural area in northern
Campania and spanning multiple parcels.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 21 
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2.5. Machine Learning-Based Supervised Classification

We employed a machine learning-based supervised classification approach to discriminate among
the three classes from the time series NDVI and satellite precipitation data. For this purpose, we
considered and compared six classifiers that are commonly used in satellite image classification
applications. The classifiers are summarized in Table 5 and comprises random forests (RF), support
vector machines (SVM), single decision trees (DT), boosted decision trees (DT), artificial neural networks
(ANN), and k-nearest neighbors (k-NN). More specifically, SVMs aim at finding the hyperplane that
maximizes the distance among classes and using a limited number of samples (called support vectors)
that lie close to the separation margin [30]. Transformation from a linear to a nonlinear problem is
done by mapping samples from the original to an high-dimensional feature space through a kernel
function (such as the radial basis function (RBF) used in this work [31,32]), an operation that is known
as kernel trick. DT classifier is based on a sequential decision process [33]. Starting from the root,
a generic feature is evaluated, and one of the two branches is selected. This procedure is repeated for
every branch until a final leaf is reached. In case of classification, the leaf values usually correspond to
the target classes. RFs are a set of decision trees built on random samples [34]. In this case, a different
criterion is used to split nodes; for each tree, a random subset of features is selected in order to find the
best splits. As a result, there is the generation of multiple weak trees, whose predictions are combined
through a fusion strategy. A common fusion strategy relies on the majority vote rule, although more
advanced algorithms based on weighting the posterior probabilities can also be exploited. In addition,
RFs provide the relative importance of each feature which can be exploited to understand which
features contribute more in the creation of the classification model. Boosted DTs are based on an
ensemble of classifiers in which the training set is updated in an iterative way in order to focus more
on that samples that tend to be misclassified [35]. ANNs are based on a collection of nodes (called
artificial neurons) which mimic the model of neurons in a biological brain [36]. The network is usually
composed by an input layer that receives the input features, one or more hidden layers, and an output
layer that gives the final predictions. A generic node receives n input channels, which are weighted,
summed up, and sent to the output after being processed by an activation function. Finally, k-NN
departs from the previous methods since the class of each unknown sample is predicted directly from
the training set without really building a classification model [37]. The label is assigned by applying a
majority rule on the k labels associated with the k closest training samples.

Table 5. The six algorithms for supervised classification with the related R package used and compared
on the collected dataset.

Algorithm R Package Reference

Random Forests (RF) Ranger [38]
Support Vector Machines (SVM) Kernlab [39]

Single Decision Trees (DT) Rpart [40]
Boosted Decision Trees (Boosted DT) C50 [41]
Artificial Neural Networks (ANN) Nnet [42]

K-Nearest Neighbors (k-NN) Caret [43]

3. Results and Discussion

3.1. Experimental Setting for Irrigated Area Classification Assessment

We first conducted a sensitivity analysis devoted to compare the six classification algorithms
introduced in Section 2.5. We used such different supervised classifiers that are widely used in remote
sensing image classification applications and evaluated their effectiveness to deal with the classification
problem specifically addressed in this paper.

We also compared four preprocessing procedures in order to evaluate the sensitivity of the
classification approach to different training data selection approaches (Table 6). More specifically, in the
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scenario 1, the classifier was applied to the original training data and the initial number of input features
(d = 150, which included both NDVI and precipitation data). The scenario 2 implied a classification
performed on a balanced training dataset, in which random oversampling was applied to have the
same number of training samples per class. Scenario 3 implied a RF-based recursive feature elimination
process that reduced the number of features used as input. Finally, scenario 4 incorporated both the
balanced training dataset and the recursive feature elimination processes described in scenarios 2 and 3.
We, therefore, compared a total of 24 classification scenarios associated with 6 types of classifiers and
4 training data selection strategies.

Table 6. The four considered preprocessing scenarios evaluated on the collected dataset.

