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Abstract: Lane markings are one of the essential elements of road information, which is useful for
a wide range of transportation applications. Several studies have been conducted to extract lane
markings through intensity thresholding of Light Detection and Ranging (LiDAR) point clouds
acquired by mobile mapping systems (MMS). This paper proposes an intensity thresholding strategy
using unsupervised intensity normalization and a deep learning strategy using automatically
labeled training data for lane marking extraction. For comparative evaluation, original intensity
thresholding and deep learning using manually established labels strategies are also implemented.
A pavement surface-based assessment of lane marking extraction by the four strategies is conducted
in asphalt and concrete pavement areas covered by MMS equipped with multiple LiDAR scanners.
Additionally, the extracted lane markings are used for lane width estimation and reporting lane
marking gaps along various highways. The normalized intensity thresholding leads to a better lane
marking extraction with an F1-score of 78.9% in comparison to the original intensity thresholding
with an F1-score of 72.3%. On the other hand, the deep learning model trained with automatically
generated labels achieves a higher F1-score of 85.9% than the one trained on manually established
labels with an F1-score of 75.1%. In concrete pavement area, the normalized intensity thresholding and
both deep learning strategies obtain better lane marking extraction (i.e., lane markings along longer
segments of the highway have been extracted) than the original intensity thresholding approach.
For the lane width results, more estimates are observed, especially in areas with poor edge lane
marking, using the two deep learning models when compared with the intensity thresholding
strategies due to the higher recall rates for the former. The outcome of the proposed strategies is
used to develop a framework for reporting lane marking gap regions, which can be subsequently
visualized in RGB imagery to identify their cause.

Keywords: lane marking extraction; lane width estimation; intensity normalization; deep learning;
mobile mapping systems; automated labeling; lane marking condition

1. Introduction

Reliable identification of lane markings—including dash lines, edge lines, arrows, and crosswalk
markings—is important for autonomous driving and driver assistance systems (ADAS) applications.
Lane markings with high reflectivity on roadways can guide drivers and control traffic activities.
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Furthermore, an accurate lane marking inventory is the foundation for various transportation
applications, such as the development of detailed high definition (HD) maps, lane guidance, roadway
maintenance, and road network optimization. Thus, lane marking extraction has become an essential
process for many transportation applications. Table 1 provides a summary of recent lane marking
extraction strategies based on different sensing modalities while listing their merits and shortcomings.

Several studies have been proposed to extract lane markings from imagery acquired by terrestrial
and airborne platforms. Hernandez et al. [1] extracted lane markings using vehicle-based imagery.
First, lane markings were extracted using edge and color information. The lane marking parameters
were then calculated using linear fitting. Jung et al. [2] also detected lane markings from vehicle-based
imagery. They first generated spatiotemporal imagery by accumulating the pixels on a horizontal
scanline along a time axis for each frame. The lane markings were finally detected using the Hough
Transform. For airborne platforms, Azimi et al. [3] proposed an Aerial LaneNet, a fully convolutional
neural network (CNN) [4], for detecting lane markings in aerial imagery. However, lane markings in
imagery could be occluded by vehicles and other human-made features. Image-based approaches
are also affected by weather and lighting conditions. In addition, the size and resolution of available
imagery limit the ability to detect all lane markings.

Recently [5–15], there has been an increasing interest in using LiDAR-based Mobile Mapping
Systems (MMS), which can collect three-dimensional (3D) point cloud data for transportation
applications. This trend is motivated by the fact that LiDAR sensors can operate under different
lighting and weather conditions. Moreover, these sensors can deliver 360-degree surround perception
that eliminates the occlusion problem. Several researchers, thus, have resorted to LiDAR-based MMS
point clouds for lane marking extraction. The generic workflow involves extracting road surface point
clouds from the original ones followed by intensity-based differentiation of lane marking points from
non-lane marking points.

Lane marking extraction approaches from LiDAR data can be categorized into two groups:
(1) two-dimensional (2D) rasterized intensity image-driven detection and (2) 3D point cloud-driven
extraction. For detecting lane markings from rasterized images, Guan et al. [5] generated georeferenced
intensity images from road surface point clouds using an Inverse Distance Weighting (IDW)
strategy. After that, lane markings were extracted from the intensity images through multiple
scanning-distance-based thresholds. Finally, Otsu’s thresholding and morphological closing were used
to refine the extracted lane markings. Kumar et al. [6] at first generated two raster images based on
intensity and range values. Then, a threshold, which is based on the range and cross-slope values,
was used for extracting lane markings. Finally, morphological operations were utilized to complete
the lane markings and remove false positives. Soilán et al. [7] extracted potential lane markings from
rasterized images by modeling the intensity distribution using a Gaussian Mixture Model. They first
extracted the road surface from the original point cloud. Two classes are hypothesized—a pavement
class with low-intensity values and a greater fraction of points and another lane markings class with
high-intensity values and a smaller number of points. Each point is assigned to the class with maximum
posterior probability. The points belonging to low-intensity class were removed, which ensures that
minimal data was processed to generate intensity images. Finally, Otsu’s thresholding and area-based
filtering were applied to intensity images for lane marking extraction. Cheng et al. [8] also applied
an Otsu’s thresholding strategy for lane marking extraction. They first corrected the intensity
values in the original point cloud using a scan angle rank to eliminate intensity variation caused by
varying incidence angles. Based on their assumption of a planar ground surface, the scan angle rank
recorded by their LiDAR-based MMS is considered very close to the incident angle. Next, a road
surface point cloud segmented from the corrected point cloud was used to generate intensity images.
Then, a large-size, high-pass enhancement was applied to remove gradual variation of intensity in
these images. Finally, an Otsu’s threshold was applied to extract lane markings. Ghallabi et al. [9]
presented another intensity-image-based lane marking detection strategy. They chose a cell size of
15 cm, which is based on the width of lane markings, for generating the intensity images. The lane
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markings were then detected using Hough transform where the lines were parametrized by the polar
representation (γ, θ)—with γ representing the distance between the vehicle and the lane marking and
θ representing the vehicle’s heading relative to the lane marking. In their approach, certain constraints
were imposed to eliminate false lane marking detections. A detection was considered valid if the
parametrized lines are approximately parallel to the driving direction. Thereafter, among the detected
lines, a line that has a maximum number of the other lines parallel to it is defined as the reference line
in order to remove all the lines that are not parallel to it. Finally, a line fusion was performed if the
remaining lines lie within a certain distance threshold from each other. Jung et al. [10] proposed an
“inpainting” algorithm to fill holes in the intensity image caused by the high speed of the MMS. They
used the Laplace equation to fill the center pixel (the hole in an intensity image to be painted) based on
a weighted average of neighboring pixels. In the next step, the inpainted intensity image was assumed
to have a bimodal intensity distribution with two classes being lane markings and non-lane markings.
Then, an iterative Expectation-Maximization algorithm was applied to extract potential lane markings.
In order to deal with over-segmentation problems arising from worn-out lane markings, they further
proposed a line association strategy. Line parameters such as orientation and distance from the origin
were computed for each lane marking followed by grouping lane markings that show similar topology
according to these parameters. Finally, remaining false positives were removed using a filter based on
the Dip test statistic [16].

