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Abstract: Agricultural drought is triggered by a depletion of moisture content in the soil, which
hinders photosynthesis and thus increases carbon dioxide (CO2) concentrations in the atmosphere.
The aim of this study is to analyze the relationship between soil moisture (SM) and vegetation activity
toward quantifying CO2 concentration in the atmosphere. To this end, the MODerate resolution
imaging spectroradiometer (MODIS), an optical multispectral sensor, was used to evaluate two
regions in South Korea for validation. Vegetation activity was analyzed through MOD13A1 vegetation
indices products, and MODIS gross primary productivity (GPP) product was used to calculate the CO2

flux based on its relationship with respiration. In the case of SM, it was calculated through the method
of applying apparent thermal inertia (ATI) in combination with land surface temperature and albedo.
To validate the SM and CO2 flux, flux tower data was used which are the observed measurement
values for the extreme drought period of 2014 and 2015 in South Korea. These two variables were
analyzed for temporal variation on flux tower data as daily time scale, and the relationship with
vegetation index (VI) was synthesized and analyzed on a monthly scale. The highest correlation
between SM and VI (correlation coefficient (r) = 0.82) was observed at a time lag of one month,
and that between VI and CO2 (r = 0.81) at half month. This regional study suggests a potential
capability of MODIS-based SM, VI, and CO2 flux, which can be applied to an assessment of the global
view of the agricultural drought by using available satellite remote sensing products.

Keywords: agricultural drought; soil moisture; vegetation activity; carbon dioxide flux; remote
sensing; optical multispectral sensor

1. Introduction

Several decades of recent climate change are mainly driven by anthropogenic influences in a
global scale. Even with the significant societal impact of the drought, it still remains challenging to
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define its causes and effects of the drought in the context of hydrological and agricultural practices.
Recent studies demonstrate that drought can be classified into various types based on the theoretical
definitions [1–5]. Agricultural drought is one of the main drought classifications. In this agricultural
drought, short-term rainfall deficit decreases soil moisture (hereafter SM) and affects vegetation
activity [6,7]. Most previous studies estimated the drought index using SM or the vegetation index
(hereafter VI), to analyze agricultural drought [6–14]. For example, Kogan derived the vegetation
health index (VHI) and the vegetation condition index (hereafter VCI) from the VI [8]. Keshavarz et al.
derived the soil wetness deficit index (hereafter SWDI) from SM [11]. Most of the recent studies used
remote sensing data as the alternative to indirectly estimate SM and VI.

Among the agricultural drought-related factors, VIs can be determined by optical sensor products.
Among the VIs, the normalized difference vegetation index (NDVI) and the enhanced vegetation index
(EVI) provided by the moderate resolution imaging spectroradiometer (MODIS) are widely used [15–18].
Generally, satellite-based soil moisture is commonly used as detected by passive microwave sensors.
Soil moisture calculated in the frequency range of L-, X-, and C-bands of microwave sensors has
been applied in many studies [19–23]. SM based on passive microwaves has high accuracy, while
spatial resolution is relatively coarse. These SM products are suitable for analyzing large areas, such as
a continent, but not catchments or smaller regions. In order to overcome spatial limitations and
pursue high-resolution data of smaller regions, an SM estimation method that uses optical sensors
has been explored [24–27]. This optics-based method is based on the relationship between land
surface temperature (hereafter LST) and land surface albedo. With this approach, the SM at 0.5-km
spatial resolution can be calculated in accordance with LST and albedo. In addition, most studies
related to agricultural drought have derived drought indices using SM and VI and by monitoring
and analyzing agricultural drought status or analyzed the relationship between vegetation activity
and photosynthesis [28–30]. However, few studies have analyzed the inter-relationship among SM,
VI, and photosynthesis. This study aims to analyze the relationship between a surface flux and a
vegetation phenology, under extreme climates such as drought. Based on data available in the literature,
we hypothesize that prolonged periods of agricultural drought cause vegetation to become inactive
and thus hamper photosynthesis. This in turn increases the amount of CO2 in the atmosphere. As part
of the research objectives, we provide evidence for this hypothesis and validate it.

