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Abstract: An understanding of the response of interannual vegetation variations to climate change is
critical for the future projection of ecosystem processes and developing effective coping strategies.
In this study, the spatial pattern of interannual variability in the growing season normalized difference
vegetation index (NDVI) for different biomes and its relationships with climate variables were
investigated in Inner Mongolia during 1982–2015 by jointly using linear regression, geographical
detector, and geographically weighted regression methodologies. The result showed that the greatest
variability of the growing season NDVI occurred in typical steppe and desert steppe, with forest and
desert most stable. The interannual variability of NDVI differed monthly among biomes, showing
a time gradient of the largest variation from northeast to southwest. NDVI interannual variability
was significantly related to that of the corresponding temperature and precipitation for each biome,
characterized by an obvious spatial heterogeneity and time lag effect marked in the later period of the
growing season. Additionally, the large slope of NDVI variation to temperature for desert implied
that desert tended to amplify temperature variations, whereas other biomes displayed a capacity to
buffer climate fluctuations. These findings highlight the relationships between vegetation variability
and climate variability, which could be used to support the adaptive management of vegetation
resources in the context of climate change.

Keywords: Inner Mongolia; normalized difference vegetation index (NDVI); interannual variability;
coefficient of variation

1. Introduction

As the most important component of the terrestrial ecosystem, vegetation plays an important role
in global hydrologic, energy, and biogeochemical cycles [1–3]. In recent years, rapid global warming as
well as an increased frequency, intensity, and duration of climate extremes have profoundly affected and
will continue to strongly impact vegetation dynamics and functions [4,5]. Therefore, a comprehensive
assessment of climate-related variations in vegetation activity at biome and regional scales is of
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significance for providing a critical scientific basis of coping with and adaptating to climate change,
and has been attracting much attention from the scientific community and the government [6,7].

A great number of studies have explored vegetation dynamics and its responses to climate change
at different spatial scales [4,8–10]. However, most of them focused mainly on the long-term trend and
potential driving factors [11]. In comparison, our understanding of responses of interannual vegetation
variability to climate fluctuations is limited [12]. Interannual variability, as a crucial indicator of
vegetation stability to external disturbances, is of major importance to assess the effects of climate
variability on vegetation [13,14]. Recent studies reported that climate variability is a key constraint on
vegetation productivity across global pastures and could be responsible for 32%–39% of the global
crop yield variability [14,15]. However, the responses of vegetation variability to climatic determinants
may be dependent on the spatial heterogeneity of climatic conditions and biomes. For example,
Kawabata et al. found that interannual vegetation activity was positively correlated with precipitation
in arid and semi-arid areas, whereas it was negatively correlated or not correlated with precipitation in
middle–high latitudes and tropical zones [16]. In addition, vegetation types may buffer the impacts of
climate fluctuations in some regions [6] and amplify the variability in others [17]. It may be difficult
to extrapolate existing findings to other regions, and a comprehensive and accurate understanding
of the vegetation response to climate variation in different regions is thus critical for deepening our
knowledge of the interaction between vegetation and climate change. Moreover, some studies have
found that the largest variation occurred in the desert biome, while others argued it was most variable
in grassland [6,12]. The patterns of interannual vegetation variability across biomes need to be explored
further. The normalized difference vegetation index (NDVI) is strongly related to chlorophyll content
and leaf area, and has been suggested as a useful predictor of vegetation activity [18,19]. Especially,
the NDVI dataset from the Global Inventory Modeling and Mapping Studies (GIMMS), which has
been proven to be the longest remotely sensed time series data, could provide unique opportunities for
the exploration of long-term vegetation variability [11,20].

Inner Mongolia is marked by a gradual change of vegetation from desert in the west to forests
in the east due to the steep east–west gradient in hydrothermal conditions. It is an ideal platform
for studying the response of vegetation to climate change. Therefore, using 34 years of NDVI time
series derived from GIMMS, the main purpose of this study was to address: (1) The spatial patterns of
interannual variability of NDVI for different biomes across Inner Mongolia at the growing season and
monthly scales; (2) the potential responses of interannual variability of NDVI on climate fluctuation;
and (3) the time lag effects of these climate variables.

2. Data and Methods

2.1. Study Area

Inner Mongolia, located in the northern part of China, is a vast area of 1.183 × 106 km2, comprising
12.3% of Chinese territory (Figure 1). The region is dominated by monsoon climate patterns that are
controlled by continental Eurasian high- and low-pressure cells. During the summer, warm and humid
air from the Pacific contributes to high temperatures and variable rainfall. In the winter, the region is
affected by strong dry and cold northwesterly winds regulated by the Siberian–Mongolian atmospheric
high-pressure cell [21]. Annual precipitation varies from approximately 50 mm in the southwest to
500 mm in the northeast, with an overall average precipitation of approximately 150 mm. Similarly,
the annual mean temperature varies along a strong southwest–northeast temperature gradient from
approximately 10 ◦C in the southwest to less than −3 ◦C in the northeast. According to Wu et al., Inner
Mongolia can be divided from southwest to northeast into four major zones [22]. A temperate arid
region in the southwest is dominated by a desert biome. A temperate semi-arid region occupying
most of the central area, from approximately 40◦ N to 50◦ N latitude and 110◦ E to 120◦ E longitude,
is dominated by steppe and fragmented areas of crop land. Finally, temperate humid and temperate
sub-humid regions, occurring mainly in the northeast, are dominated by a forest biome.
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Figure 1. Vegetation types in Inner Mongolia. The insert indicates the location of the study area in
China and the locations of 604 meteorological stations used in the study.

2.2. Dataset

The NDVI dataset was the latest updated version of the third generation Global Inventory
Monitoring and Modeling System (GIMMS NDVI 3g.v1, available at https://ecocast.arc.nasa.gov/data/

pub/gimms/3g.v1/ as nc4 files), with 15-day intervals and a spatial resolution of 8 × 8 km during
1982–2015. To further decrease the effects of atmospheric and aerosol scattering, we developed
a monthly NDVI dataset using the maximum value composite (MVC) method for each month, as in
previous studies [23]. We produced the growing season NDVI dataset by averaging the monthly NDVI
during April–October for each year, as several studies suggest vegetation growth begins in April and
senescence in October across Inner Mongolia [24,25].

Monthly average temperature and average precipitation data during the period 1982–2015 were
calculated using a thin plate smoothing spline function in ANUSPLIN 4.3, based on 604 climatic
stations over China (Figure 1). This data had the same spatial resolution as that of the NDVI data.