For directly extracting lane markings from point clouds, Yu et al. [11] at first divided the road surface
point cloud into multiple blocks across the driving direction. Subsequently, an intensity threshold was
determined using Otsu’s thresholding strategy for extracting lane markings. Finally, for eliminating
false positives, a spatial density filter was applied to remove points with a lower spatial density
in comparison to lane marking points. Yan et al. [12] separated the LiDAR point cloud into scan
lines since there are a smaller number of points in a scan line for processing. They then applied
an intensity-based filter to remove non-lane marking points while preserving lane marking edge
points. Finally, all points falling between the edge points were extracted as lane marking points.
Jeong et al. [13] proposed an intensity calibration procedure for lane marking extraction before applying
Otsu’s thresholding strategy. They assumed that if the incident angle and the scanning distance for
two surfaces were similar, then the ratio of their intensity values would be similar to the ratio of their
reflectance. Accordingly, a calibrated intensity value was calculated by taking a product of a constant
value of reference reflectance and the ratio of uncalibrated intensity to reference intensity.

Recently, there is a growing interest in extracting lane markings from LiDAR-based MMS point
clouds using learning-based approaches, such as machine learning and deep learning. He et al. [14]
presented a lane marking detection algorithm based on CNN. The intensity values were normalized
using their mean and standard deviation. Then, they were re-scaled to the [0, 255] range in order
to generate intensity images. They selected 2729 intensity images, which have been manually
labeled, to train the CNN model for detecting lane markings. Wen et al. [15] also developed a deep
learning-based lane marking detection strategy. They at first rasterized the intensity values of the
road surface point cloud into intensity images. Two different U-net models [17] were then trained
with 3000 images along a highway and urban areas and 1000 images covering an underground garage
(all manually labeled). In spite of their promise, the bottleneck of learning-based approaches is the
generation of sufficient training and validation data.

In summary, the majority of existing approaches aim at extracting lane markings using an
appropriate intensity threshold combined with intensity calibration and/or outlier removal strategies.
However, these strategies require prior knowledge or assumptions regarding road surface intensity
distribution to determine the thresholds and eliminate false positives. Most of the above studies have
only been tested or evaluated in small areas and have not been investigated to check whether they can
cope with complex road geometry. On the other hand, recently proposed learning-based approaches can
more effectively solve the problem of intensity variation, eliminating the need for multiple thresholds.
However, such approaches require a lot of manually labeled training images. Further, to the best of the
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authors’ knowledge, no study has been conducted that analyzes lane marking extraction performance
in the context of the nature of pavement surface (asphalt and concrete). This paper addresses these
challenges by introducing two strategies for lane marking extraction (intensity thresholding-based
and deep learning-based approaches). The main contributions of this research can be summarized
as follows:

1. A lane marking extraction strategy is developed by thresholding normalized intensity values from
multi-beam spinning LiDAR. The intensity normalization can be applied in any environment
without the need for reference targets.

2. For the deep learning strategy, an automated labeling procedure is developed, which can generate
a large number of training samples in order to detect lane markings from LiDAR intensity images.
In addition, a refinement strategy for the predictions has been developed to deliver corresponding
LiDAR points for the extracted lane markings.

3. In order to compare the performance of the proposed lane marking extraction strategies, state of the
art approaches based on original intensity thresholding (i.e., without intensity normalization) [18]
and deep learning using manually established labels [15] are also implemented.

4. It is hypothesized that the performance of the lane extraction procedure depends to a high degree
on the pavement type. Therefore, a pavement surface-based evaluation of the lane marking
extraction strategies in asphalt and concrete areas is conducted.

5. Lane markings are extracted using the above four strategies from LiDAR-based MMS point
clouds, collected on two-lane highways with a total length of 67 miles, which have different road
geometry, such as turning lane, merging lane, and intersection areas. Additionally, this dataset
can serve as a benchmark for performance evaluation of lane marking extraction algorithms.

6. As a further evaluation of the performance of different lane marking extraction strategies,
lane width estimates are derived for each strategy across the different datasets. These estimates
have been compared to manually derived ones.