To show the evidence of the CO2 increase due to the recent agricultural drought, the main parts of
this study are as follows: (a) to evaluate the applicability of optical sensor-derived SM by comparing the
MODIS data-derived SM (an optical multispectral sensor) with the SM observed in a flux tower; (b) to
examine the possibility of remote sensing-based carbon monitoring by estimating CO2 flux through
gross primary productivity (hereafter GPP), a MODIS product, and compare it with the results observed
in the flux tower; and, (c) to verify the hypothesis that prolonged periods of agricultural drought
reduce SM, hinder vegetation growth, hamper photosynthesis and thus increase CO2 concentrations.
In particular, in order to analyse the effects of soil moisture, vegetation, and CO2 under drought
condition, lag correlation analysis was performed between factors synthesized as a monthly scale. It is
intended to understand how sequential changes between factors occur in extreme climatic conditions.
There have been many studies on the impact analysis of the factors interacting between the land
surface and the atmosphere—but few studies for agricultural perspectives. This study is expected to
show the interaction relationship between the atmosphere and the land surface under extreme climatic
conditions such as agricultural drought.

2. Materials and Methods

2.1. Study Area

South Korea the study area of this research, is located at a latitude of 33–39◦N and a longitude of
124–131◦E (Figure 1). According to the International Geosphere-Biosphere Programme (IGBP) land
cover classification, the landmass of South Korea consists of mixed forests (40%), croplands (30%),



Remote Sens. 2020, 12, 1359 3 of 15

deciduous broadleaf forests (14%), woody savannas (6%), and urban and built-up areas (5%) [7,31].
Western South Korea is mostly composed of croplands, while the central and east parts are covered
with mixed and deciduous broadleaf forests. To validate the estimated remote sensing-based CO2 flux
and SM, CO2 flux and SM data of the Sulmacheon (hereafter SMC) and Cheongmicheon (hereafter
CMC) flux tower were provided by the Korea Institute of Hydrological Survey. The SMC flux tower is
in Jeokseong-myeon, Paju-si, Gyeonggi-do, and the area is a typical mountainous terrain located at
an altitude of 293 m.a.s.l. The CMC flux tower is in Janghowon-eup, Icheon-si, Gyeonggi-do, and is
composed of a rice paddy terrain (Table 1). Data in the flux tower is measured by the Eddy covariance
method, and reliable data is provided by quality control [30]. Both the CO2 flux and SM data used
in this study were extracted every 30 min, and data from 2014 and 2015 were used to analyze the
relationship between the variables during a period of extreme drought status in Korea.
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Table 1. Characteristics of the selected sites in study area.

Site Latitude (◦N) Longitude (◦E) Altitude (m) Land Cover LAI Terrain

Cheonmicheon (CMC) 37.16 127.65 141 Rice Paddy 1–2 Flat
Sulmacheon (SMC) 37.94 126.95 293 Mixed Forest 6–8 Mountainous

2.2. Optical Multispectral Sensor Dataset

We used MODIS data to calculate SM, VI, and GPP (Table 2). First, SM was calculated using LST
of MOD11A1 and land surface albedo of MCD43A3. The details are introduced in Section 2.4. For VI,
we used the NDVI of MOD13A1 and analyzed the CO2 generation according to vegetation activity
through GPP of MOD17A2H. A method for CO2 analysis using GPP is introduced in Section 2.3.
All MODIS data used in this study had a spatial resolution of 0.5 km × 0.5 km. As for the temporal
resolution, MOD11A1 and MCD43A3 data were provided daily; MOD17A2H eight days, and MOD13A1
16 days. Various MODIS land products have different temporal resolutions. As these products were
combined to calculate the drought index, they must be unified using the same time frame. Temporal
resolution is unified on a daily scale. For the eight-day product, the same value is matched for the
remaining seven days from the starting point. Similarly, the 16-day product matches the same value
for the remaining 15 days from the starting point. All MODIS data from 2001 to 2019 can be obtained
from NASA Earthdata website [32]. For this study, the results were obtained for 2001 to 2015.

Table 2. Remote sensing data used in this study.