Scenario Preprocessing

1 None
2 Balanced training data
3 Feature selection
4 Feature selection + Balanced training data

The entire set of ground truth samples (N = 2992, Table 4) was used in the classification process.
Two scenarios were explored in order to evaluate the sensitivity of the framework to different sample
sizes. In the first one, 25% of the labeled samples were randomly chosen as training set (stratified by
class) and the remaining 75% as validation set. In the second case, 75% of the samples were used for
training set and 25% for validation set. In both cases, free parameters of the classifiers were estimated
automatically on the training data only using a 10-fold cross-validation approach. More specifically,
such parameters were estimated for each type of classifier: (i) number of drawn candidate variables in
each split (mtry) for RF; (ii) cost (C) and sigma for the RBF kernel (σ) for SVM; (iii) pruning parameter
(cp) for DT; iv) number of boosting iterations (trials), indication whether the trees should be collapsed
into rules (rules), and activation of the feature selection step before model building (winnow) for
Boosted DT; (v) number of units in hidden layer (size) and regularization parameter (decay) for ANN;
and (vi) number of neighbors for k-NN. In addition, the tuneLength parameter was set to 10, while
the other parameters were kept to their default values. After estimating the best parameters through
cross-validation, the classification model was built on the entire training set and evaluated on the
independent validation set. The analysis was done using the free statistical software R [26]. Within R,
we used the caret package [43], which provides a standard syntax for running a variety of machine
learning algorithms, thus simplifying the process of systematic comparison of different algorithms
and approaches.

Accuracies of the classification models were evaluated by considering multiple metrics derived
from the confusion matrix associated with the validation set. These metrics were useful to compare the
classification performances obtained across classifiers and preprocessing scenarios. More specifically,
we considered the overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and Cohen’s
kappa coefficient (denoted as Kappa statistic in the manuscript) [44]. For OA, a confidence level of 95%
was considered through the normal approximation method altogether with a continuity correction.

A summary of the overall experimental setting and the different types of analyses conducted as
described in the previous paragraph is shown in Figure 9.
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3.2. Experimental Results

We compared the six types of classifiers and applied them in conjunction with the four
preprocessing scenarios. We first focused on the scenario in which 25% of the labeled samples were
used for training. By considering multiple evaluation metrics, we found that RF, SVM, and Boosted DT
models exhibited in general better results than the other three classifier types (Table 7). In general, RF
and Boosted DT were robust to the different preprocessing steps and comparable results were obtained
in the four scenarios (OA ranging from 86.3% to 87.8% for RF and OA ranging from 86.0% to 86.6% for
Boosted DT). On the other hand, SVM exhibited a higher variability (OA ranging from 82.7% to 87.8%)
and the necessity to employ a proper preprocessing strategy to maximize the performances in terms
of classification accuracy. Moreover, RF exhibited the highest accuracies for scenario 1, scenario 2,
and scenario 4, whereas SVM gave the best results for scenario 3, which maximized the accuracy at all,
both in terms of OA and Kappa statistic (Figure 10). In this case, we obtained an OA = 87.8% and a
Kappa statistic equal to 0.770, which highlighted promising capabilities of the proposed approach to
detect irrigated areas.

Table 7. OA (%) and Kappa statistic results for each tested classifier and preprocessing scenario. Bold
denotes the best accuracies for each preprocessing scenario. The 25% of the labeled samples were used
for training and the remaining ones for validation.