7. Derived lane marking from the proposed strategies can be utilized to report lane marking gap
regions. This reporting mechanism is quite valuable for departments of transportation (DOT) as
it can be used to prioritize maintenance operations and gauge their infrastructure readiness for
autonomous driving

The remainder of this paper is organized as follows: Section 2 introduces the LiDAR-based MMS
used in this research. Section 3 describes the LiDAR-based MMS point cloud data collected from
different test sites. Then, the four lane marking extraction strategies, lane width estimation procedure,
and lane marking gap reporting algorithm are described in Section 4, followed by Section 5 that
discusses the lane marking extraction results and subsequent lane width estimation. Finally, concluding
remarks regarding the different strategies and potential directions for future research are summarized
in Section 6.

2. Mobile LiDAR System Used in This Research

The 3D point cloud datasets used in this research were captured by a wheel-based MMS—Purdue
Wheel-based Mobile Mapping System-High Accuracy (PWMMS-HA). Four 3D LiDAR scanners are
mounted on the PWMMS-HA (as shown in Figure 1): three Velodyne HDL-32E and one Velodyne
VLP-16 Puck Hi-Res. The HDL-32E scanner has 32 radially oriented laser rangefinders that are
aligned vertically from +10.67◦ to –30.67◦ making up a total vertical field of view (FOV) of 41.34◦.
The HDL-32E can capture around 700,000 points per second with a maximum range of 100 m (at
an accuracy of ± 2 cm) [19]. The VLP-16 scanner, on the other hand, consists of 16 radially oriented
laser rangefinders from −10◦ to +10◦ (i.e., 20◦ vertical FOV). The VLP-16 can capture around 300,000
points per second with a maximum range of 100 m (at an accuracy of ± 3 cm) [20]. All four LiDAR
scanners can rotate to achieve a 360◦ horizontal FOV. In addition, three FLIR Grasshopper3 9.1MP
GigE cameras (two forward-facing and one rear-facing) are also mounted on the PWMMS-HA. All the
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cameras are synchronized to capture RGB imagery with a maximum resolution of 9.1 MP at a rate of
1 frame per second per camera. The LiDAR and imaging sensors are georeferenced by an Applanix
Position and Orientation System for Land Vehicles (POSLV) 220 Global Navigation Satellite System
(GNSS)/Inertial Measurement Unit (IMU) navigation system. The GNSS collection rate is 20 Hz,
and the IMU measurement rate is 200 Hz. After GNSS/inertial navigation system (INS) post-processing,
the attitude accuracy is ±0.020◦, and the positional accuracy is ±2 cm [21]. The expected accuracy of
the derived point cloud while considering the LiDAR and navigation system specifications is roughly
2–4 cm at a range of 30 m. This accuracy is estimated using the LiDAR Error Propagation calculator
developed by Habib et al. [22].

In order to reconstruct geo-referenced and well-registered point clouds from the different
LiDAR scanners, a system calibration procedure [23] is used for estimating the mounting parameters
between the onboard LiDAR scanners and GNSS/IMU unit. Another simultaneous LiDAR-camera
calibration [24] is also conducted to estimate the mounting parameters of the onboard cameras for the
registration of LiDAR point clouds with imagery. Thus, forward and backward projection between the
reconstructed point cloud and RGB imagery can be established using the estimated cameras’ mounting
parameters and trajectory information. This projection will facilitate the analysis of the performance of
the different lane marking extraction strategies. Just as an example, Figure 2 illustrates corresponding
image and LiDAR point cloud where the red dot in the latter is projected onto the corresponding
image (displayed as an empty magenta circle). Hereafter, a red dot will be used to represent a location
in the LiDAR point cloud, while an empty magenta circle will be used to show the same location in
RGB imagery.
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Table 1. Existing lane marking extraction strategies and their advantages and shortcomings.

Strategy Pros Cons Example References

Imagery-based

• Inexpensive data collection
compared to LiDAR

• Color information is available

• Images affected by weather and lighting conditions
• Occlusions due to surrounding environment [1,2]

LiDAR (intensity image)

• Intensity not affected by adverse
weather and lighting conditions

• Minimal occlusions
• Less expensive computation

compared to LiDAR point cloud

• Multiple range and incident angle dependent
thresholds required

• Prior knowledge required:

# About intensity distribution
# For choosing the size of structuring element

for morphological operations
# For choosing intensity image cell size

• Sparse, low-intensity lane markings are often missed
• Target-based intensity calibration may be required

[5–10]

LiDAR (point cloud)

• Intensity not affected by adverse
weather and lighting conditions

• Minimal occlusions

• Point cloud processing is computationally expensive
• Target-based intensity calibration may be required
• Sparse, low-intensity lane markings are often missed

[11–13]

LiDAR (learning-based for
intensity image)

• Overcome image color variation
due to bad weather and
lighting conditions

• Detections in sparse point
density regions

• A large number of training samples required [14,15]
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3. Datasets

Three datasets are utilized in this research to evaluate the performance of different lane marking
extraction strategies. These datasets were acquired over two highways (the first two on an interstate
highway with the third one covering rural highway). The collection date, used sensor, length, average
local point spacing (LPS) [25], average driving speeds, and main pavement type of each dataset are
listed in Table 2. The datasets include both concrete pavement and asphalt pavement areas. In dataset
1, as shown in Figure 3a, approximately 2.49 mile-long point cloud was collected along concrete
pavement area, and 15.55 mile-long point cloud was collected in asphalt pavement area. For dataset 2,
as shown in Figure 3b, around 6.28 of the total 33.87 mile-long point cloud covers concrete pavement
area. Finally, only 2.23 of the total 15.29 mile-long point cloud in dataset 3 was collected in asphalt
pavement area, as shown in Figure 3c.

Table 2. Description of the three LiDAR-based mobile mapping systems (MMS) point clouds.