Using the Atlas of China (scale, 1:1,000,000; http://www.resdc.cn), vegetation type was divided
into four main biomes (forest, grassland, crop, and desert). Because of large regional east–west trending
heterogeneities in the grasslands of the region, we divided the grassland biome into meadow steppe,
typical steppe, and desert steppe types, according to the criteria of the Rangeland resource of China [26]
(intra zonal vegetation types, such as meadows, were not considered in the study). The Atlas of China
data were then converted to the same spatial resolution as that of the NDVI data set. To avoid biases
related to the effects of land use change on NDVI values during the study period, we discarded pixels
from the data set if land use change in the pixel area was evident during the period between the 1980s
and 2000s. The criteria for rejecting pixels were based on land use patterns inferred from maps of Inner
Mongolia available for the start and end of the study period (1980s and 2000s), provided by the Data
Center for Resources and Environmental Sciences of the Chinese Academy of Sciences (DCRESCAS;
http://www.resdc.cn) at a spatial resolution of 1 km. In addition, to reduce the influence of land use
heterogeneity on NDVI as much as possible, we rejected pixels if the area of the dominant land use
type was less than 50% of the area of the pixel. Specifically, we began by extracting land use types for
datasets from the 1980s and 2000s, then converted these data with the same resolution as that of the
NDVI and masked each land use type of the two periods, to get the pixels without land use change
during the 1980s and 2000s. We then used these pixels to mask the vegetation types obtained above.
Results of the vegetation survey are presented in Figure 1.

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
http://www.resdc.cn
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2.3. Methods

The coefficient of variation (CV) is a statistical index describing the degree of a variable relative to
its mean, and has been regarded as a useful indicator of interannual variability or an ecosystem [6,13].
In this study, the CV value was used to investigate the magnitudes of interannual variability of the
NDVI, temperature, and precipitation during the period of 1982–2015. Pearson correlation analyses
between the CV values of the NDVI and those of the two climate variables for each biome at growing
season and monthly scales were applied to explore the impacts of climate variables on the interannual
variation pattern of NDVI variability. The slope of the linear regression between CV values of the
NDVI and those of the climate variable was determined as the response magnitude of the CV values of
the NDVI to the variation in climate variables. In order to completely and deeply understand these
spatial relationships, the geographical detector was then applied to identify the climatic determinants
for each biome. In this approach, the q statistic was used to measure the correlation between CVs of
the growing season NDVI and CVs of each climate variable, according to the consistency between their
spatial distributions, without an assumption of linearity [27]. Moreover, we conducted geographically
weighted regression (GWR) to explore the spatial relations of CV values of the growing season NDVI
to the variability of different climatic factors within each biome. This method is helpful to reveal
the spatial relations by addressing the issue of a spatial non-stationary process [19]. Additionally,
we also calculated the Pearson correlations between the CVs of the monthly NDVI and those of climate
variables in the previous month during the growing season for each biome in order to examine the
time lag effects.

3. Results

3.1. Spatial Patterns of NDVI Variability for Biomes

3.1.1. Patterns in the Growing Season

Figure 2 illustrates the spatial patterns of CVs of the growing season NDVI, precipitation, and
temperature in the study area during the period 1982–2015. Generally, the CV of the growing season
NDVI showed dramatic variations (0.01–0.33), with a mean value of 0.07. The entire middle area
showed relatively large variations in the growing season CV values, whereas the smaller CV values
were mainly located in the northeast and southwest (Figure 2a). The CV of the growing season
temperature showed a decreasing pattern from northeast to southwest, with a mean value of 0.05
(Figure 2b). In comparison, most of the central area exhibited relatively small variations in precipitation
(0.20–0.30), whereas the CV of the growing season precipitation became larger in the northwest part of
the west and east region (Figure 2c).

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 17 

 

The coefficient of variation (CV) is a statistical index describing the degree of a variable relative 
to its mean, and has been regarded as a useful indicator of interannual variability or an ecosystem 
[6,13]. In this study, the CV value was used to investigate the magnitudes of interannual variability 
of the NDVI, temperature, and precipitation during the period of 1982–2015. Pearson correlation 
analyses between the CV values of the NDVI and those of the two climate variables for each biome at 
growing season and monthly scales were applied to explore the impacts of climate variables on the 
interannual variation pattern of NDVI variability. The slope of the linear regression between CV 
values of the NDVI and those of the climate variable was determined as the response magnitude of 
the CV values of the NDVI to the variation in climate variables. In order to completely and deeply 
understand these spatial relationships, the geographical detector was then applied to identify the 
climatic determinants for each biome. In this approach, the q statistic was used to measure the 
correlation between CVs of the growing season NDVI and CVs of each climate variable, according to 
the consistency between their spatial distributions, without an assumption of linearity [27]. 
Moreover, we conducted geographically weighted regression (GWR) to explore the spatial relations 
of CV values of the growing season NDVI to the variability of different climatic factors within each 
biome. This method is helpful to reveal the spatial relations by addressing the issue of a spatial 
non-stationary process [19]. Additionally, we also calculated the Pearson correlations between the 
CVs of the monthly NDVI and those of climate variables in the previous month during the growing 
season for each biome in order to examine the time lag effects.  

3. Results 

3.1. Spatial Patterns of NDVI Variability for Biomes 

3.1.1. Patterns in the Growing Season 

Figure 2 illustrates the spatial patterns of CVs of the growing season NDVI, precipitation, and 

temperature in the study area during the period 1982–2015. Generally, the CV of the growing season 

NDVI showed dramatic variations (0.01–0.33), with a mean value of 0.07. The entire middle area 

showed relatively large variations in the growing season CV values, whereas the smaller CV values 

were mainly located in the northeast and southwest (Figure 2a). The CV of the growing season 

temperature showed a decreasing pattern from northeast to southwest, with a mean value of 0.05 

(Figure 2b). In comparison, most of the central area exhibited relatively small variations in 

precipitation (0.20–0.30), whereas the CV of the growing season precipitation became larger in the 

northwest part of the west and east region (Figure 2c).  

 

 

 

 
(a) (b) 

 
Figure 2. Cont.



Remote Sens. 2020, 12, 1332 5 of 17
Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 17 

 

 
(c) 

Figure 2. Spatial distributions of the coefficient of variation (CV) of the growing season normalized 
difference vegetation index (NDVI ) (a), temperature (b), and precipitation (c) in Inner Mongolia 
during 1982–2015. The insets show the frequency distributions of the corresponding CV values. 

At the biome scale, the CV values of the growing season NDVI show large variations among the 
six vegetation types (Figure 3a). The lowest variation occurred in the forest biome (0.037), whereas 
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for desert and the minimum was 0.22 for forest and crop, which were much higher than the 
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Figure 2. Spatial distributions of the coefficient of variation (CV) of the growing season normalized
difference vegetation index (NDVI ) (a), temperature (b), and precipitation (c) in Inner Mongolia during
1982–2015. The insets show the frequency distributions of the corresponding CV values.

