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Abstract: This study introduced a detection method for magnesite and associated gangue minerals,
including dolomite, calcite, and talc, based on mineralogical, chemical, and hyperspectral analyses
using hand samples from thirteen different source locations and Specim hyperspectral short wave
infrared (SWIR) hyperspectral images. Band ratio methods and logistic regression models were
developed based on the spectral bands selected by the random forest algorithm. The mineralogical
analysis revealed the heterogeneity of mineral composition for naturally occurring samples, showing
various carbonate and silicate minerals as accessory minerals. The Mg and Ca composition of magnesite
and dolomite varied significantly, inferring the mixture of minerals. The spectral characteristics of
magnesite and associated gangue minerals showed major absorption features of the target minerals
mixed with the absorption features of accessory carbonate minerals and talc affected by mineral
composition. The spectral characteristics of magnesite and dolomite showed a systematic shift of the
Mg-OH absorption features toward a shorter wavelength with an increased Mg content. The spectral
bands identified by the random forest algorithm for detecting magnesite and gangue minerals
were mainly associated with spectral features manifested by Mg-OH, CO3, and OH. A two-step
band ratio classification method achieved an overall accuracy of 92% and 55.2%. The classification
models developed by logistic regression models showed a significantly higher accuracy of 98~99.9%
for training samples and 82–99.8% for validation samples. Because the samples were collected
from heterogeneous sites all over the world, we believe that the results and the approach to band
selection and logistic regression developed in this study can be generalized to other case studies of
magnesite exploration.

Keywords: magnesite; gangue mineral; hyperspectral; random forest; logistic regression; natural
occurrence; exploration
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1. Introduction

Magnesite (MgCO3) is one of the major source minerals for Mg ore [1]. It occurs as crystalline
or cryptocrystalline forms by serpentine alteration, fissure filling, or metasomatic ore deposits of
limestone or dolostone. The major occurrence is associated with limestone and dolostone, where calcite
(CaCO3), dolomite (CaMg(CO3)2), and talc (Mg3Si4O10(OH)2) are commonly found as gangue minerals.
Magnesium is a major resource for various industrial uses including alloy materials, refractories,
fertilizers, drug medicines, and automobile engines [2,3]. There are more than 60 minerals containing
wide ranges of magnesium concentration. Differently from dolomite and magnesite, host rocks such as
limestone and marble accompany Mg as an accessory element, while magnesite has a high Mg/Ca ratio
by concentration [4].

Magnesite mineralization is mainly associated with the evaporation of Mg-rich fluid and secondary
recrystallization during the diagenesis process of carbonate rocks that originated from marine,
evaporite, lagoon, and lacustrine environments [5–10]. Moreover, the replacement of carbonate rocks
by Mg-rich hydrothermal fluid often produces abundant dolomite and magnesite bodies [8,11–13].
Dolomitization can occur at relatively lower temperature in a marine environment and is controlled
by variations in the Mg/Ca content in carbonate rocks. Differently from dolomite, magnesite
mineralization only occurs at a relatively higher temperature (>60 ◦C) with elevating CO2 pressure.
On the other hand, talc mineralization mainly occurs in hydrothermal activities on dolomite and
magnesite [14,15], where the silicate composition originates from the hydrothermal solution and the
carbonate composition originates from dolomite and/or magnesite. Due to the geological characteristics,
magnesite mineralization is mainly associated with carbonate rocks with talc as an accessory mineral,
and thus, the commonly found gangue minerals are calcite, dolomite, and talc.

Carbonate minerals including calcite, dolomite, and magnesite show similar mineral
properties [16–18], and thus, it is relatively hard to discern these minerals in the field, and such work was
mostly conducted using staining methods (e.g., Alizarine Red) [19,20] or laboratory techniques (e.g., X-ray
diffraction) [21]. However, the traditional methods are labor and time intensive, requiring many steps
of analytical procedures including field sampling, sample preparation, and analysis. Compared to the
traditional laboratory tests, high efficiency and non-destructive spectroscopic analysis using hand-held
spectrometers or airborne hyperspectral remote sensing were proposed to expedite the mineral
classification. Specifically, superior to multispectral remote sensing [22–27], hyperspectral images have
been collected for mineralogy studies from space-borne [28–30], air-borne [31,32], or ground-based
platforms [33–35]. For example, [30] explored hydrothermal alteration zones for the limestone area
based on EO-1 Hyperion data and defined dolomite and chlorite distributions. [29] distinguished
Trona (Na-carbonate mineral) from evaporites and chert with 84% accuracy using the EO-1 Hyperion
data. [28] tested hyperspectral airborne system (AVIRIS) and a spaceborne system (Hyperion) to detect
calcite, clay minerals, and silicate minerals in Nevada, US. [31] mapped clay minerals, ore minerals, and
dolomite with AVIRIS at 50% accuracy due to the similarity of spectral features. [32] classified calcite,
pyrite, chalcopyrite, and silicate minerals for hydrothermal alteration studies by employing HyMap.
The low accuracy of the mineral mapping from satellites and airborne systems calls for more ground
surveys and spectroscopic analyses to provide additional in situ knowledge of the spectral properties
of minerals. [34] defined the zonation of limestone and dolostone using a HySpex-320m Specim
hyperspectral short wave infrared (SWIR) hyperspectral scanner. [33] detected limestone, dolostone,
chert-cemented dolostone, fossiliferous limestone, chert, and carbonate nodules in a sedimentary layer
with 80% accuracy using a SWIR hyperspectral scanner. [35] determined the Ca/Mg content in dolomite
and calcite using a SisuCHEMA hyperspectral scanner.

The spectral characteristics of carbonate minerals such as magnesite, dolomite, and calcite are
mainly controlled by the combination of carbonate and cations [36,37]. Those minerals have common
absorption features manifested by CO3 at 1800 and 2160 nm. The absorption feature at 2300 nm is
controlled by the proportion between Mg and Ca contents [33]. The absorption feature causes a minor
shift in spectral position, which is affected by its Mg and Ca content, where the absorption of magnesite
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is at 2300 nm, that of dolomite is at 2320 nm, and that of calcite is at 2340 nm [34]. The mixture of
those minerals would make complications in the spectral signatures. The spectral characteristics of talc
had distinctive absorptions at 1400 nm, caused by hydrolysis components and doublet absorptions
at 2300 nm of the MgOH component [38]. Due to the common absorptions and variations in the
absorption positions of magnesite and gangue minerals, the natural occurrence with the mixture of
those minerals would increase the complexity of its spectral classification.

Sufficient spectroscopic evidence for magnesite exploration is lacking given that many have put
their efforts into mapping carbonate minerals with limestone and dolostone, because of not only the high
cost in spectroscopic data collection, but also the heterogeneity of the geologic settings of different case
studies. Indeed, geological applications are often site-specific, and thus, mapping techniques at one site
are not applicable to other sites. The objective of this research is to provide a generalizable spectroscopic
regression model for mapping magnesite and associated gangue minerals. This has been accomplished
by collecting spectroscopic samples from a variety of sites and conducting a comprehensive analysis of
the spectral characteristics of the samples with different mineral compositions. We expect that this
study may form the basis for airborne or satellite-based approaches.

2. Materials and Methods

2.1. Sample Selection

Magnesite ore mostly occurs in carbonate rocks such as limestone and dolostone, mixed with
gangue minerals including dolomite, calcite, and talc. This study used the magnesite samples collected
from sites in China, North Korea, and South Korea. In fact, North Korea and China account for 38% of
overall magnesite reserves all over the world [39]. Notably, China produces 70% of the magnesite.