Road
Segment

Collection
Date

Used
Sensors Length Average

LPS
Average
Speed

Pavement

Dataset 1 2018/05/24
HDL32E-F 1

HDL32E-L 1

HDL32E-R 1
18.04 mile 3.11 cm 45.62 mph Asphalt

mainly

Dataset 2 2019/07/19

HDL32E-F 1

HDL32E-L 1

HDL32E-R 1

VLP16

33.87 mile 3.19 cm 47.42 mph Asphalt
mainly

Dataset 3 2019/10/05

HDL32E-F 1

HDL32E-L 1

HDL32E-R 1

VLP16

15.29 mile 3.16 cm 47.70 mph Concrete
mainly

1 HDL32E-F, HDL32E-L, and HDL32E-R denote different LiDAR sensors of the same model. LPS = local point spacing.
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4. Methodology

The proposed framework for lane marking extraction is illustrated in Figure 4. First, the road
surface is identified from the LiDAR point cloud. Lane markings are directly extracted from the road
surface point cloud using the original and normalized intensity thresholding strategies. For the two
deep learning approaches, the road surface point cloud is rasterized into intensity images. Two U-net
models are trained on manually established and automatically generated labels. The automatically
generated labels are based on lane markings extracted through the normalized intensity thresholding
strategy. For evaluating the performance of different strategies, obtained lane markings are compared
with manually labeled ones. In addition, the extracted lane markings are utilized to derive lane width
estimates using an adapted strategy of the one proposed by Ravi et al. [18]. As a further quantitative
evaluation, these lane width estimates are also compared to manually derived values. Finally, the lane
markings are also analyzed for reporting lane marking gaps.
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4.1. Lane Marking Extraction Approaches

In this section, different lane marking extraction strategies are described. We collectively refer to
the original and normalized intensity thresholding strategies as “intensity thresholding approaches.”
The deep learning strategies using manually derived and automatically established labels are denoted
as “deep learning approaches.” As mentioned earlier, the lane marking extraction procedure starts
with the identification of the point cloud pertaining to the road surface. In this research, the road
surface identification is based on the GNSS/INS trajectory as well as a rough estimate of the IMU
height above the road surface. For more details regarding this procedure, interested readers can refer
to Ravi et al. [18].

4.1.1. Intensity Thresholding Approaches

Original Intensity Thresholding Strategy

Using the original intensity values, one can use a single threshold (ThI)—e.g., the one defined
by 5th percentile intensity value [18]—to extract hypothesized lane markings from the road surface
point cloud, as shown in Figure 5. However, in concrete pavement area, simple thresholding would
result in hypothesized lane markings with significant false positives (hereafter referred to as “noise”).
This scenario is shown in Figure 6 where more noise is observed since lane markings and pavements
have similar high-intensity values in concrete pavement regions. Therefore, such low intensity contrast
will negatively affect the performance of a simple thresholding strategy.
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Normalized Intensity Thresholding Strategy

In order to solve the low contrast issue, which is more pronounced in concrete pavement area,
this research adopts an intensity normalization strategy for an MMS with one or more multi-beam
LiDAR scanners. The normalization process is based on the assumption that intensity values across
laser beams should be similar for the same objects [26,27]. In this strategy, the normalized counterpart of
an intensity value observed by a particular beam is the conditional expectation of intensity readings by
other beams for the same areas where that beam observed the given intensity value. This normalization
is applied to each multi-beam LiDAR scanner mounted on the MMS to obtain corresponding normalized
intensity values of all laser beams for that scanner. Figure 7 illustrates an overview of the normalized
intensity thresholding strategy for a multi-beam LiDAR-based MMS.
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First, for a given dataset, a small section is randomly chosen from the road surface point cloud
captured by the MMS for the intensity normalization map generation. In case that the small point
cloud is captured by more than one scanner, the LiDAR data should be split according to the used
scanner. Subsequently, the intensity normalization approach proposed by Levinson and Thrun [26,27]
is applied to the small road surface point cloud from each LiDAR scanner. The adopted approach
proceeds according to the following steps:

1. The small road surface point cloud is gridded into cells. Each cell stores the list of points that lie
within its bounding box. For each point, only the intensity value and laser beam ID are stored.

2. In order to compute the normalized intensity value of a laser beam j that recorded an intensity value
a, we seek all cells that contain the pair (j, a) in the raster grid. The average intensity is computed
over these cells while excluding intensity values recorded by laser beam j. The normalized
intensity of (j, a) is the resulting average. The original and normalized intensity values are stored
in a lookup table (LUT) for the scanner/dataset in question.

3. For the intensity values that are not observed in the small road surface point cloud, their normalized
counterpart can be calculated by interpolation, using the normalized values associated with the
observed intensities.

One should note that, in this research, the small road surface point cloud is randomly selected
in concrete pavement area, which exhibits higher minimum and maximum intensity values. Using
asphalt pavement regions, with the majority of the intensity values of lower magnitude, might map
high-intensity values of both lane markings and concrete pavements to a similar value. This defeats
the purpose of increasing intensity contrast between lane markings and pavement surface. In addition,
it is assumed that the map generated from the small road surface point cloud of concrete pavements
would not negatively affect the intensity contrast between lane markings and asphalt pavement.
The performance metrics for lane marking extraction in dataset 2 (asphalt dominant) further validate
this assumption, as will be reported in Section 5.1.2.