Product ID Product Spatial Resolution (km) Temporal Resolution

MOD11A1 Land surface temperature 0.5 Daily
MCD12Q1 Land cover 0.5 Yearly
MOD13A1 Vegetation indices 0.5 16 days

MOD17A2H Gross primary productivity 0.5 8 days
MCD43A3 Albedo 0.5 Daily

2.3. Calculation of CO2 Flux

Since CO2 cannot be mapped directly by satellite images, it is calculated through the relationship
between CO2 and GPP. In general, CO2 in the atmosphere is generated through the following three
processes. First, through vegetation activity, i.e., the process of absorbing CO2 in the atmosphere and
producing oxygen (photosynthesis). Second, the process of vegetation biomass maintenance. Third,
respiration according to dependent nutrition. Plants have a bidirectional flux that absorbs CO2 from the
atmosphere through photosynthesis and recirculates part of it to the atmosphere through respiration.
The total amount of organic matter produced by plants by absorbing CO2 through photosynthesis,
or the total amount of carbon generated through the CO2 circulation in the atmosphere, which is
called GPP. Amid these processes, the relationship between CO2 and GPP can be expressed by the
following equation.

NEE = Re − GPP, (1)

where NEE, (net ecosystem exchange) is a measure of the net exchange of carbon between an ecosystem
and the atmosphere and is a primary measurement of the ecosystem’s carbon sink strength [33–36].
Re is the ecosystem respiration of plants. NEE is the CO2 flux data measured in the flux tower applied
in this study. The relationship between CO2 flux and GPP can be calculated from the Re value. Re is
calculated by the following Equation [37];

Re= Rrefexp(E 0

[
1

Tref−T0
−

1
Ta−T0

])
, (2)
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where Rref is the reference ecosystem respiration, Tref the reference temperature (10 ◦C), E0 the activation
energy, T0 −46.02 ◦C, and Ta the air temperature. Rref and E0 are the empirical constants obtained by
regression with the air temperature [37].

2.4. Measurement of Soil Moisture Content by Optical Multispectral Sensor

Previous studies have estimated SM using passive microwave sensors by observing the brightness
temperature of a land surface through sensors and leveraging its relationship with temperature.
Since SM is calculated according to the physical properties of the land surface, it is quite accurate.
However, it has a coarser spatial resolution than the optical sensor. The total area of South Korea is
106,286 km2. Since the AMSR-based SM products have a spatial resolution of 25 km, the entire country
could be represented in 170 pixels only. Because the 0.5-km-resolution product of the optical sensor
can represent the area with approximately 425,000 pixels, the passive microwave sensor product faces
limitations in analyzing physical properties for cases such as this study. To overcome the limitations,
we applied a method for calculating volumetric SM using optical sensor products presented by
Verstraeten et al. [24]. The optical sensor used in this study is MODIS. Specifically, MOD11A1 LST and
MOD43A3 land surface albedo were used.

∆LST = LSTdaytime − LSTnighttime, (3)

ATI =
1 − α

∆LST
, (4)

SM =
ATIi − ATImin

ATImax − ATImin
, (5)

where ∆LST is the difference between LSTdaytime and LSTnighttime, LSTdaytime is the land surface
temperature during daytime, and LSTnighttime is the temperature during nighttime. ATI, which
stands for apparent thermal inertia, is a physical property of materials describing their impedance to
temperature change. α is the land surface albedo and 1- α represents physically absorbance. Volumetric
SM (m3 m−3) can be calculated by normalizing the maximum and minimum ATI values.

2.5. Agricultural Drought Indices

For a period of drought, the relationship between soil moisture, vegetation activity, and carbon
generation were analyzed by the drought indices vegetation condition index (VCI) and the standardized
soil moisture index (SSMI).

2.5.1. Vegetation Condition Index (VCI)

VI was used to analyze agricultural drought. VCI was calculated by normalizing the NDVI
provided by MOD13A1 of the MODIS sensor [8].