At the biome scale, the CV values of the growing season NDVI show large variations among the
six vegetation types (Figure 3a). The lowest variation occurred in the forest biome (0.037), whereas the
average growing season CV value was 0.044 for desert, 0.067 for meadow steppe, 0.095 for typical
steppe, 0.096 for desert steppe, and 0.072 for crop. These findings indicate that typical steppe and
desert steppe were less stable than the other biomes. Additionally, the temperature showed fluctuation
trends nearly opposite to those of the growing season NDVI across all biomes except for desert and
crop (Figure 3b). The maximum CV value for the growing season precipitation was 0.28 for desert and
the minimum was 0.22 for forest and crop, which were much higher than the corresponding values for
NDVI and temperature (Figure 3c).
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Figure 3. Mean CV of the growing season NDVI (a), temperature (b), and precipitation (c) for forest
(For), meadow steppe (Mea), typical steppe (Typ), desert steppe (Deg), desert (Des), and crop (Cro) in
Inner Mongolia during 1982–2015. The bottom and top edges of each blue box represent the 25th and
75th percentiles, respectively. The horizontal red line in each blue box indicates the median values.
The open black square in each blue box means mean values. The black whiskers extend to the 1.5 times
the interquartile range. Red crosses represent outliers.
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3.1.2. Variability by Month

There were considerable differences in the monthly CV values of NDVI for different biomes
(Figure 4). The CV values for NDVI in forest and meadow steppe were lower in July and August than
in the other months, especially in the early and later times of the growing season, which indicates that
these biomes were more stable in the summer time. In contrast, for the typical steppe, desert steppe,
and desert, the CV values of the NDVI were generally lower in spring and higher in summer. The CV
value was highest in June and July for the typical steppe, and July and August for the desert steppe,
and August and September for the desert, indicating an obvious time gradient across these biomes.
Of all the biomes, the desert biome exhibited a more obvious spatial heterogeneity of the CV value,
whereas there was quite high spatial consistency in crop. Additionally, the results of the correlation
analysis demonstrated that the CV values of the growing season NDVI were most closely related to
that of the NDVI in August for the forest, meadow steppe, typical steppe, and crop biomes, while in
September for the desert and desert steppe biomes.

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 17 

 

Figure 3. Mean CV of the growing season NDVI (a), temperature (b), and precipitation (c) for forest 
(For), meadow steppe (Mea), typical steppe (Typ), desert steppe (Deg), desert (Des), and crop (Cro) 
in Inner Mongolia during 1982–2015. The bottom and top edges of each blue box represent the 25th 
and 75th percentiles, respectively. The horizontal red line in each blue box indicates the median 
values. The open black square in each blue box means mean values. The black whiskers extend to the 
1.5 times the interquartile range. Red crosses represent outliers. 

3.1.2. Variability by Month 

There were considerable differences in the monthly CV values of NDVI for different biomes 
(Figure 4). The CV values for NDVI in forest and meadow steppe were lower in July and August 
than in the other months, especially in the early and later times of the growing season, which 
indicates that these biomes were more stable in the summer time. In contrast, for the typical steppe, 
desert steppe, and desert, the CV values of the NDVI were generally lower in spring and higher in 
summer. The CV value was highest in June and July for the typical steppe, and July and August for 
the desert steppe, and August and September for the desert, indicating an obvious time gradient 
across these biomes. Of all the biomes, the desert biome exhibited a more obvious spatial 
heterogeneity of the CV value, whereas there was quite high spatial consistency in crop. 
Additionally, the results of the correlation analysis demonstrated that the CV values of the growing 
season NDVI were most closely related to that of the NDVI in August for the forest, meadow steppe, 
typical steppe, and crop biomes, while in September for the desert and desert steppe biomes.  

 

 

 

 
(a) (b) 

 

 

 

 
(c) (d) 

 

 

 

 
(e) (f) 

Figure 4. Mean CV of the monthly NDVI during the growing season for the (a) forest, (b) meadow,
(c) typical steppe, (d) desert steppe, (e) desert, and (f) crop biomes in Inner Mongolia from 1982 to
2015. The bottom and top edges of each blue box represent the 25th and 75th percentiles, respectively.
The horizontal red line in each blue box indicates the median values. The open black square in each
blue box means mean values. The black whiskers extend to the 1.5 times the interquartile range. Red
crosses represent outliers.

3.2. Spatial Relationships between the NDVI Variability and Those of Temperature and Precipitation

3.2.1. Correlation in the Growing Season

The relationship between variation in the growing season NDVI and variation in temperature
differed greatly among the biomes (Figure 5). For the forest and steppe biomes, the CVs of the growing
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season NDVI were significantly related to those of temperature, with a linear slope less than 1. That is,
the CV of the growing season NDVI is a smaller proportion of the CV of the growing season temperature
in regions where the CV of the growing season temperature is larger compared with regions in which
the CV of the growing season temperature is small. This indicates that these ecosystems have the
capacity to buffer temperature variability (Figure 5a). In addition, slopes for the meadow and forest
were significantly less than those for the typical steppe and desert steppe, indicating that the buffering
capacity of these two biomes is greater than that of the other biomes. In contrast, the desert tends
to amplify temperature variations, with a slope value of 1.18 (Figure 5e). There was no relationship
between the variation CVs of the growing season NDVI and the temperature for crop (Figure 5f).
At the regional scales, no significant relationships were detected between variations in the growing
season NDVI and variations in temperature. That is, variations in temperature may not be a useful
predictor of variation patterns in the growing season NDVI across the six biomes. The geographical
detector showed that the explanatory power of the temperature variations to the spatial distribution
of the CVs of the growing season NDVI in Inner Mongolia was 13.15%, with a significant difference
among biomes. The power of the variations in temperature for determining the CVs of the growing
season NDVI was larger for the meadow steppe and desert steppe, and smaller for crop (Figure 6a),
which is in accordance with the result of Figure 5. Spatially, the regression coefficients from the GWR
model demonstrated that the relationship between the CVs of the growing season NDVI and those
of the temperature varied spatially, and is positive for most parts of the forest, typical steppe, desert
steppe, and desert, whereas negative for most regions for the crop and meadow steppe (Figure 6b).
These results are also consistent with the above linear regression analysis.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 17 
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Inner Mongolia during 1982–2015: (a) forest, (b) meadow steppe, (c) typical steppe, (d) desert steppe,
(e) desert, and (f) crop.

The CVs of the growing season NDVI were significantly related to those of precipitation for all
biomes (Figure 7). For the three steppe biomes, the CVs of the growing season NDVI were positively
correlated with those of precipitation (R = 0.18 for meadow steppe, R = 0.38 for typical steppe, R =

0.27 for desert steppe; the slopes of the relationships for the different vegetation types were 0.13, 0.16,
and 0.17, respectively; Figure 7b–d). These correlations imply that, although the CVs of vegetation
in arid or semi-arid regions may increase with increasing variations in precipitation, the ratio of the
variability in NDVI to that of the growing season precipitation will be lower. In contrast, an opposite
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relationship between the CVs of the growing season NDVI and those of precipitation occurred in
the forest, desert, and crop biomes. That is, the CVs of vegetation tend to decrease with increasing
variations in precipitation (Figure 7a,e,f). This implies that the buffering capacity of these biomes is
sufficiently large to respond to variations in precipitation. In addition, the magnitude of the growing
season NDVI variation was slightly smaller than that of precipitation, indicating that all of these
vegetation types are more stable than precipitation fluctuation. At the regional scales, no significant
relationships were detected between the variations in the CVs of the growing season NDVI and those of
precipitation. Based on the geographical detector method, the explanatory power of the precipitation
variations on the CVs of NDVI was higher than 10% for the crop, desert steppe, and meadow steppe,
with the highest in the typical steppe (Figure 8a). Similar to the result from the linear regression,
the GWR model exhibited that the CVs of the growing season NDVI were negatively related to those
of precipitation in the forest and most parts of the desert, whereas they were positively related in most
parts of the meadow steppe, typical steppe, and desert steppe (Figure 8b).
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3.2.2. Relationship by Month