The choice of the cell size for generating the intensity normalization map was not addressed by
Levinson and Thrun [26,27]. The cell size plays a key role—i.e., large cell size might cause more than
one type of object surface being located in a single cell, while within a small cell, the laser beams could
be too sparse for evaluating a reliable average intensity value. In this research, the cell size is based on
the LPS of the point cloud [25]. Prior to intensity normalization, the LPS is evaluated for the small
road surface point cloud captured by each scanner. The cell size is determined using a multiplication
factor threshold (ThMF) of the respective LPSs. Since a change in the driving speed from one dataset
to another could lead to differences in LPSs, the intensity normalization maps should be generated
for each dataset. The intensity values captured by a given scanner are then normalized using the
respective LUT for the dataset in question. Finally, hypothesized lane markings can be extracted from
the normalized road surface point cloud using the 5th percentile intensity threshold.

4.1.2. Deep Learning Approaches

In this research, two U-net models [17] are trained using manually established and
automatically-generated labels. Figure 8 illustrates an overview of the proposed deep learning-based
lane marking extraction and U-net model training framework. The first step in this process is to
generate intensity images through a 3D-to-2D mapping process. Extracting lane markings from the
intensity images is a binary classification task where each pixel is labeled as either belonging to a
lane marking or not. This classification task is performed by training a U-net model to identify lane
marking pixels in the intensity images. The following subsections describe intensity image generation
and labeling, U-net model training, and refinement of U-net predictions.
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Intensity Image Generation and Labeling

For generating an intensity image, it is crucial to choose a cell size that can maintain the lane
marking details in the derived image as well as reduce computations. The cell size selection should
consider both the width of mapped roads as well as the LPS of available data. The width of surveyed
highway roads in this research ranges from 12 to 16 m in different regions of the three datasets
(i.e., covering two-lane highways including shoulder width). Therefore, the road surface point cloud
is partitioned into blocks of length 12.8 m along the driving direction—Figure 9. Further, the LPS
analysis of the datasets suggests a point density equivalent to a cell size of approximately 5 cm.
Therefore, an image size fixed at 256 × 256 (for U-net input), with a 5 cm cell size, ensures minimal
resizing along the length and width of the block while maintaining the level of detail in the point
cloud. After partitioning, an intensity enhancement is applied to each point cloud block by choosing a
threshold (ThEN)—e.g., 5th intensity percentile. Intensity values greater than this threshold are set to
255, while lower intensity values are maintained.
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When generating intensity images, the pixel values are derived from the enhanced intensity within
the point cloud block. For each cell, its pixel value is defined by taking an average of the intensity
values of points falling in it. A second level of enhancement is applied to the generated intensity
images—e.g., using a 5th intensity percentile threshold. The two-step enhancement (in the point cloud
block and intensity image) helps in amplifying the pixel values corresponding to lane markings and
facilitates easier inference from the intensity image by the U-net model. For the following discussion,
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we hereafter refer to the enhanced image as an “intensity image.” An original road surface point cloud
and corresponding intensity image are shown in Figure 10. For U-net training, some intensity images
are utilized to establish labels manually for the first U-net model (referred to as “U-net model 1” in
Figure 8). For the second U-net model (referred to as “U-net model 2” in Figure 8), labels are generated
automatically using lane markings obtained from the normalized intensity thresholding after noise
removal according to the following steps:

1. The noise removal strategy proposed by Ravi et al. [18] (the details of which are described in
Section 4.2) is applied to the hypothesized lane markings. Figure 11a,b illustrate the outcome
from the normalized intensity thresholding strategy before and after noise removal.

2. The point cloud after noise removal, as shown in Figure 11b, is then divided into 12.8 m-long blocks
for converting into images with a pixel size and image size of 5cm and 256 × 256, respectively.

3. To ensure better spatial structure for the markings, a bounding box is created around each lane
marking in the resulting intensity image, as shown in Figure 11c. Thereafter, all pixels falling
within the bounding box are labeled as lane marking pixels. The resultant image, as shown in
Figure 11d, serves as a labeled image for the training of U-net model 2.
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U-Net Model Training

U-net is a fully CNN proposed by Ronneberger et al. [17] for biomedical image segmentation.
The adopted network architecture is shown in Figure 12. In our implementation, batch normalization [28]
is incorporated since it helps the U-net model to train faster by reducing the internal covariate shift and
allowing higher learning rates. Considering the disparity in the number of pixels between lane marking and
non-lane marking classes, this research chose a loss function based on the dice coefficient, which measures
the degree of overlap between two classes. The dice coefficient [29] is defined as in Equation (1), where
ytrue and ypred represent the ground truth and predicted pixels for the lane markings. Each pixel takes
a value of either 0 or 1 depending on whether it belongs to non-lane marking or lane marking class,
respectively. The dice coefficient value ranges from 0 to 1, where perfect overlap gives a value of 1.
Minimizing this loss function leads to the maximization of the Dice coefficient and hence the degree of
overlap between the ground truth and predicted lane markings. In order to evaluate the performance
of all strategies, precision, recall, and F1-score—represented by Equations (2)–(4) where TP, FP, and FN
are the true positives, false positives, and false negatives, respectively—are used. Precision signifies
how accurate the positive predictions are whereas recall indicates how well the true lane markings are
detected. F1-score, which is used to quantify the overall performance, is a harmonic mean of precision
and recall.