VCI =
NDVIi − NDVImin

NDVImax − NDVImin
. (6)

VCI compares the current NDVI to those observed during the same period in previous years.
It is expressed in % and gives an estimate of the location of the observed value between the extrema
(minimum and maximum values) in the previous years.
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2.5.2. Standardized Soil Moisture Index (SSMI)

In order to analyze the agricultural drought condition, a standard normalization was performed
on the volumetric SM introduced in Section 2.4, and the result was processed as an index. This index is
named standardized soil moisture index (SSMI). The SSMI is calculated as follows.

SSMI = Z(
SMi − SMmin

SMmax − SMmin
), (7)

where Z is the standardized normalization, SMmax the maximum SM value, SMmin the minimum SM
value, and SMi the SM in the i-th time point.

3. Results and Discussion

3.1. Comparative Analysis of Optical Sensor Products and In Situ Data

3.1.1. Temporal Variations of Soil Moisture and Comparison with Ground Observation

As mentioned in Section 2.4, Verstraeten et al. [24] and Chang et al. [25] presented a method for
soil moisture (SM) estimation using optical sensor products. In this study, SM was calculated based
on this estimation method (hereinafter referred to as SMMODIS) and compared with soil moisture
(hereinafter referred to as SMfluxtower) measured at the SMC and CMC validation points. Figure 2
shows the comparison of SMMODIS and SMfluxtower from 2014 to 2015 and compares them with the
precipitation values observed in the same period. Because the entire country was under a period
of extreme drought status, the occurrence of rainfall in that period was less than the average year.
However, when rainfall occurred, the value of SM also increased. Both sites show relatively low values
in the period of September to October 2014 and after July 2015.
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Figure 3 and Table 3 show the statistical analysis results of SMMODIS and SMfluxtower at two
validation points. Figure 3 illustrates a one on one plot of the two results, revealing a high correlation
at both sites.
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Table 3. Statistical comparison between estimated and in situ measurements of SM.

Site Bias (m3 m−3) RMSE (m3 m−3) a 1 Coefficients of Correlation

SMC −3.87 8.25 0.81 0.75 *
CMC −0.20 7.86 0.58 0.66 *

1 a: gradients of one on one plot. *: p-value = 0.05.

Results of the bias and RMSE showed that SMMODIS results in CMC were better than in SMC,
while the correlation in SMC was somewhat higher. Results from both sites were statistically significant
(95% confidence interval). The reason that bias is relatively higher in SMC is its geographical properties.
SMC is in the mixed forest area of a mountainous region, where the land surface albedo value is
heterogeneous. This heterogeneity leads to bias when measured by remote sensing [31].

3.1.2. Temporal Variations of CO2 Flux and Comparison with Ground Observation

According to the relationship between GPP and CO2 presented in Section 2.3, CO2 (hereinafter
referred to as CO2_MODIS) was calculated from MODIS GPP and compared with the CO2 (hereinafter
CO2_fluxtower) observed in a flux tower. CO2_MODIS and CO2_fluxtower consist of eight-day products.

Figure 4 compares CO2_MODIS and CO2_fluxtower from 2014 to 2015 and compared them with the
precipitation values observed in the same period. A similar tendency as the SM results in the same
period can be seen in this figure after a time lag in the rainfall. As this is related to photosynthesis that
occurs after SM affects vegetation activity, so that a certain duration of lag time occurs [38].

Figure 5 and Table 4 show the statistical analysis results of CO2_MODIS and CO2_fluxtower at two
validation points. Figure 5 illustrates a one on one plot of the two results, showing a high correlation
in both sites. The result of CO2 flux is somewhat different from that of the SM were all included within
the 95% confidence interval, making them statistically significant. The bias, RMSE, gradient of one on
one plot, and correlation coefficients were almost similar at both SMC and CMC points, and the SMC
results were better due to dense vegetation. Vegetation density is an important factor for the generation
of CO2 flux by photosynthesis in the two points. This density can be determined by the leaf area index
(LAI). For SMC, LAI shows a value between 6 and 8. For CMC, LAI shows a value between 1 and 2
(Table 1). Although the difference in LAI is somewhat large, CMC is less sensitive to drought status
as it is located in the rice paddy terrain where the irrigation system is built [7]. These characteristics
narrowed the difference between the results of the statistical analyses of SMC and CMC [31].
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Table 4. Statistical comparison between estimated and in situ measurements of CO2 flux.