We collected a total of 113 magnesite and associated mineral hand samples from China, North
Korea, and South Korea sites, including 28 magnesite samples from 4 different locations, 38 dolomite
samples from 6 different locations, 30 limestone samples from 6 different locations, and 17 talc samples
from 3 different locations. The sample sizes ranged from 3 to 23 cm in diameter. In addition, we included
12 other types of rock sample to verify if the models in this study worked with other types of rock
(Table 1). We used 20 magnesite, 17 dolomite, 21 limestone, 12 talc, and 9 other type samples for
training the regression models and 8 magnesite, 21 dolomite, 5 talc, 9 calcite, and 3 other type samples
for validation (Table 1), based on a random selection.

Table 1. The source locations and types of sample used in this study.

ID Location Type ID Location Type ID Location Type

1 Muhak, N.K M(T) 43 Geomdeog, N.K D(T) 85 Sinwol, S.K C(T)
2 Daehung, N.K M(T) 44 Geomdeog, N.K D(T) 86 Sinwol, S.K C(T)
3 Dashiqiao, C M(T) 45 Dashiqiao, C D(T) 87 Sinwol, S.K C(T)
4 Muhak, N.K M(T) 46 Sungshin, S.K D(V) 88 Jecheon, S.K C(V)
5 Dashiqiao, C M(T) 47 Sungshin, S.K D(V) 89 Hansol, S.K C(V)
6 Ryongyang, N.K M(T) 48 Sungshin, S.K D(V) 90 Hansol, S.K C(V)
7 Ryongyang, N.K M(T) 49 Sungshin, S.K D(V) 91 Hansol, S.K C(V)
8 Ryongyang, N.K M(T) 50 Mungok, S.K D(V) 92 Sinwol, S.K C(V)
9 Ryongyang, N.K M(T) 51 Mungok, S.K D(V) 93 Sinwol, S.K C(V)

10 Ryongyang, N.K M(T) 52 Mungok, S.K D(V) 94 Sinwol, S.K C(V)
11 Ryongyang, N.K M(T) 53 Yeongwol, S.K D(V) 95 Jecheon, S.K C(V)
12 Ryongyang, N.K M(T) 54 Yeongwol, S.K D(V) 96 Geumsan, S,K C(V)
13 Ryongyang, N.K M(T) 55 Yeongwol, S.K D(V) 97 Dashiqiao, C T(T)
14 Muhak, N.K M(T) 56 Yeongwol, S.K D(V) 98 Myeongjin, S.K T(T)
15 Ryongyang, N.K M(T) 57 Yeongwol, S.K D(V) 99 Myeongjin, S.K T(T)
16 Daehung, N.K M(T) 58 Yeongwol, S.K D(V) 100 Myeongjin, S.K T(T)
17 Daehung, N.K M(T) 59 Yeongwol, S.K D(V) 101 Myeongjin, S.K T(T)
18 Daehung, N.K M(T) 60 Yeongwol, S.K D(V) 102 Myeongjin, S.K T(T)
19 Daehung, N.K M(T) 61 Jecheon, S.K D(V) 103 Myeongjin, S.K T(T)
20 Daehung, N.K M(T) 62 Jecheon, S.K D(V) 104 Myeongjin, S.K T(T)



Remote Sens. 2020, 12, 1325 4 of 26

Table 1. Cont.

ID Location Type ID Location Type ID Location Type

21 Ryongyang, N.K M(V) 63 Jecheon, S.K D(V) 105 Myeongjin, S.K T(T)
22 Ryongyang, N.K M(V) 64 Jecheon, S.K D(V) 106 Myeongjin, S.K T(T)
23 Daehung, N.K M(V) 65 Geomdeog, N.K D(V) 107 Myeongjin, S.K T(T)
24 Daehung, N.K M(V) 66 Geomdeog, N.K D(V) 108 Myeongjin, S.K T(T)
25 Daehung, N.K M(V) 67 Myeongjin, S.K C(T) 109 Myeongjin, S.K T(V)
26 Daehung, N.K M(V) 68 Myeongjin, S.K C(T) 110 Myeongjin, S.K T(V)
27 Daehung, N.K M(V) 69 Myeongjin, S.K C(T) 111 Myeongjin, S.K T(V)
28 Daehung, N.K M(V) 70 Myeongjin, S.K C(T) 112 Myeongjin, S.K T(V)
29 Sungshin, S.K D(T) 71 Myeongjin, S.K C(T) 113 Geumsan, S.K T(V)
30 Sungshin, S.K D(T) 72 Myeongjin, S.K C(T) 114 Sinwol, S.K O(T), Sandstone
31 Dashiqiao, C D(T) 73 Hansol, S.K C(T) 115 Sinwol, S.K O(T), Shale
32 Mungok, S.K D(T) 74 Hansol, S.K C(T) 116 Sinwol, S.K O(T), Tuff
33 Mungok, S.K D(T) 75 Hansol, S.K C(T) 117 Sinwol, S.K O(T), Igneous rock
34 Mungok, S.K D(T) 76 Hansol, S.K C(T) 118 Sinwol, S.K O(T), Sandstone
35 Mungok, S.K D(T) 77 Hansol, S.K C(T) 119 Sinwol, S.K O(T), Conglomerate
36 Yeongwol, S.K D(T) 78 Myeongjin, S.K C(T) 120 Sinwol, S.K O(T), Mudstone
37 Yeongwol, S.K D(T) 79 Myeongjin, S.K C(T) 121 Sinwol, S.K O(T), Shale
38 Jecheon, S.K D(T) 80 Myeongjin, S.K C(T) 122 Sinwol, S.K O(T), Conglomerate
39 Jecheon, S.K D(T) 81 Myeongjin, S.K C(T) 123 Sinwol, S.K O(V), Sandstone
40 Geomdeog, N.K D(T) 82 Sinwol, S.K C(T) 124 Sinwol, S.K O(V), Tuff
41 Geomdeog, N.K D(T) 83 Sinwol, S.K C(T) 125 Sinwol, S.K O(V), Shale
42 Geomdeog, N.K D(T) 84 Sinwol, S.K C(T)

Location: S.K = South Korea, N.K = North Korea, C = China. Type: M = magnesite ore, D = dolomite, C = calcite,
T = talc, O = other type. (T) = training samples, (V) = validation samples.

2.2. Mineral Composition Analysis

In the real world, pure carbonate minerals are rarely found, and any natural sample might include
a mixture of different minerals. Therefore, the hard classification of mineral types by referencing to a
spectral library is almost impossible for making sense. To measure the mineral composition of the
samples, we carried out X-ray Diffraction (XRD hereafter) analysis using a D8 Advance diffractometer
(Bruker-AXS) with a Cu target and LynxEye position sensitive detector. The parameters for diffraction
pattern acquisition were a step size of 0.01◦, 2θ range of 5◦–100◦, 1 sec counting time for each step,
and 30 rpm in PE bottles. The fundamental parameters were calibrated with standard materials (LaB6,
NIST SRM 660b) with the same conditions. The representative portion of the hand samples were
selected based on the visual inspection and cut. The cutting surface of each slab was sanded to remove
contamination. The processed samples were air dried for one day to get rid of their moisture and
crushed with rock hammers and jaw crushers. The quadrisect samples were powdered with the agate
mortar for the XRD analysis and with a tungsten carbide disc mill for X-ray fluorescence (XRF hereafter)
spectrometry analysis.