Preprocessing Accuracy Metric RF SVM DT Boosted DT ANN k-NN

None
OA 86.3 84.1 78.5 86.0 81.2 75.8

Kappa 0.725 0.698 0.596 0.719 0.639 0.535

Balanced training data OA 87.8 82.7 77.2 86.2 78.7 64.2
Kappa 0.766 0.699 0.595 0.730 0.604 0.440

Feature selection
OA 86.7 87.8 78.1 86.4 81.7 80.2

Kappa 0.740 0.770 0.572 0.730 0.665 0.655

Feature selection +
Balanced training data

OA 87.5 84.3 77.5 86.6 80.0 71.5
Kappa 0.763 0.721 0.596 0.744 0.638 0.543

We dissected the best model identified, which corresponded to SVM classifier applied in
conjunction with the preprocessing step employed in scenario 3. This was based on a recursive
feature selection process that, starting from the original 150 features, found the optimal set and number
of variables by maximizing the Kappa statistic on the training set using a cross-validation approach.
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This was obtained for a number of features equal to 41 (Kappa statistic = 0.802 and OA = 90.0% in
cross-validation), which were therefore selected to build the final classification model (Figure 11).
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Figure 10. Confusion matrix, OA (%), PA, UA, and Kappa statistic for the best model associated with
each scenario identified in Table 7. RF scenario 1: CI = (0.848, 0.877), McNemar’s Test p-value = 1.579e-12;
RF scenario 2: CI = (0.864, 0.892), McNemar’s Test p-value = 0.018; SVM scenario 3: CI = (0.863,
0.891), McNemar’s Test p-value = 3.028e-07; RF scenario 4: CI = (0.861, 0.889), McNemar’s Test
p-value = 1.388e-04.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 21 
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Figure 11. Classification model generated using SVMs as classifier and by applying a recursive feature
selection process (scenario 3), which maximized the accuracies on the validation set as shown in
Table 7. The plot reports the Kappa statistic obtained in cross-validation in function of the number of
variables/features used to build the model. A number of features equal to 41 maximized the Kappa
statistic, which is highlighted with the filled circle.

The same analysis was repeated by changing the size of the training set and considering 75% of
the samples as training set (N = 2244) and the remaining ones (N = 748) for validation. In this setting,
we confirmed that RF, SVM, and Boosted DT gave better results than the other types of classifiers
(Table 8 and Figure 12). Again, RF and Boosted DT resulted quite robust to the preprocessing step in
comparison with SVM that required, also in this case, a feature selection process in order to maximize
the accuracy. Overall, RF seemed the more robust method, and the highest accuracies were obtained
for scenarios 1 and 4. Boosted DT was instead associated with the best models for scenarios 2 and 3,
which suggested the effectiveness of this approach when an enough number of training samples was
available. In particular, the model related to scenario 3 gave the best accuracy across all classifiers and
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scenarios tested with this training sample size. SVM gave slightly worse results, which highlighted
the superiority of ensemble models such as RF and Boosted DT when the training set was sufficiently
large. On the other hand, we recall that SVM gave the best accuracy when the training set was smaller
(Table 7).

Table 8. OA (%) and Kappa statistic results for each tested classifier and preprocessing scenario.
Bold denotes the best accuracies for each preprocessing scenario. The 75% of the labeled samples were
used for training and the remaining ones for validation.

Preprocessing Accuracy Metric RF SVM DT Boosted DT ANN k-NN

None
OA 90.5 86.9 81.3 89.8 83.2 80.5

Kappa 0.814 0.744 0.630 0.802 0.675 0.637

Balanced training data OA 90.4 87.2 76.2 90.6 76.7 70.5
Kappa 0.814 0.759 0.593 0.821 0.580 0.525

Feature selection
OA 90.5 88.0 81.3 90.8 83.7 81.3

Kappa 0.880 0.766 0.630 0.821 0.691 0.653

Feature selection +
Balanced training data

OA 90.6 88.2 76.2 90.1 81.4 71.4
Kappa 0.820 0.777 0.595 0.809 0.653 0.540
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Figure 12. Confusion matrix, OA (%), PA, UA, Kappa statistic, McNemar’s test P-value, and CI
for the best model associated with each scenario identified in Table 8. RF scenario 1: CI = (0.882,
0.925), McNemar’s Test p-value = 0.021; Boosted DT scenario 2: CI = (0.883, 0.926), McNemar’s Test
p-value = 0.105; Boosted DT scenario 3: CI = (0.885, 0.923), McNemar’s Test p-value = 0.03336; RF
scenario 4: CI = (0.861, 0.889), McNemar’s Test p-value = 0.434.