As demonstrated in Table 1, the CVs of the monthly NDVI for the forest were significantly
negatively related to the CVs of temperature in April and June, while the relationships became positive
in May and August–October, with the largest determinant coefficient in September. Similar patterns
were found for the meadow steppe, except for June, July, and October. By contrast, there were positive
relationships between the CVs of the monthly NDVI and those of temperature for all months across
the growing season for the typical steppe. Additionally, positive correlations between the CVs of
temperature and those of NDVI occurred in most months for the desert steppe (except for April
and August), crop (except for April and October), and desert (except for May, July, and October).
Interestingly, the linear slope values were not always lower than 1, especially in August for the typical
steppe, desert, and crop, indicating that these ecosystem can amplify the temperature variations in
summer time.

The relationships between the CVs of monthly NDVI and those of precipitation are shown in
Table 2. In particular, there were negative correlations between the CVs of precipitation and those of
NDVI in all months for the desert and months except in July for the forest. For the steppes, the CVs
of the monthly NDVI were positively related to the CVs of precipitation in July and August for the
meadow steppe; May, July, and August for the typical steppe; and May and July to October for the desert
steppe, with negative or insignificant relations for other months. Additionally, for crop, the relationship
was more complicated: Positive correlations in May, June, and September, and negative relationships
in July and August. All of the biomes tend to have a capacity to buffer precipitation variability.
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Table 1. Relationships between the CVs of monthly temperature and those of the NDVI for different biomes in Inner Mongolia from 1982 to 2015.

Vegetation Type
April May June July August September October

Slope R Slope R Slope R Slope R Slope R Slope R Slope R

Forest −0.00 −0.54 ** 0.09 0.14 ** −0.29 −0.17 ** −0.02 −0.01 0.24 0.20 ** 0.28 0.58 ** 0.00 0.06 *
Meadow steppe −0.00 −0.19 ** 0.82 0.56 ** −0.14 −0.05 1.87 0.32 ** 0.29 0.08 * 0.15 0.15 ** 0.00 0.06
Typical steppe 0.03 0.37 ** 0.49 0.37 ** 1.14 0.62 ** 0.73 0.21 ** 1.16 0.32 ** 0.26 0.23 ** 0.00 0.12 **
Desert steppe 0.01 0.02 0.57 0.24 ** 0.78 0.27 ** 0.80 0.21 ** 0.12 0.02 0.15 0.06 * 0.12 0.27 **

Desert 0.14 0.12 ** −0.33 −0.06 ** 0.82 0.13 ** −0.13 −0.01 7.34 0.56 ** 3.70 0.33 ** 0.04 0.03
Crop 0.00 0.01 0.44 0.21 ** 0.29 0.15 ** 1.33 0.23 ** 1.65 0.53 ** 0.34 0.28 ** 0.00 0.02

** and * means the significance level p < 0.01 and p < 0.05.

Table 2. Relationships between the CVs of monthly precipitation and those of the NDVI for different biomes in Inner Mongolia from 1982 to 2015.

Vegetation Type
April May June July August September October

Slope R Slope R Slope R Slope R Slope R Slope R Slope R

Forest −0.33 −0.57 ** −0.10 −0.24 ** −0.08 −0.18 ** 0.05 0.19 ** −0.02 −0.11 ** −0.10 −0.28 ** −0.06 −0.12 **
Meadow steppe −0.08 −0.28 ** 0.04 0.08 −0.03 −0.04 0.55 0.59 ** 0.21 0.27 ** −0.05 −0.14 ** 0.00 0.01
Typical steppe −0.04 −0.15 ** 0.07 0.17 ** −0.07 −0.13 ** 0.32 0.49 ** 0.15 0.27 ** −0.03 −0.08 ** −0.01 −0.02
Desert steppe 0.04 −0.20 ** 0.05 0.21 ** 0.01 0.05 0.23 0.42 ** 0.24 0.42 ** 0.18 0.29 ** 0.07 0.27 **

Desert −0.02 −0.19 ** −0.05 −0.30 ** −0.14 −0.24 ** −0.17 −0.37 ** −0.15 −0.41 ** −0.13 −0.57 ** −0.03 −0.26 **
Crop 0.03 0.08 0.06 0.16 ** 0.12 0.22 ** −0.18 −0.22 ** −0.21 −0.36 ** −0.07 0.32 ** −0.03 −0.08

** and * means the significance level p < 0.01 and p < 0.05.
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3.3. Lagged Effect of Climate Change

The relationships between the CVs of monthly NDVI and those of temperature in the previous
month were stronger than those without considering the time lag effects for most biomes (except for
desert steppe) in the later period of the growing season (Table 3). For example, in September and October,
the R values with one month lag were 0.65 and 0.19 for forest, 0.44 and 0.28 for meadow steppe, 0.34 and
0.38 for typical steppe, 0.56 and 0.32 for desert, and 0.48 and 0.24 for crop, which are larger than those
without considering the time lag effects. In comparison, the relationship between the CVs of the monthly
NDVI and those of precipitation in the previous month was more complicated, differing among the
specific months of the growing season and biome types, especially for the steppes and desert (Table 4).
At the growing season scale, the CVs of the growing season NDVI were significantly associated with
those of the March–September temperatures and precipitations, similar to that between the CVs of NDVI
and those of climate variables during the growing season for all biomes except for crop (Table 5).

Table 3. Correlations between the CVs of monthly NDVI and those of the temperature in the previous
month for different biomes in Inner Mongolia from 1982 to 2015.

Vegetation Type
Correlation Coefficient (R)

April May June July August September October

Forest 0.21 ** 0.06 * −0.26 ** −0.24 ** 0.05 0.65 ** 0.19 **
Meadow steppe 0.22 ** 0.16 ** −0.17 ** −0.45 ** −0.32 ** 0.44 ** 0.28 **
Typical steppe 0.01 0.27 ** 0.56 ** 0.13 ** 0.13 ** 0.34 ** 0.38 **
Desert steppe 0.03 0.29 ** 0.30 ** 0.23 ** 0.16 ** 0.01 0.22 **

Desert 0.02 0.12 ** −0.04 * 0.10 ** 0.01 0.56 ** 0.32 **
Crop 0.06 0.21 ** 0.14 ** −0.36 ** 0.32 ** 0.48 ** −0.24 **

** and * means the significance level p < 0.01 and p < 0.05. Bolded black numbers denote larger correlation coefficients
between the monthly mean NDVI and the corresponding climate variables in the preceding month, compared with
those for climate variables in the same month. Bolded red numbers denote an opposite correlation between the
monthly mean NDVI and the corresponding climate variables in the preceding month, compared with those for
climate variables in the same month.