2.3. Chemical Analysis

As mentioned, both magnesite and dolomite contain MgO and CaO, whereas magnesite has
more Mg content, and thus, the two minerals often show similar patterns in their spectral signatures.
Moreover, the MgO content of one specific mineral varies significantly due to the impurities of naturally
formed minerals. To analyze the spectral characteristics of magnesite and dolomite associated with
MgO and CaO content, we analyzed MgO and CaO content based on Lab XRF analysis. Of each
preprocessed sample, 1 g was mixed with 5.5 g of Li-tetraborate (Li2B4O7) in a platinum crucible.
The mixed samples were entirely melted in a gas furnace at 1100 ◦C for 10 minutes. The glass beads
were prepared by quenching the totally molten mixed samples in a polished platinum mold. These
glass beads were used for the XRF analyses. The analytical errors for MgO and CaO were within 1%.
We analyzed the Mg and Ca content of all 28 magnesite samples and 38 dolomite samples using the
powered samples selected in the previous step.
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2.4. Hyperspectral Image Acquisition and Preprocessing

The hyperspectral images of the samples were acquired by a Specim hyperspectral short wave
infrared (SWIR) camera (Spectral Imaging Ltd, Finland) in a laboratory conditions. The SWIR imaging
spectrometer has a spectral range of 1000–2500 nm, with a 15 nm bandwidth and 5.6 nm spectral
sampling, producing hyperspectral images of 288 bands for 384 spatial pixels. For the Lambertian
reflectance data acquisition, the samples were leveled to the camera nadir view, with a halogen lamp
as the light source. The white reference panel (Spectralon material with 99% reflectance) was stationed
next to the samples in the field of view for radiometric calibration.

The acquired hyperspectral images were preprocessed following the workflow of [33,40]. Moreover,
the image pixels corresponding to the sample images were selected for further processing, excluding
the background pixels. The radiance recorded by the sensor was calibrated with the empirical line
method, using the reflectance panel, and converted to reflectance spectra [41]. In addition, we applied
the maximum noise fraction (MNF) transformation to remove random noise in the hyperspectral
data [42]. The noise bands were determined by the eigenvalues less or equal to 2. Previous studies
(e.g., [43]) suggested cut-off eigenvalues of 2 for maximum noise removal without disturbance of the
original data, where approximately 120 dimensions were retained in this study. The noise bands were
then replaced with zero values and the data were transformed back to the spectral domain by inverse
MNF transformation.

The denoised hyperspectral reflectance of the samples was extracted and transformed with a hull
quotient correction. The hull quotient correction techniques enhance absorption features in reflectance
spectra and are efficient for the detection of the position and depth of the absorption characteristics [44].
The hull quotient corrected spectra were used to analyze the spectral characteristics associated with
mineral composition for all carbonate minerals, as well as the spectral variations associated with Mg
and Ca content for dolomite and magnesite.

3. Classification Model Development

3.1. Band Importance Filtering by Random Forest

This study used band ratio method and logistic regression models to derive simplified open
classification models that are applicable in other cases of magnesite exploration based on laboratory
hyperspectral approaches. To reduce the number of variables for model construction, a random
forest (RF) algorithm was employed to select the best representative bands for magnesite and gangue
associated mineral classification. The RF algorithm is a machine learning and ensemble-based
model [45–47]. Although RF models can do classification and regression as well, one of its useful
aspects in addition to the regression function is its ability to rank the variable importance by the
Gini index [48]. The Gini index is also called the impurity index. It is used by the decision tree
algorithm to select the best variable for splitting the samples. The lowest Gini index represents the most
important variable in the classification model. The RF is developed based on a bootstrap sample [45].
The model grows trees from random sampling on the dataset and the variables. The RF model uses 2/3
(known as “in-bag”) samples for the training set, and the remaining 1/3 (known as “out-of-bag”) for
accuracy assessment by cross-validation [45]. The randomly selected subsets of variables are created by
user-defined number of features (known as “Mtry”), and the random forest grows to the user-defined
number of trees (known as “Ntree”). The final classification is decided based on majority votes from
all the trees. Two parameters need to be set in order to produce the forest trees: Ntree and Mtry.
In general, the RF classifier can have the maximum number of trees (Ntree) due to its strength of no
over-fit. However, we assigned 500 Ntree for this study, as previous studies revealed that the final
decision is commonly made before Ntree reaches 500 [49]. The Mtry parameter is set to the square
root of the number of input variables [50]. For band selection, we extracted 1000 pixels from each
sample image containing information for 269 spectral bands and selected 30 bands derived from the
RF model as a by-product for the derivation of band ratios and logistic regression models for the
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classification of magnesite and associated gangue minerals. We used the SPSS random forest package
for band selection.

3.2. Band Ratio

The band ratio is a commonly used multiband image processing method to enhance differences
in spectral characteristics and remove environmental biases such as illumination variation and
shadows [51–53], which has often been used for hyperspectral data classification [54,55]. For selecting
the best band radio combination from the 30 bands selected by the RF algorithm, we created a simple
band assemblage based on the 30 bands:

Y =
∑30

k

Xk
Xn

(n = 1, 2, 3, ... , 30) (1)

Each band ratio for mineral classes was tested by ANOVA tests, and the tested band combination
was further statistically analyzed by the Tamhane T2 test [56] to compare classification performance
among the mineral classes. The band combination with the best classification performance was further
analyzed to define index ranges, indicating each class by box plots. The band combination classified
carbonate minerals and other types including talc and other types of rock.

3.3. Multi-Variate Logistic Regression

While the band ratio method can select two bands at a time, a multi-variate logistic regression model
includes all candidate bands in one model to detect mineral existence. The logistic regression method
is a statistical method developed for the analysis and classification of categorical variables [57–59].
Therefore, the method is an appropriate approach for detection of a specific mineral [60]. The logistic
regression assumes that the occurrence of binary response variable (Y) is controlled by variable (X) and,
thus, creates two class plots indicating the event (Y = 1) and no event (Y = 0). The logistic function
derives a probability model based on input variables and transforms the probability value to 0 or 1 based
on the cut-off value of 0.5 [58,61]. We derived a logistic regression model for each mineral class based
on the reflectance value of 30 selected bands from the RF model, following Equations (2) and (3) [62].

Logit(P)mineral = ln
( P

1− P

)
= C + β1X1 + β2X2 + . . .+ βnXn (2)

where Logit(P)mineral indicates the logistic probability of specific mineral occurrence, C is the intercept
value, β are the contributions of the covariates to the probability of dependent variable occurrence,
and X is the reflectance value of the selected band. Then, the probability of the target event is
calculated as

Pmineral =
e(C +β1X1+β2X2 ...+βnXn)

1 + e(C +β1X1+β2X2 ...+βnXn)
(3)

The final p value of a mineral occurrence is assigned as either 1 or 0 based on the 0.5 cut-off value [63].
The logistic regression models developed for each mineral were evaluated by -2 log-likelihood(-2LL)
tests and Hosmer and Lemeshow tests. The -2LL evaluates the goodness of fit for the model based
on the maximum likelihood regarding the observation and prediction dataset, where a lower value
indicates a better fit [64]. The Hosmer and Lemeshow tests evaluate a model based on a log-likelihood
ratio between the observation and prediction values, where a model with the highest ratio is considered
to have the highest statistical significance [65]. In addition, two coefficients of determination, pseudo-R2

values of “Cox and Snell” and “Nagelkerke”, were used to evaluate the logistic regression models [66,67].
The pseudo-R2 values are calculated as

R2 = 1−

L(MC)

L
(
Mβ

) 
2
N

, Cox and Snell (4)
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R2 =

1−
{

L(MC)

L(Mβ)

} 2
N

1− L
(
Mβ

) 2
N

, Nagelkerke (5)

where L(MC) is the log-likelihood for a model without explanatory variables, and L
(
Mβ

)
is the

log-likelihood for a model with the explanatory variables. Both pseudo-R2 values range from 0 to
1, where values closer to 1 indicate better model effectiveness [68]. Moreover, the Wald statistic
((b/standard error)2) was used to evaluate the statistical significance of each explanatory variable [58].

4. Results and Discussion

4.1. Mineral Composition of Mineral Samples Associated with Magnesite

The XRD analysis revealed the mineral composition of the magnesite, dolomite, calcite, and talc
samples in this study (Table 2). The mineral composition of the magnesite samples from four different
origins showed a various combination of accessory minerals. The results confirmed that the natural
occurrence of magnesite ore was not pure and was in the form of mineral mixtures. The accessory
minerals include dolomite, calcite, chabazite, clinochlore, quartz, and siderite, where dolomite occurred
in all magnesite samples. Differently from magnesite samples, dolomite and calcite samples showed
significant variations in mineral composition (Table 2), as they are also considered as major rock
forming minerals of carbonate rocks. Talc samples contained magnesite, dolomite, and calcite as
accessory minerals (Table 2).