Dice coe f f icient =
2
∑

pixels γtrueγpred∑
pixels γtrue +

∑
pixels γpred

(1)

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

F1 − score = 2×
Precision×Recall
Precision + Recall

(4)
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Refinement of U-Net Predictions

After detection by the trained U-net model, predicted 2D lane marking images are projected back
to 3D to derive lane marking points. Due to the raster nature of the images, the derived 3D points will
be regularly spaced at a 5 cm interval. In order to derive lane markings with a point density similar to
that of the original road surface point cloud, the back-projected 3D points are used to generate 2D
masks. First, a square buffer cell with a 5cm side length is created around each projected point along
the XY-plane. All neighboring cells are then merged to form mask regions, as shown in Figure 13a.
As a refinement of the predicted lane markings, mask regions with areas smaller than a pre-defined
threshold (Tharea) are removed. The value of Tharea is based on the cell size of the intensity image and
minimum area of a dash lane marking. Finally, the original points—whose intensity is within the 5th
percentile intensity value—falling within the remaining mask regions are extracted as the final lane
marking predictions, as shown in Figure 13b,c.
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4.2. Lane Width Estimation Approach

To evaluate the performance of various lane marking extraction strategies, the lane width
estimation approach proposed by Ravi et al. [18] is used after its adaptation to handle derived lane
markings from intensity thresholding and deep learning strategies. Since predicted markings using
either intensity thresholding or deep learning strategies might have false positives, these lane markings
should be manipulated to produce their centerline points while removing potential outliers. The used
strategy has four main steps, shown in Figure 14: (1) clustering lane markings through a distance-based
region growing, (2) partitioning lane marking clusters, (3) noise removal, and (4) generating centerline
points for each lane marking cluster. An example illustrating the different steps is shown in Figure 15.
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First, a distance-based region growing is applied to the hypothesized lane marking points. If the
distance between two lane marking points is less than a distance threshold (Thdist), they are grouped
into the same cluster. This Thdist is defined based on LPS analysis of the road surface point cloud. After
clustering, a minimum point threshold (Thpt) is used to remove a cluster with fewer points. The Thpt is
determined based on the evaluated LPS and minimum area of a dash lane marking. In this work, Thpt

is only applied to lane marking clusters obtained from the intensity thresholding approaches. For such
approaches, the Thdist and Thpt thresholds are sequentially used for clustering lane marking points
and removing small clusters. For derived lane markings from deep learning approaches, Thdist is only
used for clustering the lane marking points since small area lane marking regions have been already
removed through the Tharea threshold during the refinement of the U-net predictions.

Subsequently, all lane marking clusters are partitioned into 3-m-long segments, which is the length
of a dash lane marking segment [30]. This partitioning is necessary to represent curved lane markings as
polylines. After the partitioning, Random Sample Consensus (RANSAC) and trajectory-based strategies
are applied to the lane marking segments for noise removal. First, a best-fitting line for each segment is
estimated using the RANSAC algorithm [31]. Based on the fitted line parameters, outlier points within
the segment are removed, as shown in Figure 15b. Second, an entire segment which is not parallel to
the driving direction is removed, as shown in Figure 15c. Collectively, the RANSAC-based strategy
removes outlier points within a hypothesized lane marking segment, while the trajectory-based strategy
removes an entire segment that does not represent a lane marking (as indicated by its orientation
relative to the system trajectory). Finally, the points in the remaining segments are projected onto the
corresponding centerlines.

Once centerline points of the lane markings are generated, the next step is to cluster them into
right-side and left-side groups for a given lane, as shown in Figure 16a. The basic concept of the
adopted centerline clustering algorithm is to start with a segment at the beginning of a road surface
and using its direction as a reference. The reference segment is augmented with the next centerline
segment along its direction. The centerline segment, which has been augmented last to a group, is then
used to define the new reference direction, and the process is repeated. Then, a linear interpolation is
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conducted for filling the gap between two successive centerline segments in a given group, as shown
in Figure 16b. Two thresholds, defining the minimum and maximum bounds for conducting the
interpolation, are used. For the minimum bound, we use Thdist—which was previously used for
the distance-based region growing. Therefore, for clustered centerline points that are farther apart
than Thdist, we carry out linear interpolation between them. To avoid linear interpolation on curved
road segments, we define a maximum distance threshold, denoted as Thmiss. For centerline points
that are farther apart more than Thmiss, a region of missing lane marking is assumed and reported.
In this research, Thmiss is set to 40 m, which is equivalent to the extent of three missing dash lane
markings along road surface. One should note that Thmiss is determined based on the minimum
radius of curvature for designing highways [32]. With a design speed of 70 mph and chord of
length 40 m, the corresponding arc obtained by the minimum curvature (2040 ft) is about 40.01 m.
The difference between Thmiss and the corresponding arc is 1 cm, which is within the noise level of
the MMS. However, Thmiss should be revised accordingly when the minimum curvature changes due
to a decline in design speed on suburban or urban roads. Table 3 lists the recommended values of
Thmiss for adjustment at different design speeds. Finally, all points, including original lane marking
centerline points and interpolated points, are down-sampled to space the points at an interval of
Thdist. Thereafter, the down-sampled points from the above steps are utilized for deriving lane width
estimates (i.e., a lane width estimate is derived at an interval of Thdist except in areas with missing lane
markings where the center line points on either side of the lane are farther apart than Thmiss).
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Table 3. Recommended values of Thmiss at different design speeds.

Design Speed Minimum Radius of
Curvature Recommended Thmiss Length of arc

30 mph 231 ft 10 m 10.01 m
40 mph 485 ft 20 m 20.02 m
50 mph 833 ft 25 m 25.01 m
60 mph 1330 ft 35 m 35.01 m
70 mph 2040 ft 40 m 40.01 m