Table 4. Correlations between the CVs of monthly NDVI and those of the precipitation in the previous
month for different biomes in Inner Mongolia from 1982 to 2015.

Vegetation Type
Correlation Coefficient

April May June July August September October

Forest −0.12 ** −0.14 ** 0.11 ** 0.02 −0.09 ** −0.25 ** −0.05
Meadow steppe −0.11 * −0.35 ** 0.31 ** −0.07 0.55 ** 0.16 ** −0.34 **
Typical steppe 0.19 ** −0.14** 0.38 ** 0.04 0.43 ** 0.36 ** −0.19 **
Desert steppe 0.35 ** 0.20** 0.22 ** −0.04 0.34 ** 0.33 ** 0.31 **

Desert −0.36 ** −0.24 ** −0.31 ** −0.19 ** −0.41 ** −0.45 ** −0.38 **
Crop −0.04 −0.26 ** 0.12** −0.07 −0.23 ** −0.40 ** 0.01

** and * means the significance level p < 0.01 and p < 0.05. Bolded black numbers denote larger correlation coefficients
between the monthly mean NDVI and the corresponding climate variables in the preceding month, compared with
those for climate variables in the same month. Bolded red numbers denote an opposite correlation between the
monthly mean NDVI and the corresponding climate variables in the preceding month, compared with those for
climate variables in the same month.

Table 5. Correlations between the CVs of growing season NDVI and those of climate variables during
March-September for different biomes in Inner Mongolia from 1982 to 2015.

Vegetation
Type

Correlation Coefficient

Forest Meadow Steppe Typical Steppe Desert Steppe Desert Crop

Precipitation −0.11 ** 0.25 ** 0.41 ** 0.27 ** −0.28 ** 0.14 **
Temperature 0.19 ** −0.24 ** 0.18 ** 0.25 ** 0.25 ** −0.03

** and * means the significance level p < 0.01 and p < 0.05. Bolded black numbers denote larger correlation coefficients
between the monthly mean NDVI and the corresponding climate variables in the preceding month, compared with
those for climate variables in the same month.
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4. Discussion

4.1. Variability Patterns of NDVI for Vegetation Biomes

Evidence from previous observational studies indicates that the largest CVs of annual aboveground
net primary productivity (ANPP) are in grassland biomes, followed by that in crop and desert biomes,
whereas the CVs of annual ANPP in forest biomes are distinctly smaller than those for other vegetation
types [6]. These patterns are consistent with the results of the present study. However, the CVs of the
growing season NDVI in our study are about half of those found in another study [6] and about half of
the CV values for corresponding steppes in Inner Mongolia as determined by direct measurements
of annual ANPP [28]. This discrepancy could be attributed to differences in the spatial scales of
ANPP measurements obtained by direct measurement versus those inferred from NDVI. For instance,
species composition, frequency, and abundance of key species may be the main factor determining
vegetation variations at the site level [28,29], whereas vegetation variations could be mainly related to
the compositions of plant communities at a large scale [30]. It is well known that ecosystem stability
progressively increases as increases in the hierarchy of organizational levels due to compensatory
interactions among major components of the ecosystem [31,32]. An increase in sample size is often
associated with a reduction in variance of the variable being measured [33]. In addition, a study based
on annual NDVI data during the period 1982–1999 across biomes in China showed that the largest
variability of the NDVI occurs in the desert biome, followed by variability for herbaceous vegetation
and for the forest biome [12]. These differences can perhaps be attributed to the extent of spatial
coverage of the two studies and to the fact that in the present study, biases associated with land use
changes were removed from the data set.

4.2. Correlations between NDVI Variability and Climate Change

The CVs of the growing season NDVI are significantly associated with interannual variations
in corresponding temperatures and precipitations at the biome scale. These findings are generally
consistent with those of previous studies at biome scales [12,33]. In this study, however, we did
not observe a relationship between the CVs of the growing season NDVI and those of temperature
and precipitation at regional scales, as was observed in the study across the whole of China [12].
However, the results of this study are consistent with those of Knapp and Smith [6], who also did
not find a relationship between interannual variations in precipitation and those in ANPP across
biomes in North America. Numerous studies have suggested that terrestrial ecosystems exhibit
complex behaviors in response to climate change, and that responses vary significantly among different
vegetation types [27,34]. Variations in temperate and boreal vegetation tend to be positively correlated
with present-day temperature anomalies. In contrast, tropical and arid ecosystems often show negative
correlations between those temperature and vegetation variations [35].

In this study, patterns of correlation between the CV of the NDVI and that of precipitation
and temperature differ dramatically among biomes at the growing season scale. The forest biome
(a temperate humid or sub-humid ecosystem) shows a positive correlation of the CV of the growing
season NDVI with that of the growing season temperature, but a negative correlation with that of the
growing season precipitation. Forest in this region is always located in areas with relatively abundant
rainfall and low temperatures, where temperature is the dominant limiting factor on growth (rather than
precipitation); thus, vegetation activity always responds positively to temperature anomalies [36,37].
However, a large increase in the amount of rainfall can increase humidity and cloudiness, which can
lower temperatures and reduce solar radiation [37,38]. Such factors may decrease forest growth during
wet years, which can perhaps offset the positive effects of precipitation on vegetation, thus leading to
a minor change in biome productivity. In contrast, steppe (temperate semi-arid ecosystems) shows
opposite patterns between the CV of the NDVI and that of precipitation as those of forest. In steppes,
precipitation is a key factor for grass growth, suggesting that the growing season NDVI responds
directly to rainfall anomalies [39,40]. From the meadow steppe to the desert steppe, the response of
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grass to precipitation variation may be much stronger due to an increased moisture deficit. Meanwhile,
the potential effects of extreme temperature on grass growth could be more severe in drier areas because
of the induced evapotranspiration demand [41,42]. In addition, in arid ecosystems (desert biomes),
water stress severely limits vegetation growth. Rainfall events can promote the growth of many
ephemeral species, known as blooming events in deserts [43]. However, anomalously rising or falling
temperatures can cause dramatic variations in moisture deficits, thus resulting in devastating damage
or compensatory growth, respectively; this may explain why the CVs of the growing season NDVI for
desert biomes are positively related to interannual variabilities in temperature, and why deserts tend
to amplify temperature variations. Crop biomes are mainly artificial ecosystems in which humans
play a critical role in regulating vegetation function, and the mechanisms that underlie a negative
relationship between the CVs of the growing season NDVI and those of climate variables require further
study. It has been widely reported that a lagged vegetation response to climate change may exist, but
the length of the lag time is likely to vary spatially and temporally [35,37,44]. For example, Braswell et
al. reported that NDVI had a 2-year lagged response to temperature [35]. Piao et al. suggested the
lag time to temperature and precipitation was approximately three months [44]. Our results show
that the a one-month lagged response of NDVI to climate changes was significant at both the growing
season scale and the monthly scale, affirming the importance of considering the time lag effects in
investigating the NDVI response to climate changes.