Given the fact that carbonate rocks mainly consist of calcite and dolomite and that magnesite
mineralization is mainly associated with carbonate rocks with talc as an accessory mineral, pure
minerals with a 100% concentration of a specific mineral are rare in field samples. Depending
on the involvement of hydrothermal activity, evaporation, replacement, and recrystallization,
the compositional combination of calcite, dolomite, magnesite, and talc varies significantly. The results
indicate heterogeneous mineral compositions, even for the same types of sample. Because the mineral
composition in one type of mineral showed large variations in the mixture of magnesite, dolomite,
and calcite, it is highly possible that the spectral information of the spectral library may not be able
to detect natural occurrence. Therefore, hyperspectral approaches for magnesite exploration must
consider variations in mineral composition for expanded applicability in real-world cases.

Table 2. The mineral compositions of the samples used in this study.

ID Origin Type Major Mineral Accessory Mineral

1 Muhak, N.K Magnesite Magnesite Siderite
2 Daehung, N.K Magnesite Magnesite, Dolomite, Chlinochlore Calcite
3 Dashiqiao, C Magnesite Magnesite Dolomite, Talc
4 Muhak, N.K Magnesite Magnesite Quartz
5 Dashiqiao, C Magnesite Magnesite Dolomite
6 Ryongyang, N.K Magnesite Magnesite Chabazite, Calcite
7 Ryongyang, N.K Magnesite Magnesite Dolomite
8 Ryongyang, N.K Magnesite Magnesite Dolomite
9 Ryongyang, N.K Magnesite Magnesite Dolomite

10 Ryongyang, N.K Magnesite Magnesite Dolomite
11 Ryongyang, N.K Magnesite Magnesite Dolomite
12 Ryongyang, N.K Magnesite Magnesite
13 Ryongyang, N.K Magnesite Magnesite Dolomite
14 Muhak, N.K Magnesite Magnesite Quartz
15 Ryongyang, N.K Magnesite Magnesite
16 Daehung, N.K Magnesite Magnesite Calcite
17 Daehung, N.K Magnesite Magnesite
18 Daehung, N.K Magnesite Magnesite
19 Daehung, N.K Magnesite Magnesite
20 Daehung, N.K Magnesite Magnesite Dolomite
21 Ryongyang, N.K Magnesite Magnesite Dolomite
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Table 2. Cont.

ID Origin Type Major Mineral Accessory Mineral

22 Ryongyang, N.K Magnesite Magnesite Dolomite
23 Daehung, N.K Magnesite Magnesite Dolomite
24 Daehung, N.K Magnesite Magnesite Dolomite
25 Daehung, N.K Magnesite Magnesite Dolomite
26 Daehung, N.K Magnesite Magnesite
27 Daehung, N.K Magnesite Magnesite
28 Daehung, N.K Magnesite Magnesite Dolomite
29 Sungshin, S.K Dolomite Dolomite Calcite, Magnesite, Quartz
30 Sungshin, S.K Dolomite Dolomite, Magnesite Calcite, Chlinochlore Quartz
31 Dashiqiao, C Dolomite Dolomite Calcite
32 Mungok, S.K Dolomite Dolomite Quartz
33 Mungok, S.K Dolomite Dolomite Quartz
34 Mungok, S.K Dolomite Dolomite Quartz
35 Mungok, S.K Dolomite Dolomite
36 Yeongwol, S.K Dolomite Dolomite
37 Yeongwol, S.K Dolomite Dolomite Magnesite
38 Jecheon, S.K Dolomite Dolomite Actinolite, Phlogopite
39 Jecheon, S.K Dolomite Dolomite Actinolite, Augite
40 Geomdeog, N.K Dolomite Dolomite
41 Geomdeog, N.K Dolomite Dolomite
42 Geomdeog, N.K Dolomite Dolomite
43 Geomdeog, N.K Dolomite Dolomite
44 Geomdeog, N.K Dolomite Dolomite
45 Dashiqiao, C Dolomite Dolomite Calcite
46 Sungshin, S.K Dolomite Dolomite
47 Sungshin, S.K Dolomite Dolomite
48 Sungshin, S.K Dolomite Dolomite
49 Sungshin, S.K Dolomite Dolomite
50 Mungok, S.K Dolomite Dolomite Quartz
51 Mungok, S.K Dolomite Dolomite, Calcite Quartz
52 Mungok, S.K Dolomite Dolomite Quartz
53 Yeongwol, S.K Dolomite Dolomite, Quartz
54 Yeongwol, S.K Dolomite Dolomite Magnesite
55 Yeongwol, S.K Dolomite Dolomite Quartz
56 Yeongwol, S.K Dolomite Dolomite
57 Yeongwol, S.K Dolomite Dolomite Magnesite
58 Yeongwol, S.K Dolomite Dolomite Quartz
59 Yeongwol, S.K Dolomite Dolomite Quartz
60 Yeongwol, S.K Dolomite Dolomite
61 Jecheon, S.K Dolomite Dolomite, Calcite Magnesite
62 Jecheon, S.K Dolomite Dolomite
63 Jecheon, S.K Dolomite Dolomite, Calcite
64 Jecheon, S.K Dolomite Dolomite, Calcite Titanite
65 Geomdeog, N.K Dolomite Dolomite Calcite
66 Geomdeog, N.K Dolomite Dolomite Calcite
67 Myeongjin, S.K Calcite Calcite Magnesite, Dolomite
68 Myeongjin, S.K Calcite Calcite, Dolomite
69 Myeongjin, S.K Calcite Calcite
70 Myeongjin, S.K Calcite Calcite, Graphite
71 Myeongjin, S.K Calcite Calcite
72 Myeongjin, S.K Calcite Calcite
73 Hansol, S.K Calcite Calcite Magnesite
74 Hansol, S.K Calcite Calcite
75 Hansol, S.K Calcite Calcite Magnesite
76 Hansol, S.K Calcite Calcite Magnesite
77 Hansol, S.K Calcite Calcite
78 Myeongjin, S.K Calcite Calcite
79 Myeongjin, S.K Calcite Calcite Magnesite
80 Myeongjin, S.K Calcite Calcite, Dolomite
81 Myeongjin, S.K Calcite Calcite, Dolomite
82 Sinwol, S.K Calcite Calcite, Quartz
83 Sinwol, S.K Calcite Calcite Quartz
84 Sinwol, S.K Calcite Calcite Quartz
85 Sinwol, S.K Calcite Calcite Quartz
86 Sinwol, S.K Calcite Calcite, Quartz
87 Sinwol, S.K Calcite Calcite
88 Jecheon, S.K Calcite Calcite, Magnesite, Dolomite
89 Hansol, S.K Calcite Calcite Magnesite
90 Hansol, S.K Calcite Calcite, Magnesite
91 Hansol, S.K Calcite Calcite Magnesite
92 Sinwol, S.K Calcite Calcite
93 Sinwol, S.K Calcite Calcite
94 Sinwol, S.K Calcite Calcite
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Table 2. Cont.