4.3. Lane Marking Gap Reporting

As mentioned previously in Section 4.2, for lane width estimation, 3-m-long lane marking
segments are generated through the strategy proposed by Ravi et al. [18]. Gaps between these segments
correspond to areas with worn-out/missing lane markings and/or road intersections. While an
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interpolation is conducted to fill the gaps for lane width estimation, interpolated segments can be
analyzed to provide a report as to whether these gaps are caused by worn-out/missing lane markings
or intersections. Moreover, these reported regions and the corresponding RGB imagery visualization
can be utilized for lane markings inspection, which could replace in-situ inspection. In this research,
lane markings are solely defined based on intensity returns from the road surface (i.e., other highway
information is not incorporated to check if a gap is a result of an intersection or low-intensity returns
from lane markings). Thus, the gaps between the lane marking segments are categorized into two
classes—long lane marking gap regions and short lane marking gap regions. According to the Federal
Highway Administration (FHWA) [30], dash lane markings encompass 9-m gaps, and the overall
width of a two-lane intersection on highways is designed to be 102–120 ft (31.1–36.6 m). Based on this
information, an algorithm is proposed for automatically reporting gaps along lane markings. Starting
with the previously generated 3-m-long segments corresponding to the dash and edge lane markings,
gaps longer than Thmiss (which is used for avoiding interpolation in Section 4.2 and is slightly larger
than the overall width of a two-lane intersection) are identified as long lane marking gap regions.
Remaining gaps (less than Thmiss) are reported as short lane marking gap regions based on two cases,
as shown in Figure 17: (1) when a gap between consecutive dash lane marking segments is greater than
a dash-line gap threshold (Thdash), as shown in Figure 17a, and (2) when a gap between consecutive
edge lane marking segments is greater than the distance threshold (Thdist) as shown in Figure 17b.
Thdash is defined as 10 m since it is slightly larger than the standard length of a gap between two
successive dash lines (9 m), and Thdist is set to 20 cm, which is used for the distance-based region
growing—as discussed in Section 4.2. One should note that the lane marking segments derived from
the normalized intensity thresholding strategy and U-net model 2 are used to report lane marking gap
areas. More specifically, lane markings extracted from the former are utilized to report gaps along
edge lane markings while the results obtained from the latter help in the identification of the gaps
along dash lane markings. This framework, based on results that will be illustrated in Section 5.2,
ensures that areas with lane marking gaps are not underestimated.

Remote Sens. 2020, 12, x FOR PEER REVIEW          17 of 41 

 

than the overall width of a two-lane intersection) are identified as long lane marking gap regions. 
Remaining gaps (less than Thmiss) are reported as short lane marking gap regions based on two cases, 
as shown in Figure 17: (1) when a gap between consecutive dash lane marking segments is greater 
than a dash-line gap threshold (Thdash), as shown in Figure 17a, and (2) when a gap between 
consecutive edge lane marking segments is greater than the distance threshold (Thdist) as shown in 
Figure 17b. Thdash is defined as 10 m since it is slightly larger than the standard length of a gap between 
two successive dash lines (9 m), and Thdist is set to 20 cm, which is used for the distance-based region 
growing—as discussed in Section 4.2. One should note that the lane marking segments derived from 
the normalized intensity thresholding strategy and U-net model 2 are used to report lane marking 
gap areas. More specifically, lane markings extracted from the former are utilized to report gaps along 
edge lane markings while the results obtained from the latter help in the identification of the gaps 
along dash lane markings. This framework, based on results that will be illustrated in Section 5.2, 
ensures that areas with lane marking gaps are not underestimated. 

  
(a)                   (b) 

Figure 17. Illustration of gaps along (a) dash and (b) edge lines reported as short lane marking gap 
regions. 

5. Experimental Results and Discussion 

In this research, the three datasets were surveyed on two-lane highways (datasets 1 and 2 are on 
an interstate highway while dataset 3 is on a rural highway). The PWMMS-HA can capture point 
clouds for both driving and non-driving lanes, hereafter called “lane 1” and “lane 2”, respectively. 
Road surface point clouds covering lanes 1 and 2 were used for lane marking extraction and lane 
width estimation. The thresholds used for lane marking extraction through the different strategies, 
lane width derivation, and reporting lane marking gap regions are shown in Table 4. The values of 
these thresholds are kept the same across all datasets. 

5.1. Lane Marking Extraction Results 

5.1.1. Intensity Thresholding Approaches 

In this research, small road surface point clouds in ROIs 1, 2, and 3, as shown in Figure 3, were 
randomly selected in concrete pavement areas to generate the intensity normalization maps for each 
dataset. The number of the sensors, driving speeds, and map generation cell sizes of these small point 
clouds in these ROIs are listed in Table 5. According to the number of sensors used for the different 
datasets in Table 5, the total number of the intensity normalization maps generated for datasets 1, 2, 
and 3 are 3, 4, and 4, respectively. As mentioned previously, a cell size for generating the map is 
chosen based on the LPS of the small point cloud, which is affected by the driving speed and the 
number of beams of a LiDAR sensor. Thus, for the same LiDAR sensor, the cell size is relatively large 

Figure 17. Illustration of gaps along (a) dash and (b) edge lines reported as short lane marking
gap regions.

5. Experimental Results and Discussion

In this research, the three datasets were surveyed on two-lane highways (datasets 1 and 2 are
on an interstate highway while dataset 3 is on a rural highway). The PWMMS-HA can capture point
clouds for both driving and non-driving lanes, hereafter called “lane 1” and “lane 2”, respectively.
Road surface point clouds covering lanes 1 and 2 were used for lane marking extraction and lane
width estimation. The thresholds used for lane marking extraction through the different strategies,
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lane width derivation, and reporting lane marking gap regions are shown in Table 4. The values of
these thresholds are kept the same across all datasets.

Table 4. Thresholds used for lane marking extraction and lane width derivation.