We further analyzed the best model obtained with this training size, which resulted to be
Boosted DT with the feature selection preprocessing step employed in scenario 3. In this case, a quite
large number of variables (d = 126) were required to maximize the cross-validation Kappa statistic
(Figure 13). We report the feature relevance score estimated by the feature selection process in Figure 13.
Interestingly, larger weights were overall attributed to NDVI features with respect to those derived
from satellite precipitation data. Among the NDVI features, greater importance was attributed to data
spanning the June–October time frame, which was consistent with the relevance of these acquisitions



Remote Sens. 2020, 12, 1275 15 of 20

in discriminating among the different thematic classes. It was also evident the presence of two local
maximum located at the end of July and in September, which was again in line with the classification
problem involved here. Finally, Figure 14 shows the classification map obtained on the full study area
associated with the best classification model.
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Figure 13. Classification model generated using Boosted DT as classifier and by applying a recursive
feature selection process (scenario 3), which maximized the accuracies on the validation set as shown in
Table 8. (a) The plot reports the Kappa statistic obtained in cross-validation in function of the number
of variables/features used to build the model. A number of features equal to 126 maximized the Kappa
statistic, which is highlighted with the filled circle. (b) The feature relevance score. Overall, larger
weights were given to NDVI features (mainly in the June–October time frame) rather than satellite
precipitation data.
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3.3. Cross-Validation with Spatially Separated Folds

The experimental analysis conducted in Section 3.2 was done by considering a random
cross-validation approach in which labeled samples were randomly split into training and validation sets.
Although this represents a quite common scenario in evaluating and comparing classification accuracies
in the remote sensing domain, this may bring to an overestimation of the accuracies as discussed
recently [45,46]. More specifically, remote sensing images are characterized by spatial structures
that are ignored when performing a traditional cross-validation with the result of underestimating
predictive errors. To account for this, we conducted an additional analysis in which we validated
the model using a block cross-validation approach in which samples were split strategically rather
than randomly. We considered the recently developed blockCV package [47], which was specifically
proposed to generate spatially or environmentally separated folds. We considered the spatial blocking
strategy (function “spatialBlock”), which aims at building square spatial blocks of a specified size,
by setting the parameters as follows: (i) size of the blocks (parameter “theRange”) was set to 10,000,
(ii) allocation of blocks to folds (parameter “selection”) was done in a random way in order to find
the block-to-fold allocations that achieved most even spread of classes across folds, and (iii) number
of folds (parameter “k”) equal to 4 in order to split the labeled samples with the same percentages
considered in Section 3.2. We show in Figure 15, the partition of the region in multiple spatially disjoint
blocks and their subsequent random assignment to different folds.
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We considered the best scenarios found in the analysis exploited in Section 3.2. In the case that
75% of the labeled samples were used for training, the OA in random cross-validation was maximized
using a Boosted DT and was equal to 90.8% (Table 8). Using the same configuration, spatially distinct
cross-validation gave an OA equal to 87.2%. Although, as expected, the results shown a decrease of
the accuracies with respect to the random cross-validation case, accuracies remained quite satisfactory,
which confirmed the validity of our proposed framework. A similar pattern was verified when only
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25% of the labeled information was used for training. In this case, OA slightly decreased from 87.8%
(Table 8, using SVM in conjunction with feature selection) to 84.2% when moving from the random to
the spatially distinct cross-validation.

4. Discussion and Conclusion

In this paper, we have presented the framework that we have developed, implemented,
and validated within the DIANA project to map the extent of irrigated areas in the entire Campania
region (Southern Italy) during the 2018 irrigation season. The procedure described here is currently
employed in the Campania region to assess the annual water volumes that are actually used in the
irrigated areas, which it is required to be compliant with the EU Water Framework Directive.