ID Origin Type Major Mineral Accessory Mineral

95 Jecheon, S.K Calcite Calcite
96 Geumsan, S,K Calcite Calcite Quartz
97 Dashiqiao, C Talc Talc, Calcite Magnesite
98 Myeongjin, S.K Talc Talc
99 Myeongjin, S.K Talc Talc
100 Myeongjin, S.K Talc Talc, Dolomite
101 Myeongjin, S.K Talc Talc
102 Myeongjin, S.K Talc Talc, Dolomite
103 Myeongjin, S.K Talc Talc, Dolomite
104 Myeongjin, S.K Talc Talc, Dolomite
105 Myeongjin, S.K Talc Talc, Dolomite
106 Myeongjin, S.K Talc Talc
107 Myeongjin, S.K Talc Talc, Dolomite
108 Myeongjin, S.K Talc Talc, Dolomite
109 Myeongjin, S.K Talc Talc
110 Myeongjin, S.K Talc Talc
111 Myeongjin, S.K Talc Talc, Dolomite
112 Myeongjin, S.K Talc Talc
113 Geumsan, S.K Talc Talc

4.2. MgO and CaO Content of Magnesite and Dolomite

The major compositional difference between magnesite (MgCO3) and dolomite (CaMg(CO3)2)
is mainly determined by Mg and Ca contents, where magnesite rarely contains Ca and dolomite
contains low Mg. The chemical composition of magnesite samples from four different locations showed
relatively constant MgO and CaO contents (Table 3). The MgO content of magnesite samples ranged
from 45.5% to 47.6%, with very low CaO content (<0.79%). Compared to magnesite, dolomite samples
from six different locations showed larger compositional variation, showing MgO content ranging
from 13.7% to 21.7% and CaO content ranging from 21.0% to 30.8% (Table 3). The stoichiometry studies
on magnesite revealed that decreases in Ca, Mg, HCO3, and the Ca/Mg ratio in carbonate fluid (calcite
and aragonite) caused magnesite and dolomite mineralization. Dolomite mineralization takes the Ca
from the carbonate fluid, resulting in a combination of Mg and Ca contents. Differently from dolomite
mineralization, magnesite mineralization occurs at relatively higher temperatures associated with
recrystallization, reducing Ca phase replacement in the mineral structure [69]. This result confirms
the mineral identification of magnesite and dolomite samples, and variations in Ca composition
between the minerals may cause the mineral spectral signature to change. Given the fact that mineral
composition and chemical composition are heterogeneous and vary by origin, spectral variation
associated with these components accompanies.

Table 3. The average MgO and CaO contents of representative magnesite and dolomite samples based
on X-ray fluorescence (XRF) analysis.

Location Type Number of Samples MgO CaO

Muhak, N.K Magnesite 3 45.5 0.65
Dashiqiao, C Magnesite 2 47.5 0.79

Ryongyang, N.K Magnesite 11 47.6 0.73
Daehung, N.K Magnesite 12 47.4 0.65
Sungshin, S.K Dolomite 6 13.7 21.0
Mungok, S.K Dolomite 7 13.8 21.1

Yeongwol, S.K Dolomite 10 20.8 29.5
Jecheon, S.K Dolomite 6 20.5 28.8

Geomdeog, N.K Dolomite 7 21.7 30.8
Dashiqiao, C Dolomite 2 21.6 30.7
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4.3. Spectral Characteristics Associated with Mineral Composition

4.3.1. Spectral Characteristics of Magnesite Samples

Spectral analysis on the hull-quoted reflectance spectra of magnesite samples identified strong
absorption features at 1850, 1930, 2130, 2300, and 2450 nm, and weak absorption features at 1720 and
2360 nm (Figure 1). Comparing the spectra of magnesite with the JPL (Jet Propulsion Laboratory)
reference spectrum, the overlaps in absorption features could only be found at 1389, 1920, 2300,
and 2450 nm. The absorption features of the samples at 1720, 1850, and 2130 nm are manifested by
dolomite, and that at 2360 nm is affected by calcite and talc.

Figure 1. The average hull quotient corrected reflectance spectra of magnesite sample pixels compared
with those from library spectra.

4.3.2. Spectral Characteristics of Dolomite Samples

The spectral characteristics of dolomite can be subdivided to three groups based on mineral
composition and absorption features (Figure 2). Comparing the absorption features of the three groups,
only two absorptions at 2320 nm of Mg-OH and 2460 nm of CaCO3 overlaps for all groups. Group 1
includes samples from Sungshin, Geomdeog and Dashiqiao, where calcite accompanies dolomite as
a common accessory mineral. The absorption features of group 1 spectra were found at 1860, 2320,
and 2460 nm. Group 2 includes samples from Yeongwol and Mungok, where quartz occurs as a common
accessory mineral. The absorption features of the group were located at 1900 nm, with additional
absorption at 1440 nm, where calcite occurs as an accessory mineral. Group 3 of samples from Jecheon
has unique spectral characteristics, showing a smaller number of absorption features and weaker
absorptions. The group contains relatively complicated mineral compositions (Table 2). The absorption
features were detected at 1389 and 1920 nm of the magnesite signal; at 1720, 2140, and 2320 nm of the
dolomite signal; and at 2470 nm of calcite signal. As the results showed, the spectral characteristics of
dolomite varied by mineral composition. Comparing the spectral characteristics between magnesite
samples and dolomite samples, many absorption features overlap, and the condition is case dependent.
It confirms our concern that even when using the hyperspectral images, the magnesite and dolomite
samples are hardly separable by simple classification methods and need comprehensive spectral
analyses and band selection.
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Figure 2. The average hull quotient corrected reflectance spectra of 3 groups of dolomite sample pixels
(red = group 1; green = group 2; blue = group 3) compared with library reference spectra.

4.3.3. Spectral Characteristics of Calcite Samples

The spectral characteristics of calcite samples can be subdivided to two types. Group 1 includes
samples from Myeongjin, Hansol, and Jecheon. The absorption features of group 1 occur at 1394,
1440, 1730, 1920, 2294, 2340, 2470, and 2450 nm, where absorptions at 1440, 2340, and 2470 nm are
associated with calcite, and those at 1394, 1920, 2294, and 2450 nm are manifested by magnesite.
Additional absorptions of dolomite were found at 1730 nm (Figure 3). These spectral characteristics
indicate that they were affected by accessory minerals (Table 2). On the other hand, the spectral curves
of group 2 from Sinwol and Geumsan have relatively simple analytical features, where accessory
minerals were rarely found. The absorption features of calcite mainly control the spectral characteristics,
where absorptions were found at 1411, 1876, 1990, 2160, 2340, and 2470 nm (Figure 3). In the same
manner as the other minerals, the calcite samples show large variations in absorption features caused
by heterogeneous mineral composition.

Figure 3. The average hull quotient corrected reflectance spectra of 2 groups of calcite sample pixels
(red = group 1; blue = group 2) compared with library reference spectra.
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4.3.4. Spectral Characteristics of Talc

Differently from those for other types of mineral, the spectral characteristics of talc samples
showed dominant common absorption features at 1276, 1300, 1389, 1910, 2010, 2077, 2133, 2172, 2233,
2290, 2311, and 2383 nm, which were manifested by talc, while minor variation by mineral composition
was observed. Group 1 of Myeongjin has talc and dolomite as major minerals, with magnesite as an
accessory mineral, showing additional absorption features at 1500, 1800, and 1900 nm. Group 2 of
Geumsan shows more distinctive talc spectral features at 1300, 1400, and 1530 nm, where talc is the
only major mineral. Group 3 includes samples from Dashiqiao, containing talc and calcite as major
minerals and magnesite as an accessory mineral. This group showed additional absorptions of calcite
at 1870 nm. These results also confirmed the heterogeneous mineral compositions of naturally formed
samples and associated complex variations in spectral curves (Figure 4).

Figure 4. The average hull quotient corrected reflectance spectra of 3 groups of Talc sample pixels
(red = group 1; green = group 2; blue = group 3) compared with the library reference spectra.