Site Bias (g m−2 d−1) RMSE (g m−2 d−1) a 1 Coefficients of Correlation

SMC 0.93 12.46 0.79 0.76 *
CMC −1.37 12.52 0.74 0.72 *

1 a: gradients of one on one plot. *: p-value = 0.05.
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3.2. Analysis of Relationship SM-VI-CO2 under Drought Condition

3.2.1. Selecting Drought Periods Using Agricultural Drought Indices

As per the statistical analysis of past hydrometeorological records, extreme droughts have been
occurring in South Korea since the year 2000, namely in 2001, 2007 to 2009, and 2014 to 2015 [5,39,40].
Kwon et al. [39] and Kim et al. [5] analyzed droughts in Korea from 2013 to 2015. Particularly, in 2014,
not only did the drought occur severely, but the recorded rainfall was less than 50% the normal.
Additionally, in 2015, the region experienced only 873 mm of precipitation, which is 64% of the
historical average of 1,366 mm. Variations in the monsoon climate had resulted in a dry rainy season
with no precipitation [41]. Figure 6 shows the results of the temporal variation analysis of SSMI and
VCI from 2001 to 2015. As with the results presented in a previous research, drought status occurred in
2001, 2007–2009, and 2014–2015. Based on the results of previous studies and Figure 6, this study chose
2014 to 2015 as the drought period.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 15 
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3.2.2. Drought Analysis and Validation during Drought Period

For the selected drought period, we analyzed the temporal variations of SSMI and VCI at the
study sites (Figure 7). The temporal patterns of the two indices show similar tendency, with the period
of the most severe drought status being October 2014 to May 2015.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 15 
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Figure 7. Temporal variations of SSMI and VCI during drought periods at (a) SMC and (b) CMC site.

Table 5 represented the applicability of the agricultural drought indices through error analysis at
two validation area. An error analysis is a formed array that consists of drought or wet conditions as
compared to the category of drought by the SMfluxtower data. The median (50%) of the standardized SM
was set as the threshold for moderate drought, while the lower quantile (25%) was set as the threshold
for severe drought. When the value of the standardized SM is less than the threshold, it is considered a
drought condition. In the case of the samples, it is the counting of the drought indices with a value
less than the threshold. The drought accuracy for SSMI and VCI at the study sites was approximately
60% to 80% (Table 5); SSMI showed relatively high accuracy for moderate drought and VCI for severe
drought. SSMI is a drought index based on soil moisture that is sensitive to current soil moisture
conditions and shows high accuracy under moderate drought conditions. VCI, on the other hand, is an
index that detects weak vegetation activity due to lack of soil moisture, whose accuracy increases if the
drought persists for a prolonged period (as the drought becomes more severe). These indices were
suitable for determining the agricultural drought conditions. Each index can be used depending on
how long the agricultural droughts continue.

3.2.3. Relationship between SM, Vegetation and CO2 during Drought Periods

The results mentioned above confirm the close correlation between SM, VI, and CO2 during the
drought period. Since there was a time lag between the correlations of these factors, a lag correlation
was performed (Figure 8 and Table 6). For homogeneous comparison of the factors, the standardized
factors SM and NDVI were applied. The range of the CO2 flux was also standardized from −1 to 1
through standardized normalization.
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Table 5. Error analysis for the study area.

(a) SMC
Soil Moisture

Sum
Drought
AccuracyDrought No Drought

Moderate drought ((SMfluxtower_median) = 23.14 m3 m−3)

SSMI
Drought 8 3 11

8 / 11 = 72.73%No drought 3 10 13
Sum 11 13 24

VCI
Drought 7 4 11

7 / 11 = 63.64%No drought 5 8 13
Sum 12 12 24

Severe drought ((SMfluxtower_lower quartile) = 8.34 m3 m−3)

SSMI
Drought 6 6 12

6 / 12 = 50.00%No drought 4 8 12
Sum 10 14 24

VCI
Drought 7 5 12

7 / 12 = 58.33%No drought 3 9 12
Sum 10 14 24

(b) CMC
Soil Moisture

Sum
Drought
AccuracyDrought No Drought

Moderate drought ((SMfluxtower_median) = 25.37 m3 m−3)