4.3. Uncertainties

In this study, we calculated the relationships between the CVs of the growing season NDVI and
those of temperature and precipitation for each biome in Inner Mongolia, after minimizing the impacts
from land use changes. However, uncertainties remain from the definition of the growing season length.
Observation-based studies have shown that the growing season would vary in length depending on
the species, biome regions, and climate change across Inner Mongolia [45,46], despite the period from
April to October being regarded as the growing season by several studies [47]. However, due to the
limitations of the phenological observations, it is difficult to gain the whole species-averaged growing
season information at the regional scale. Accurate assessment of the growing season period for biomes
is needed for further study in the future. In order to characterize these uncertainties, we calculated the
thermal growing season, one of the main techniques to capture the growing season length at relatively
larger spatial scales, based on the observed daily mean air temperature of 46 meteorological stations
across Inner Mongolia. This was defined as the period from the first appearance of five consecutive
days with the 5-day moving average daily temperature higher than 0 ◦C to the last appearance of five
consecutive days with T > 0 ◦C in autumn. The result showed that the mean onset of the growing
season was the 82th day for the crop and grass region but the 97th for the forest area (Julian day),
while the corresponding cessation dates were the 309th, 306th, and 292th day (Julian day), respectively.
This confirmed that the definition of the growing season period from April to October was broadly
reasonable. In addition, although we tried to eliminate the bias related to the effects of land use change
on NDVI values, the pixels with no land use change only between the 1980s and 2000s could still result
in some uncertainties.

On the other hand, spatial autocorrelation could also influence the results of correlation analyses.
Several methods have been developed to correct the effects of spatial autocorrelation for spatial analysis,
such as autocovariate regression, simultaneous autoregressive models, conditional autoregressive
models, and so on [48–50], but these models are complicated and sensitive to the model set-up, such as the
model structure, neighborhood distance, and coding styles of spatial weights matrices [51]. Additionally,
these methods assume spatial stationarity and isotropic spatial autocorrelation [52]. Nevertheless,
under actual geographical conditions, anisotropic spatial autocorrelation and non-stationarity in spatial
patterns may appear [53]. It would be expected that spatial regression may not be very robust to
violations of this assumption. Thus, although spatial autocorrelation models have been known for
decades in the statistical literature, their application in the ecological literature has been limited up to
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now [54]. Further investigation of the effect of spatial autocorrelation is clearly a question deserving
future research.

5. Conclusions

Based on the latest updated GIMMS NDVI data from 1982–2015, we explored the interannual
variability in NDVI for different biomes in Inner Mongolia and their responses to climatic factors.
The results demonstrated that the CVs of the growing season NDVI were most variable for desert steppe
and typical steppe, followed by crop and meadow steppe, desert, and forest. In addition, the desert
biome exhibited a more obvious spatial heterogeneity of the CV value, whereas there was quite high
spatial consistency in crop, which may be related to the agriculture management. Interannual variations
of NDVI during the growing season were generally related to those of the corresponding temperature
and precipitation at the biome scales, and even most closely related to those of previous months,
indicating a strong one-month lagged response of NDVI variation to climate variables. However,
the correlations differed dramatically among biomes and months, exhibiting unique biome-dependent
responses. Additionally, the slopes of the linear regression between variations in the growing season
NDVI and those of climate variables for steppes, crop, and forest were less than 1, indicating that the
biomes have a capacity to buffer climate variable fluctuations, whereas desert tends to amplify the
variation in temperature. Many mechanisms may account for the buffer response of vegetation to
climate variability, such as plant physiological adjustments [55], transfer of soil water from one month
or one season to the next, mineral nutrient supply [56], and compensatory interactions among major
components at both the species and functional group levels [28]. These findings are of importance to
support the development of improved management strategies.

Author Contributions: Conceptualization, L.G., J.G. and S.M.; Methodology & Software, L.Z., Y.J. and L.G.;
Formal Analysis, L.Z., Y.J. and L.G.; Writing-Original Draft Preparation, L.G., J.G. and Y.Z.; Writing-Review
& Editing, L.G., Y.Z. and S.W.; Supervision, L.G., J.G., Y.Z. and S.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported by the Natural Science Foundation of China (No. 41601580, 41671098,
U1904210), National Key Research and Development Program of China (No. 2017YFD0301106-1, 2018YFC1508900,
2018YFC1508801), Research Projects of Land and Resources in Henan Province (No. 20190450-7), Innovative
Research Team of Henan Polytechnic University (No. T2018-4), and Doctor Foundation of Henan University of
Technology (No. B2015-22).

Acknowledgments: We thank the journal editor and the anonymous reviewers for their useful comments and
great efforts on this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lemordant, L.; Gentine, P.; Swann, A.S.; Cook, B.I.; Scheff, J. Critical impact of vegetation physiology on the
continental hydrologic cycle in response to increasing CO2. Proc. Natl. Acad. Sci. USA 2018, 115, 4093–4098.
[CrossRef]

2. Yuan, W.; Piao, S.; Qin, D.; Dong, W.; Xia, J.; Lin, H.; Chen, M. Influence of Vegetation Growth on the
Enhanced Seasonality of Atmospheric CO2. Glob. Biogeochem. Cycles 2018, 32, 32–41. [CrossRef]

3. Gao, J.; Jiao, K.; Wu, S.; Ma, D.; Zhao, D.; Yin, Y.; Dai, E. Past and future effects of climate change on spatially
heterogeneous vegetation activity in China. Earth’s Future 2017, 5, 679–692. [CrossRef]

4. Ding, Y.; Xu, J.; Wang, X.; Peng, X.; Cai, H. Spatial and temporal effects of drought on Chinese vegetation
under different coverage levels. Sci. Total Environ. 2020, 716, 137166. [CrossRef] [PubMed]

5. Zscheischler, J.; Michalak, A.M.; Schwalm, C.; Mahecha, M.D.; Huntzinger, D.N.; Reichstein, M.; Berthier, G.;
Ciais, P.; Cook, R.B.; El-Masri, B. Impact of large-scale climate extremes on biospheric carbon fluxes:
An intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 2014, 28, 585–600. [CrossRef]

6. Knapp, A.K.; Smith, M.D. Variation among biomes in temporal dynamics of aboveground primary production.
Science 2001, 291, 481–484. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.1720712115
http://dx.doi.org/10.1002/2017GB005802
http://dx.doi.org/10.1002/2017EF000573
http://dx.doi.org/10.1016/j.scitotenv.2020.137166
http://www.ncbi.nlm.nih.gov/pubmed/32069697
http://dx.doi.org/10.1002/2014GB004826
http://dx.doi.org/10.1126/science.291.5503.481
http://www.ncbi.nlm.nih.gov/pubmed/11161201