4.3.5. Spectral Characteristics of Magnesite and Dolomite Associated with MgO/CaO Content

To figure out the spectral variations of magnesite and dolomite associated with Mg/Ca content,
we analyzed the spectral characteristics of magnesite and dolomite by the MgO/CaO content (Figure 5).
It is well known that the absorption feature of Mg-OH around 2300 nm is associated with MgO/CaO
content [25,70]. The results showed a systematic shift of the Mg-OH absorption toward a shorter
wavelength, with an increase in Mg content regardless of source location. For example, the dolomite
spectrum with a MgO content of 13.7% (ID 46) has the maximum absorption at 2322 nm, and that
with a MgO content of 21.9 % (ID 55) has the maximum absorption at 2316 nm, showing 6 nm of
shift. The maximum absorption feature of Mg-OH for magnesite samples was located at 2294 nm.
Compared to the dolomite spectrum of ID 46, the shift of Mg-OH absorption is as much as 28 nm.
This study found the same phenomenon from the previous studies for the samples from various source
locations [25,70]. It indicates that the shift of Mg-OH absorption is a general phenomenon that may be
useful for the detection of Mg content in dolomite and magnesite regardless of source location.
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Figure 5. The spectral characteristics of magnesite (red lines) and dolomite samples (blue lines)
associated with MgO content.

4.4. Band Selection Based on the Random Forest Model

We put the samples into the classification model of a random forest with Ntree = 500 and
Mtry = 70. The model returned an overall accuracy of 98.2% (Table 4). The variable importance graph
produced from the random forest algorithm (Figure 6) displayed the importance index of all of the
input bands. [50] verified that the classification accuracy is superior if a sufficiently higher number of
Ntree is used for the small number of variables. The smaller number of variables reduced variable
collinearity, and thus could improve a multi-variate regression model. We selected 30 bands for the next
step of analysis because, based on Figure 7, the out-of-bag (OOB) error was the lowest near 30 bands.
The selected bands were mainly associated with Mg-OH (2289–2384 nm), CO3 (2467–2500 nm), and OH
(1389–1400 nm) (Figures 1 and 6).

Table 4. A confusion matrix for the random forest model used for band selection.

Class
Predicted Class (Number of Pixels)

Magnesite Dolomite Talc Other Calcite Accuracy (%)

A
ct

ua
lC

la
ss Magnesite 985 1 4 7 3 98.5

Dolomite 3 964 2 10 21 99.6
Talc 0 3 996 0 1 99.6

Other 0 11 0 981 8 98.1
Calcite 3 8 0 7 982 98.2

Overall Accuracy 98.2

Among the 30 selected bands, the highest peak in Figure 6 is near the absorption feature of
2289–2384 nm by Mg-OH. This range has the major absorption features of magnesite, dolomite, calcite,
and talc, with a minor shift between the minerals [34,71–73]. The second peak in terms of band
importance corresponded to carbonate absorptions at 2467–2500nm (magnesite 2450 nm, dolomite/talc
2460 nm, and calcite 2470 nm). Notably, the spectral region showed higher importance than the other
absorption features associated with CO3

2- such as 1750 nm, 1870 nm, 1980 nm, and 2160 nm [36,37,74,75].
The minor shifts of absorption features in the bands between the minerals made the spectral region more
effective for classification. The third largest peak comprises of the bands in the range 1389–1394 nm,
which is the absorption caused by OH. The spectral bands correspond with the absorption features of
magnesite and talc. The selected 30 bands gave an OOB error of less than 1.5% from the RF model
(Figure 7). The RF model provides an alternative dimension reduction method for hyperspectral
data processing.
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Figure 6. The importance values of spectral bands derived from the random forest (RF) method.

Figure 7. The results for out-of-bag (OOB) errors, using the importance of bands in separating among
the studied class.
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4.5. Classification of Magnesite and Associated Gangue Minerals

4.5.1. Band Ratio

Based on the combination of 30 selected bands, we derived two band ratio equations, following
the band ratio driving method [22]. The band ratio equations were tested for all combinations of band
math operations, and the final equations were selected based on Tamhane T2 and ANOVA tests with
the best output results. The first band ratio combination was used to classify carbonate minerals and
other types including talc, as Equation (6) below,

Y =
B2328 X B2389
B2344 X B2483

(6)

where B2328 is the spectral band of 2328 nm, B2344 is the spectral band of 2344 nm, B2389 is the
spectral band of 2389 nm, and B2483 is the spectral band of 2483 nm, where the bands of B2328, B2344,
and B2483 are related to the absorptions of carbonate minerals and band B2389 corresponds with the
absorption shoulder. Then, the second band combination for the classification of carbonate minerals
including magnesite, dolomite, and calcite was developed as in Equation (7)

Y =
B2294 X B2355
B2333 X B2383

(7)

where B2294 is the spectral band of 2294 nm, B2333 is the spectral band of 2333 nm, B2355 is the spectral
band of 2355 nm, and B2383 is the spectral band of 2383 nm. B2294 discerns dolomite with higher
reflectance than the reflectance of calcite. B2333, B2355, and B2383 show a high reflectance of magnesite
and low reflectance of calcite, where absorption locations aligned in order of magnesite, dolomite,
and calcite. B2294 is the major absorption band of magnesite, showing a higher reflectance of dolomite.

The classification results based on the band ratios derived above are presented in the box plot
(Figure 8) [76]. The first band ratio showed median values for carbonate rock of 1.74, for other types
of 1.2, and for talc of 0.65. As shown in Figure 8a, the first band ratio effectively classified carbonate
minerals from talc, while the confusion between carbonate minerals and other types was expected.
The overall accuracy of the classification was 82% (Table 5), yet the overall accuracy was acceptable,
with the producer’s accuracy for carbonate minerals being 63.9%.

Table 5. A confusion matrix for the classification results of carbonate minerals, talc, and other types, by
the band ratio method.

Class
Predicted Class (Number of Pixels)

Talc Other Carbonate Total

Unclassified 3 0 8 11
Talc 0 0 638 638

Other 829 6 42 877
Carbonate 168 994 312 1474

Total 1000 1000 1000 3000
User’s accuracy (%) Producer’s accuracy (%)

Talc 94.5 82.9
Other 67.4 99.4

Carbonate 100 63.8
Overall accuracy (%) 82.0

The second band ratio for the discrimination for carbonate minerals showed median values for
magnesite of 0.71, calcite of 0.91, and dolomite of 1.02. The range of the index is 0.56–0.88 for magnesite,
0.75–1.08 for calcite, 0.94–1.12 for dolomite (Figure 8b). The overall accuracy of classification for
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the carbonate minerals was 55.2% (Table 6). However, the classification results for magnesite were
acceptable, with a user’s accuracy of 96%.

Figure 8. Box plots of the statistical indices for hyperspectral images transformed from the band
ratios for carbonate minerals, talc, and other type classification (a), and the band ratios for magnesite,
dolomite, and calcite classification (b).

Table 6. A confusion matrix for the classification results of magnesite, dolomite, and calcite based on
the band ratio method.

Class
Predicted Class (Number of Pixels)

Magnesite Dolomite Calcite Total

Unclassified 0 14 8 22
Magnesite 684 0 28 712
Dolomite 0 25 16 41

Calcite 316 961 948 2225
Total 1000 1000 1000 3000

User’s accuracy (%) Producer’s accuracy (%)

Magnesite 96.1 68.4
Dolomite 61.0 02.5

Calcite 42.6 94.8
Overall accuracy (%) 55.2

4.5.2. Binary Logistic Regression Models

To overcome the limitation of the band ratio method and for better generalization, a binary
logistic regression model was developed employing the 30 bands selected by the random forest
method. Concerning the water bands—namely, the strong absorption wavelengths from water vapor
at around 1400 and 1900 nm—because of their low signal to noise ratio [54], we excluded them from
the regression model, resulting in 27 bands as the input variables for mineral prediction. Each mineral
had one equation developed based on Equation (3) and by a step-wise variable selection mechanism to
avoid multicollinearity.
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The stepwise variable selection for each target mineral is listed in Table 7. The classification
equation for magnesite employed 11 variables, among which eight bands are associated with Mg-OH
spectral features, two bands are from Ca features, and one band is at 1237 nm (Table 7). For dolomite,
the equation was developed based on nine bands from Mg-OH features, four bands from Ca features,
and one band at 1248 nm (Table 7). Differently from magnesite, seven bands were significant, and the
most important bands were 2361 and 2489 nm of Mg-OH features. The calcite equation was derived
from nine bands from Mg-OH features and four bands from Ca features, along with bands at 1237
and 1248 nm. The band at 1248 nm plays an important role in calcite detection. Talc classification was
based on seven bands of Mg-OH features, four bands of Ca features, and the band at 1237 nm (Table 7),
where Mg-OH bands play important roles.