SSMI
Drought 7 2 9

7 / 9 = 77.78%No drought 3 12 15
Sum 10 14 24

VCI
Drought 6 3 9

6 / 9 = 66.67%No drought 6 9 15
Sum 12 12 24

Severe drought ((SMfluxtower_lower quartile) = 9.28 m3 m−3)

SSMI
Drought 5 3 8

5 / 8 = 62.50%No drought 8 8 16
Sum 13 11 24

VCI
Drought 6 4 10

6 / 10 = 60.00%No drought 8 6 14
Sum 14 10 24
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Table 6. Lag correlation for study area.

(a) SMC
Lag Time (Month)

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0

SM – NDVI −0.12 0.04 0.11 0.21 0.61 0.78 * 0.81 * 0.52 0.24
SM – CO2 −0.21 −0.03 0.22 0.45 0.64 0.67 0.86 * 0.88 * 0.31

NDVI – CO2 −0.02 0.12 0.34 0.55 0.78 * 0.82 * 0.62 0.53 0.21

(b) CMC
Lag Time (Month)

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0

SM – NDVI −0.43 −0.15 −0.05 0.45 0.65 0.72 * 0.77 * 0.57 0.06
SM – CO2 −0.21 −0.03 0.13 0.45 0.63 0.63 0.83 * 0.78 * 0.42

NDVI – CO2 −0.14 0.12 0.39 0.65 0.83 * 0.82 * 0.57 0.42 0.18

*: p-value = 0.05.

Figure 8 shows the result obtained from the lag correlation. Based on SM, the result showed
the highest correlation for both NDVI and CO2 after the time lag. In the case of NDVI, the highest
correlation was found at a lag time of half to one month, and CO2 showed the highest correlation at a
lag time of one and a half month. When compared with the results of CO2 correlation based on NDVI,
the highest correlation was obtained at half month. Taken together, the two results reveal that the
variation of SM started first followed by the variation in VI and CO2 flux after a certain period of time.

Choi et al. [42] studied the temporal lag of precipitation, soil moisture, evapotranspiration,
and vegetation index. In their paper, the lag between SM and NDVI was approximately 16 days.
However, such a result is generalized as extreme weather conditions are not considered. Therefore,
the results presented in this study differ from the previous ones because they were obtained as the
agricultural drought condition progressed. In extreme climatic conditions such as drought, a time lag
of approximately one month between SM and VI, and half month between vegetation activity and
photosynthesis had occurred.

4. Conclusions

The inter-relationship between soil moisture (SM), vegetation activity, and atmospheric CO2

concentration was analyzed using MODerate resolution imaging spectroradiometer (MODIS), an optical
multispectral sensor. The SM was also estimated using MODIS. The calculated SMMODIS was compared
with the SMfluxtower observed in a flux tower of the study area. As a result, both points showed high
correlation (SMC: 0.75, CMC: 0.66). A relatively large bias was obtained in SMC due to the influence of
heterogeneous land surface albedo in mixed forest areas. In the case of atmospheric CO2 flux, MODIS
gross primary productivity (GPP) product was used to leverage the flux’s relationship with respiration
in the calculation. Similarly, the calculated results were compared with the CO2 flux results of SMC
and CMC to confirm their applicability. The flux values proved the relatively high applicability of the
SMC result, which is due to the effect of leaf area index (LAI). This implies SMC in a dense forest area
has a high value of LAI.

Lastly, the relationship between each variable was identified by comparing SM, VI, and CO2 under
the extreme drought periods of 2014 and 2015 in South Korea. As a result, the highest correlation was
obtained when there was a time lag of one month between SM and vegetation and half month between
vegetation and CO2. This tendency was similar in both SMC and CMC. As such, these three variables
have been proved to affect each other with time lag, and it was confirmed that the lag is longer than
the normal season during the drought period. In the long term, however, changes in atmospheric CO2

concentration may affect carbon reservoirs in the land and the subsurface. In the future, relationship
studies between SM, VI, and CO2 on the land and the subsurface during droughts should be followed
by considering sources and depletions in carbon fluxes.
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