Remote Sens. 2020, 12, 1332 15 of 17

7. Lu, Q.; Zhao, D.; Wu, S.; Dai, E.; Gao, J. Using the NDVI to analyze trends and stability of grassland vegetation
cover in Inner Mongolia. Theor. Appl. Climatol. 2019, 135, 1629–1640. [CrossRef]

8. Ju, J.; Masek, J.G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data.
Remote Sens. Environ. 2016, 176, 1–16. [CrossRef]

9. Zhao, L.; Dai, A.; Dong, B. Changes in global vegetation activity and its driving factors during 1982–2013.
Agric. For. Meteorol. 2018, 249, 198–209. [CrossRef]

10. Guo, M.; Li, J.; He, H.; Xu, J.; Jin, Y. Detecting global vegetation changes using mann-kendal (MK) trend test
for 1982–2015 time period. Chin. Geogr. Sci. 2018, 28, 907–919. [CrossRef]

11. Meng, M.; Huang, N.; Wu, M.; Pei, J.; Wang, J.; Niu, Z. Vegetation change in response to climate factors and
human activities on the Mongolian Plateau. PeerJ 2019, 7, e7735. [CrossRef] [PubMed]

12. Fang, J.; Piao, S.; Tang, Z.; Peng, C.; Ji, W. Interannual variability in net primary production and precipitation.
Science 2001, 293, 1723. [CrossRef] [PubMed]

13. De Keersmaecker, W.; Lhermitte, S.; Honnay, O.; Farifteh, J.; Somers, B.; Coppin, P. How to measure ecosystem
stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the
major global ecosystems. Glob. Chang. Biol. 2014, 20, 2149–2161. [CrossRef] [PubMed]

14. Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield
variability. Nat. Commun. 2015, 6, 5989. [CrossRef] [PubMed]

15. Sloat, L.L.; Gerber, J.S.; Samberg, L.H.; Smith, W.K.; Herrero, M.; Ferreira, L.G.; Godde, C.M.; West, P.C.
Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Chang. 2018,
8, 214–218. [CrossRef]

16. Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities
using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382.
[CrossRef]

17. Lauenroth, W.; Sala, O.E. Long-term forage production of North American shortgrass steppe. Ecol. Appl.
1992, 2, 397–403. [CrossRef]

18. Wu, C.; Wang, L.; Niu, Z.; Gao, S.; Wu, M. Nondestructive estimation of canopy chlorophyll content using
Hyperion and Landsat/TM images. Int. J. Remote Sens 2010, 31, 2159–2167. [CrossRef]

19. Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual variations in growing-season NDVI and its correlation with
climate variables in the southwestern karst region of China. Remote Sens. 2015, 7, 11105–11124. [CrossRef]

20. Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate
changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062.
[CrossRef] [PubMed]

21. Brogaard, S.; Runnström, M.; Seaquist, J.W. Primary production of Inner Mongolia, China, between 1982 and
1999 estimated by a satellite data-driven light use efficiency model. Glob. Planet. Chang. 2005, 45, 313–332.
[CrossRef]

22. Wu, S.; Yang, Q.; Zheng, D. Delineation of eco-geographic regional system of China. J. Geogr. Sci. 2003, 13,
309–315. [CrossRef]

23. Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J.
Remote Sens. 1986, 7, 1417–1434. [CrossRef]

24. Wang, H.; Li, X.; Li, X.; Ying, G.; Fu, N. The variability of vegetation growing season in the northern China
based on NOAA NDVI and MSAVI from 1982 to 1999. Acta Ecol. Sinica 2007, 27, 504–515. (In Chinese)

25. Tong, S.; Zhang, J.; Bao, Y. Spatial and temporal variations of vegetation cover and the relationships with
climate factors in Inner Mongolia based on GIMMS NDVI3g data. J. Arid Land 2017, 9, 394–407. [CrossRef]

26. Department of animal husbandry and veterinary; General station of animal husbandry and veterinary of
ministry of agriculture of China. Rangeland Resource of China 1996; China Science and Technology Press:
Beijing, China, 1996. (In Chinese)

27. Jiao, K.; Gao, J.; Wu, S. Climatic determinants impacting the distribution of greenness in China: Regional
differentiation and spatial variability. Int. J. Biometeorol. 2019, 63, 523–533. [CrossRef]

28. Bai, Y.; Han, X.; Wu, J.; Chen, Z.; Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia
grassland. Nature 2004, 431, 181–184. [CrossRef]

29. Su, F.; Wei, Y.; Wang, F.; Guo, J.; Zhang, J.; Wang, Y.; Guo, H.; Hu, S. Sensitivity of plant species to warming
and altered precipitation dominates the community productivity in a semiarid grassland on the Loess
Plateau. Ecol. Evol. 2019, 9, 7628–7638. [CrossRef]

http://dx.doi.org/10.1007/s00704-018-2614-2
http://dx.doi.org/10.1016/j.rse.2016.01.001
http://dx.doi.org/10.1016/j.agrformet.2017.11.013
http://dx.doi.org/10.1007/s11769-018-1002-2
http://dx.doi.org/10.7717/peerj.7735
http://www.ncbi.nlm.nih.gov/pubmed/31592100
http://dx.doi.org/10.1126/science.293.5536.1723a
http://www.ncbi.nlm.nih.gov/pubmed/11546840
http://dx.doi.org/10.1111/gcb.12495
http://www.ncbi.nlm.nih.gov/pubmed/24777443
http://dx.doi.org/10.1038/ncomms6989
http://www.ncbi.nlm.nih.gov/pubmed/25609225
http://dx.doi.org/10.1038/s41558-018-0081-5
http://dx.doi.org/10.1080/01431160119381
http://dx.doi.org/10.2307/1941874
http://dx.doi.org/10.1080/01431161003614382
http://dx.doi.org/10.3390/rs70911105
http://dx.doi.org/10.1016/j.scitotenv.2018.09.115
http://www.ncbi.nlm.nih.gov/pubmed/30290347
http://dx.doi.org/10.1016/j.gloplacha.2004.09.012
http://dx.doi.org/10.1007/bf02837505
http://dx.doi.org/10.1080/01431168608948945
http://dx.doi.org/10.1007/s40333-017-0016-4
http://dx.doi.org/10.1007/s00484-019-01683-4
http://dx.doi.org/10.1038/nature02850
http://dx.doi.org/10.1002/ece3.5312


Remote Sens. 2020, 12, 1332 16 of 17

30. Wardle, D.A.; Bonner, K.I.; Barker, G.M. Stability of ecosystem properties in response to above-ground
functional group richness and composition. Oikos 2000, 89, 11–23. [CrossRef]

31. Mcnaughton, S.J. Diversity and stability of ecological communities: A comment on the role of empiricism in
ecology. Am. Nat. 1977, 111, 515–525. [CrossRef]

32. Brown, B.L.; Downing, A.L.; Leibold, M.A. Compensatory dynamics stabilize aggregate community properties
in response to multiple types of perturbations. Ecology 2016, 97, 2021–2033. [CrossRef] [PubMed]