Table 7. The final selected variables in the equation and Wald test results from the logistic
regression models.

Variable B1 S.E.2 Wald3 Df4 Sig.5 Exp(B)6

Final selected variables for magnesite classification
B1237 (1237 nm) 44.2 10.237 18.642 1 0 1.57 × 1019

B2294(2294 nm) −1013.851 235.214 18.579 1 0 0
B2305 (2305 nm) −1529.829 457.557 11.179 1 0.001 0
B2311 (2311 nm) 1710.024 392.844 18.948 1 0 0
B2316 (2316 nm) −1645.734 383.517 18.414 1 0 0
B2322 (2322 nm) 1931.354 351.626 30.169 1 0 0
B2361 (2361 nm) −362.818 88.704 16.73 1 0 0
B2389 (2389 nm) 1629.333 339.902 22.978 1 0 0
B2394 (2394 nm) −1253.898 306.746 16.71 1 0 0
B2467 (2467 nm) 1211.941 268.864 20.319 1 0 0
B2478 (2478 nm) −705.467 188.34 14.03 1 0 0

Constant −11.785 2.24 27.674 1 0 0

Final selected variables for dolomite classification
B1248 (1248 nm) −44.668 3.422 170.402 1 0 0
B2294 (2294 nm) 289.719 32.46 79.663 1 0 6.66 × 10125

B2316 (2316 nm) −365.45 51.395 50.561 1 0 0
B2328 (2328 nm) 238.129 63.567 14.033 1 0 2.62 × 10103

B2339 (2339 nm) −621.411 81.109 58.697 1 0 0
B2344 (2344 nm) 132.733 69.632 3.634 1 0.057 4.42 × 1057

B2355 (2355 nm) 186.986 60.982 9.402 1 0.002 1.61 × 1081

B2361 (2361 nm) 615.639 71.841 73.436 1 0 2.34 × 10267

B2383 (2383 nm) −334.633 68.317 23.993 1 0 0
B2389 (2389 nm) −182.19 67.463 7.293 1 0.007 0
B2467 (2467 nm) 346.041 52.612 43.26 1 0 1.92 × 10150

B2483 (2483 nm) −382.869 79.088 23.436 1 0 0
B2489 (2489 nm) 375.279 86.236 18.938 1 0 9.58 × 10162

B2495 (2495 nm) −268.606 63.377 17.962 1 0 0
Constant −1.855 0.203 83.133 1 0 0.157

Final selected variables for calcite classification
B1237 (1237 nm) −366.642 122.121 9.014 1 0.003 0.000
B1248 (1248 nm) 338.763 121.725 7.745 1 0.005 1.327 × 10147

B2311 (2311 nm) −2798.173 460.679 36.894 1 0.000 0.000
B2316 (2316 nm) 3090.930 506.840 37.191 1 0.000 0.000
B2339 (2339 nm) 1640.527 312.480 27.563 1 0.000 0.000
B2350 (2350 nm) −1925.792 462.775 17.317 1 0.000 0.000
B2355 (2355 nm) −2276.548 479.895 22.504 1 0.000 0.000
B2361 (2361 nm) 2574.915 592.343 18.896 1 0.000 0.000
B2367 (2367 nm) −1173.638 465.077 6.368 1 0.012 0.000
B2383 (2383 nm) 3050.209 512.796 35.381 1 0.000 0.000
B2394 (2394 nm) −2088.940 482.653 18.732 1 0.000 0.000
B2467 (2467 nm) 1188.275 342.139 12.062 1 0.001 0.000
B2489 (2489 nm) −3875.854 731.276 28.091 1 0.000 0.000
B2495 (2495 nm) 3897.919 799.287 23.783 1 0.000 0.000
B2500 (2500 nm) −1745.837 463.723 14.174 1 0.000 0.000

Constant 0.952 0.842 1.278 1 0.258 2.591
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Table 7. Cont.

Variable B1 S.E.2 Wald3 Df4 Sig.5 Exp(B)6

Final selected variables for talc classification
B1237 (1237 nm) 63.06 7.802 65.335 1 0 2.44 × 1027

B2294 (2294 nm) 494.21 133.41 13.723 1 0 4.29 × 10214

B2322 (2322 nm) −352.872 183.233 3.709 1 0.054 0
B2333 (2333 nm) −440.763 180.68 5.951 1 0.015 0
B2344 (2344 nm) 763.836 194.177 15.474 1 0 0
B2355 (2355 nm) −669.464 151.933 19.416 1 0 0
B2372 (2372 nm) 383.697 226.936 2.859 1 0.091 4.34 × 10189

B2383 (2383 nm) −391.674 143.916 7.407 1 0.006 0
B2467 (2467 nm) −311.595 204.861 2.313 1 0.128 0
B2478 (2478 nm) 435.462 262.939 2.743 1 0.098 1.32 × 10189

B2495 (2495 nm) 468.646 291.343 2.587 1 0.108 3.39 × 10203

B2500 (2500 nm) −544.645 219.341 6.166 1 0.013 0
Constant −6.352 1.213 27.417 1 0 0.002

B1 = logistic coefficient; S.E.2 = standard error of estimate; Wald3 = Wald chi-square values; Df4 = degree of freedom;
Sig.5 = P-value; Exp(B)6 = exponentiated coefficient

All logistic regression equations employed the band at 2467 nm, and three models employed the
bands at 1237, 2294, 2316, 2355, 2361, and 2495 nm. The absorption features associated with Mg-OH and
Ca participated in all regression equations, where the absorption depth, peak absorption, and absorption
width vary among the target minerals. Exceptionally, the spectral band of 1237 nm participated in
three regression models, even though the band has no absorption feature. The spectral signatures
(1200 nm range) of the minerals show consistent low standard errors (Table 7). Indeed, [77] also used
spectral features other than the 2000–2300 nm region for the detection and classification of carbonatites
among sedimentary carbonates. Moreover, the RF algorithm identified 1200 nm as important spectral
bands for the classification of target minerals. The overall accuracy of the classification was 99.9% for
magnesite, 98% for dolomite, 99.6% for calcite, and 99.8% for talc (Table 8).

Table 8. An accuracy table for the classification results derived from binary logistic regression models.

Predicted (Number of Pixels) Correct Percentage
Observed No Event (0) Event (1)

Magnesite 0 3999 1 100
1 5 995 99.5
Overall Percentage 99.9

Dolomite 0 3975 25 99.4
1 77 923 92.3
Overall Percentage 98.0

Calcite 0 3991 9 99.8
1 7 993 99.3
Overall Percentage 99.7

Talc 0 3995 5 99.9
1 5 995 99.5
Overall Percentage 99.8

Evaluation of Binary Regression Models

The results of Hosmer and Lemeshow test showed that the p values of the X2 values of the logistic
regression models for the target minerals range from 0.472 for dolomite to 0.997 for magnesite and
calcite (Table 9). In general, significance higher than 0.05 is acceptable, and the test showed that all
models are statistically coherent [64].
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Table 9. The statistical parameters of the logistic regression models.