We have considered multiple data types that have spanned the area of interest along the entire
year. We have collected 202 images coming from the HLS data product in conjunction with global
satellite precipitation PERSIAN-CCS data. We have also acquired an extensive ground truth in the
field associated with three thematic classes, namely, bare soil and rainfed, herbaceous, and tree crop.
We have compared six machine learning classification algorithms and demonstrated that random
forests, support vector machines, and boosted decision trees have given the best results in terms
of classification accuracy and robustness to different scenarios. In the best case, the three classes
have been distinguished with an overall accuracy close to 90%, which has highlighted the relevance
of this recent data product for the detection and characterization of irrigated areas from satellite
observations. This has demonstrated promising capabilities in using this set of optical time series,
meteorological, and in-situ collected ground truth data to map irrigated areas that may be used in
operational applications for water management purposes.

The framework presented here has been specifically developed for the detection of irrigated areas
with the goal of being able to distinguish between trees and herbaceous crops without requiring prior
knowledge of inter- and intraclass characteristics. While several papers based on machine learning
approaches have been proposed in the literature to deal with land cover classification problems,
a few works have been specifically devoted to the detection and characterization of irrigated areas.
Irrigated and not irrigated croplands were estimated with high accuracy (Kappa statistic > 0.9) by
considering the historical evolution of irrigated croplands for the post monsoon (rabi) and summer
cropping seasons in the Berambadi watershed of Kabini River basin, southern India. In this case,
30 m spatial resolution Landsat satellite images spanning the 1990–2016 periods were classified with
SVM [48]. Landsat imagery (Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational
Land Imager) was again processed in conjunction with SVM to quantify the changes in irrigated
land areas surrounding the Mogtedo water reservoir, Burkina Faso, between 1987 and 2015. Overall
accuracy and Kappa statistic ranged from 94.2% to 95.6% and from 0.92 to 0.94, respectively [49].
Annual maps at 30 m spatial resolution of irrigated corn and soybean areas in southwestern Michigan,
United States, were generated in the 2001–2016 timeframe with an OA = 82% by considering Landsat
surface reflectance products and RF classification [50]. The relevance in using Sentinel-1 images
jointly with Landsat 8 optical imagery was studied and a digital elevation model of the Shuttle Radar
Topography Mission (SRTM) was investigated in [51]. The combined use of the different data types in
conjunction with RF was able to improve the early classification of irrigates crops from 0.84 to 0.89
(Kappa statistic) in a dataset involving the detection of irrigated maize crops in a temperate zone in
South West France. A novel classification-based irrigation mapping procedure that utilized MODIS
time series data coupled with ancillary data on climate and agricultural extent was proposed in [52].
It gave moderate Kappa statistic equal to 0.36 and 0.65 for Eastern US and Western US, respectively,
suing a tree-based method for supervised classification. Finally, a methodology to identify irrigated
crops in a semiarid zone in La Mancha, Spain, was proposed using Landsat TM imagery and a
multitemporal supervised classification approach [53]. Overall accuracy was equal to 93.1% and 90.2%
during 1996 and 1997 growing seasons, respectively.
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While we have focused in this paper on mapping areas at regional scale, a similar procedure can
be applied to detect and characterize larger regions. Further methodological advancements in this
direction can include transfer learning approaches in order to take into account the spatial variability
of the class distributions [54] and deep learning strategies to deal with large training set scenarios [55].
Finally, future research lines can be also devoted to the inclusion of additional indices such as the
Normalized Difference Water Index (NDWI) or the Modified NDWI. It would be also interesting
to introduce into the framework additional information based on the VIS–NIR and SWIR bands,
which have been recently exploited by novel algorithms such as the OPtical TRApezoid Model [56]
and that have been used to extract additional indices such as the Soil Moisture Index.
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