33. Paruelo, J.M.; Lauenroth, W.K. Interannual variability of NDVI and its relationship to climate for North
American shrublands and grasslands. J. Biogeogr. 1998, 25, 721–733. [CrossRef]

34. Harte, J.; Shaw, R. Shifting Dominance Within a Montane Vegetation Community: Results of a Climate-
Warming Experiment. Science 1995, 267, 876–880. [CrossRef] [PubMed]

35. Braswell, B.H.; Schimel, D.S.; Linder, E.; Moore III, B. The response of global terrestrial ecosystems to
interannual temperature variability. Science 1997, 278, 870–873. [CrossRef]

36. Mao, D.; Wang, Z.; Luo, L.; Ren, C. Integrating AVHRR and MODIS data to monitor NDVI changes and their
relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 528–536.
[CrossRef]

37. Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly
and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res.
2003, 108, 4401. [CrossRef]

38. Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate
vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [CrossRef]

39. Zhang, G.; Xu, X.; Zhou, C.; Zhang, H.; Ouyang, H. Responses of grassland vegetation to climatic variations
on different temporal scales in Hulun Buir Grassland in the past 30 years. J. Geogr. Sci. 2011, 21, 634–650.
[CrossRef]

40. Nicholson, S.E.; Davenport, M.L.; Malo, A.R. A comparison of the vegetation response to rainfall in the Sahel
and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim. Chang. 1990, 17,
209–241. [CrossRef]

41. Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on
terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 2007,
21, GB3018. [CrossRef]

42. Mu, S.; Yang, H.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatio-temporal dynamics of vegetation coverage
and its relationship with climate factors in Inner Mongolia, China. J. Geogr. Sci. 2013, 23, 231–246. [CrossRef]

43. Vidiella, P.E.; Armesto, J.J. Emergence of ephemeral plant species from soil samples of the Chilean coastal
desert in response to experimental irrigation. Rev. Chil. de Hist. Nat. 1989, 62, 99–107.

44. Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands
and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [CrossRef]

45. Gu, R.; Zhou, W.; Bai, M.; Li, X.; Di, R.; Yang, J. Impacts of climate change on phenological phase of herb in
the main grassland in Inner Mongolia. Acta Ecol. Sinnica 2011, 32, 767–776. (In Chinese) [CrossRef]

46. Yang, L.; Hou, Q. Phenological changes of populus simonii and its relationship with meteorological conditions
in the Eastern Inner Mongolia. J. Meteorol. Environ. 2008, 22, 39–44. (In Chinese) [CrossRef]

47. Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R.B.; Pinzon, J.E.; Tucker, C.J.; Piao, S. Recent change of
vegetation growth trend in China. Environ. Res. Lett. 2011, 6, 44027. [CrossRef]

48. Anselin, L. Under the hood issues in the specification and interpretation of spatial regression models.
Agric. Econ. 2002, 27, 247–267. [CrossRef]

49. Keitt, T.H.; Bjornstad, O.N.; Dixon, P.M.; Citron-Pousty, S. Accounting for spatial pattern when modeling
organis-environment interactions. Ecography 2002, 25, 616–625. [CrossRef]

50. Smith, P.A. Autocorrelation in logistic regression modelling of species distributions. Glob. Ecol. Biogeogr. Lett.
1994, 4, 47–61. [CrossRef]

51. Diniz-Filho, J.A.F.; Hawkins, B.A.; Bini, L.M.; De Marco, P.; Blackburn, T.M. Are spatial regression methods
a panacea or a Pandora’s box? A reply to Beale et al. (2007). Ecography 2007, 30, 848–851. [CrossRef]

52. Dormann, F.C.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hiezel, A.;
Jetz, W.; Kissling, W.D.; et al. Methods to account for spatial autocorrelation in the analysis of species
distributional data: A review. Ecography 2007, 30, 609–628. [CrossRef]

http://dx.doi.org/10.1034/j.1600-0706.2000.890102.x
http://dx.doi.org/10.1086/283181
http://dx.doi.org/10.1890/15-1951.1
http://www.ncbi.nlm.nih.gov/pubmed/27859207
http://dx.doi.org/10.1046/j.1365-2699.1998.2540721.x
http://dx.doi.org/10.1126/science.267.5199.876
http://www.ncbi.nlm.nih.gov/pubmed/17813919
http://dx.doi.org/10.1126/science.278.5339.870
http://dx.doi.org/10.1016/j.jag.2011.10.007
http://dx.doi.org/10.1029/2002JD002848
http://dx.doi.org/10.1111/j.1365-2486.2006.01123.x
http://dx.doi.org/10.1007/s11442-011-0869-y
http://dx.doi.org/10.1007/BF00138369
http://dx.doi.org/10.1029/2006GB002888
http://dx.doi.org/10.1007/s11442-013-1006-x
http://dx.doi.org/10.1016/j.gloenvcha.2006.02.002
http://dx.doi.org/10.5846/stxb201106300979
http://dx.doi.org/10.3969/j.issn.1673-503X.2008.06.008
http://dx.doi.org/10.1088/1748-9326/6/4/044027
http://dx.doi.org/10.1111/j.1574-0862.2002.tb00120.x
http://dx.doi.org/10.1034/j.1600-0587.2002.250509.x
http://dx.doi.org/10.2307/2997753
http://dx.doi.org/10.1111/j.2007.0906-7590.05358.x
http://dx.doi.org/10.1111/j.2007.0906-7590.05171.x


Remote Sens. 2020, 12, 1332 17 of 17

53. Bickford, S.A.; Laffan, S.W. Multi-extent analysis of the relationship between pteridophyte species richness
and climate. Glob. Ecol. Biogeogr. 2006, 15, 588–601. [CrossRef]

54. Kissling, W.D.; Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models.
Glob. Ecol. Biogeogr. 2008, 17, 59–71. [CrossRef]

55. Serrat-Capdevila, A.; Scott, R.L.; Shuttleworth, J.; Valdés, J.B. Estimating evapotranspiration under warmer
climates: Insights from a semi-arid riparian system. J. Hydrol. 2011, 399, 1–11. [CrossRef]

56. Sala, O.E.; Lauenroth, W.K. Small rainfall events: An ecological role in semiarid regions. Oecologia 1982, 53,
301–304. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1466-8238.2006.00250.x
http://dx.doi.org/10.1111/j.1466-8238.2007.00334.x
http://dx.doi.org/10.1016/j.jhydrol.2010.12.021
http://dx.doi.org/10.1007/BF00389004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Study Area 
	Dataset 
	Methods 

	Results 
	Spatial Patterns of NDVI Variability for Biomes 
	Patterns in the Growing Season 
	Variability by Month 

	Spatial Relationships between the NDVI Variability and Those of Temperature and Precipitation 
	Correlation in the Growing Season 
	Relationship by Month 

	Lagged Effect of Climate Change 

	Discussion 
	Variability Patterns of NDVI for Vegetation Biomes 
	Correlations between NDVI Variability and Climate Change 
	Uncertainties 

	Conclusions 
	References