Statistical Parameters
Hosmer and Lemeshow Test Pseudo-R2

X2 df P Value Cox & Snell R2 Nagelkerke R2

Magnesite 1.180 8 0.997 0.628 0.994
Dolomite 7.613 8 0.472 0.580 0.917

Calcite 1.129 8 0.997 0.625 0.988
Talc 1.425 8 0.994 0.626 0.989

In addition, the goodness of fit was tested based on pseudo-R2, where pseudo-R2 ranged from
0.58 to 0.628 for Cox & Snell R2, and 0.917 to 0.994 for Nagelkerke R2 (Table 9). In general, Cox & Snell
pseudo-R2 values larger than 0.2 are considered to indicate good fit [78]. The psuedo-R2 values of the
models validated that all models have a strong goodness of fit.

Validation of Binary Regression Models

The binary regression models for detection of magnesite, dolomite, calcite, and talc developed
from training samples were applied to 46 validation samples (Figure 9). The accuracy of the magnesite
logistic regression model was 97.6%. All magnesite samples were correctly detected, while some pixels
of magnesite samples were classified as none (Figure 9a and Table 10). The overall accuracy of the
dolomite model was 82%, where the model classified 9 out of 21 dolomite samples (Figure 9b and
Table 10). The accuracy of dolomite was lower than of the other minerals. The erroneous samples
include calcite and/or quartz as major minerals (Table 2). The bias might be caused by the mix of
major spectra manifested by both minerals. The calcite model classified 94.6% of calcite pixels correctly
(Figure 9c and Table 10). The accuracy of the talc model was very high (99.8%, Figure 9d and Table 10).

Table 10. A confusion matrix for the classification results of the validation set from the binary
regression models.

Class
Correct Class Non Correct Class Overall

Accuracy (%)Producer’s
Accuracy (%)

User’s
Accuracy (%)

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Magnesite 99.7 95.6 95.6 99.7 97.6
Dolomite 54.4 99.3 77.3 99.8 82

Calcite 47.6 71.1 95.9 98.4 94.6
Talc 99.5 92.31 99.8 99.9 99.8
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Figure 9. Classification images of the logistic regression models applied to the validation models of
(a) magnesite, (b) dolomite, (c) calcite, and (d) talc; a Specim hyperspectral short wave infrared (SWIR)
false color composite image (R:2250 nm; G:2283 nm; B:2433 nm) (e); and a gray scale image of the 2266
nm band (f) for the validation samples, where the sample label of M shows the magnesite sample,
D the dolomite sample, C calcite, T talc, and O other types.
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4.6. Discussions and Limitations of the Present Work

Based on the classification results applied to the validation samples, the logistic regression models
showed significantly higher accuracy than the band ratio method. While the band ratio method is
easier to apply, its overall accuracy was about 40% lower than that of the logistic regression models for
carbonate mineral classification. In addition, we compared the effectiveness of the logistic regression
models with the RF method. The classification results of the RF method for the validation samples
showed an accuracy ranging from 92.6% to 99.9%, with an overall accuracy of 96.6% (Table 11).
The accuracy of the RF method was similar with the logistic regression models except for the dolomite
samples. The RF method showed better performance on dolomite classification, with 92.6%. Although
the RF method shows a slightly better accuracy, the knowledge learned by the RF algorithm is wrapped
in its complex data structure as a black box to the researchers. On the contrary, the logistic models
have simple form and can be easily generalized to other case studies for magnesite exploration.

Given the fact that this study developed the models using naturally occurring samples from various
locations and that the mineral composition is heterogeneous, the models tested in this study could
be applicable for real-world cases as prompt analytical methods for sample discrimination. Analysts
can select the best model for their case studies. For hyperspectral band surveys, we recommend the
logistic regression model.

Although our study is comprehensive on the band selection, the target minerals only include four
major ones. It is not difficult to conclude that if more minerals are considered, the complexity of the
prediction model will drastically increase. Furthermore, this study is based on fresh samples with
controlled dry conditions. The weathering process and wet surface would complicate the spectral
signals associated with hydrolysis and water components [38,79]. Adding controlled moisture and
weathered samples would allow us to better understand the uncertainty in mapping magnesite in a
natural environment. The band selection and band-ratio equations will be different under different
assumptions of surface moisture and weathering. Our research proved the feasibility of the method
we developed for fresh dry samples and could serve a role model for these future case studies.

Table 11. A confusion matrix for the classification results of the validation set from the random
forest algorithm.

Class
Predicted Class (Number of Pixels)

Magnesite Dolomite Talc Calcite Accuracy (%)

Actual Class

Magnesite 997 3 0 0 99.7
Dolomite 2 926 0 72 92.6

Talc 0 0 999 1 99.9
Calcite 0 56 0 944 94.4

Overall Accuracy (%) 96.6

5. Conclusions

This study introduced a detection method for magnesite and associated gangue minerals including
dolomite, calcite, and talc based on mineralogical, chemical, and hyperspectral analyses using SWIR
hyperspectral images under laboratory conditions. The samples used for this study originated
from thirteen different locations in South Korea, China, and North Korea and were used to develop
detection models with wide applicability. The spectral characteristics of sample spectra were analyzed
with consideration of minerals and composition. Using the spectral characteristics derived from the
hyperspectral images, the random forest algorithm was used for band selection and dimension reduction.
Band ratio and logistic regression models were developed to find the most useful detection methods.

The mineralogical analysis revealed the heterogeneity of mineral composition for naturally
occurring samples. Magnesite samples contains accessory minerals such as dolomite, calcite, chabazite,
clinochlore, quartz, and siderite. Dolomite and calcite samples showed the accessory minerals
actinolite, augite, calcite, graphite, magnesite, phlogopite, quartz, and titanite. Talc samples had
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magnesite, dolomite, and calcite as accessory minerals. The results indicate the heterogeneity of
mineral composition, even for the same types of sample. Because the mineral composition in one type
of mineral showed large variations—mainly mixed forms of magnesite, dolomite, and calcite—the
hyperspectral approaches for magnesite exploration must consider variations in mineral composition
in other case studies. The Mg and Ca composition of magnesite and dolomite varied significantly,
where magnesite had more Mg content and dolomite had more Ca content. These results confirmed
the heterogeneity of minerals in not only the mineral composition but also the chemical composition of
major elements.

The spectral characteristics of the magnesite samples were found at the absorption features located
at 1850, 1930, 2130, 2300, and 2450 nm, with weak absorptions at 1720 and 2360 nm. The spectral
characteristics represent the heterogeneity of mineral composition, where absorption features of
dolomite, calcite, and talc were found in the spectra of magnesite samples. The same phenomenon
was found for dolomite, calcite, and talc samples, where major absorptions of each mineral were
mixed with other minerals’ absorptions from the sample spectra, representing heterogeneous mineral
composition. The spectral characteristics of magnesite and dolomite showed systematic variations
in Mg-OH absorption features toward a shorter wavelength, with an increase in Mg content. This
indicates that the shift of Mg-OH absorption may be useful for the detection of Mg content in dolomite
and magnesite.

The random forest algorithm reduced the number of bands by selecting 30 of the most sensitive
bands for the classification of magnesite and associated gangue minerals. The selected bands were
mainly associated with Mg-OH (2289–2384 nm), CO3 (2467–2500 nm), and OH (1389–1400 nm).
Among the selected bands, the bands with the highest importance were found in spectral range of
Mg-OH absorptions, followed by the spectral bands around carbonate and hydrolysis absorptions.
A two-step band ratio method was derived using the selected bands. The first step classified carbonate
minerals from talc and other types of sample with an accuracy of 92%. The second step classified
magnesite, dolomite, and calcite with an accuracy of 55.2%, where the classification results were not
satisfactory. The logistic regression models based on the 27 selected bands excluding water bands
achieved accuracies of 98%~99.9% for the training samples and 82–99.8% for the validation samples.

Given the fact that this study found the naturally formed samples from various locations showing
heterogeneous mineral composition, the applicability of the models would expand to general use as a
prompt analytical method for sample discrimination. It is necessary to include more samples with
more source locations to refine and enhance the model. Furthermore, the method would expand its
applicability to carbonate rocks and minerals exploration significantly if the method was tested in
the field.
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