Threshold Description Used for Value

ThI
Percentile intensity threshold for lane marking

extraction from point clouds
Intensity thresholding

approaches 5%

ThMF
LPS multiplication factor for cell size definition

(generating intensity normalization maps)
Normalized intensity

thresholding 4

ThEN
Percentile intensity threshold for

intensity enhancement
Deep learning

approaches 5%

Thdist Distance threshold for a distance-based region growing Lane width estimation
approach 20 cm

Thpt
Minimum point threshold for cluster removal

(intensity thresholding approaches)
Lane width estimation

approach 30 pts

Tharea
Minimum area threshold for 2D mask removal (deep

learning approaches)
Lane width estimation

approach 50 cm2

Thmiss
Missing lane marking threshold for reporting a

missing lane marking region
Lane width estimation

approach 40 m

Thdash
Distance threshold for reporting short lane marking

gaps of dash lines
Short lane marking gaps

reporting 10 m

5.1. Lane Marking Extraction Results

5.1.1. Intensity Thresholding Approaches

In this research, small road surface point clouds in ROIs 1, 2, and 3, as shown in Figure 3,
were randomly selected in concrete pavement areas to generate the intensity normalization maps
for each dataset. The number of the sensors, driving speeds, and map generation cell sizes of these
small point clouds in these ROIs are listed in Table 5. According to the number of sensors used for
the different datasets in Table 5, the total number of the intensity normalization maps generated for
datasets 1, 2, and 3 are 3, 4, and 4, respectively. As mentioned previously, a cell size for generating the
map is chosen based on the LPS of the small point cloud, which is affected by the driving speed and the
number of beams of a LiDAR sensor. Thus, for the same LiDAR sensor, the cell size is relatively large
in ROI 3 because of faster driving speed, as shown in Table 5. In addition, for the same ROI, the cell
size of VLP16 is slightly larger due to the fewer laser beams.

Table 5. Data acquisition specifications, extent of point cloud regions, and cell size for HDL32E and
VLP16 LiDAR units for intensity normalization map generation for the three datasets.

ROI 1 2 3

Length of Dataset (m) 29,032.57 (18.04 mile) 54,508.48 (33.87 mile) 24,606.87 (15.29 mile)
# of sensors 3 4 4

Mean. speed (mph) 49.39 48.44 64.85
Max. speed (mph) 52.99 59.84 74.58
Min. speed (mph) 45.58 44.38 55.43
Length of ROI (m) 155 190 155

Cell Size of HDL32E sensors (m) 0.12 0.12 0.25
Cell Size of VLP16 sensor (m) 0.20 0.20 0.30

Just as an example, Figure 18 shows the intensity normalization maps for one of the HDL32E
LiDAR units in ROIs 1, 2, and 3. For the same LiDAR unit, samples of road surface point clouds
with the original and normalized intensity values, and corresponding hypothesized lane markings
in these ROIs are illustrated in Figure 19. As can be seen in Figure 18, the intensity normalization
map for ROI 3 is significantly different from those for ROIs 1 and 2. This difference is attributed
to the fact that datasets 1 and 2 were acquired on the same interstate highway, while dataset 3 was
collected on a rural highway. For interstate highways, pavement material more resistant to wear and
tear is used when compared to that for rural highways [33]. As expected, properties of the pavement
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surface strongly influence the original intensity values of the road point cloud and subsequently the
corresponding intensity normalization map. Another evidence supporting the impact of pavement
surface on intensity values can be seen in Figure 19, where the original intensity values in ROI 3 are
significantly higher than those for ROIs 1 and 2. Once the intensity values of road surface point clouds
were normalized, the hypothesized lane markings were extracted using a 5th percentile intensity
threshold (ThI). For performance comparison, the original point cloud was also utilized to extract
hypothesized lane markings using the same threshold. It is apparent that hypothesized lane markings
with less noise were extracted from the normalized point cloud, as shown in Figure 19.
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5.1.2. Evaluation of Different Lane Marking Extraction Strategies

For training the U-net models, a total of 400 manually labeled intensity images and 1183
automatically labeled intensity images are used. Another 104 manually labeled images and 238
automatically labeled images are used for validation—which is part of the training process. The training
and validation images are derived from datasets 1 and 3. The training images have been also augmented
during each training epoch using: a) rotation of the image in the range from 0◦ to 180◦ in a clockwise
direction, b) zooming in and out by resizing image between 80% (zoom in) to 120% (zoom out) of its
original size, and c) horizontal flip. Additionally, a test dataset of 174 images is also curated from
dataset 2 for performance evaluation of both intensity thresholding and deep learning approaches.
Specifically, for the former, lane marking point cloud is converted to intensity image for subsequent
performance evaluation. The experimental settings for training the U-net models are listed in Table 6.
An Adam optimizer is used to update the network’s weights. Finally, the U-net models are trained
on the Google Colaboratory platform that provides K80 GPU access. In machine and deep learning
applications, a loss value quantifies the difference between ground truth and prediction. A high loss
value indicates poor prediction and vice versa. Figure 20 shows the training loss (calculated on training
data) and validation loss (calculated on validation data) plots for U-net models 1 and 2. The plots
show the loss values at each epoch of the training process (i.e., training and validation loss values are
evaluated for each training epoch). While training data helps the model to optimize its weights for the
given classification task, it is the performance on validation data that indicates if the model performs
well on unseen data. The plots indicate that U-net model 2 achieves the lowest validation loss of 0.118,
while model 1 achieves 0.173 loss value. This can be attributed to the larger training samples for U-net
model 2, which helps it to learn varied scenarios. Table 7 presents the performance metrics for the
state of the art strategies (original intensity thresholding and deep learning with manual labeling) and
proposed approaches (normalized intensity thresholding and deep learning with automated labeling).



Remote Sens. 2020, 12, 1379 20 of 41
Remote Sens. 2020, 12, x FOR PEER REVIEW          20 of 41 

 

  
 

  
(a) 

  
 

 
 

(b) 

Figure 19. Cont.



Remote Sens. 2020, 12, 1379 21 of 41

Remote Sens. 2020, 12, x FOR PEER REVIEW          21 of 41 

 

  
 

  
(c) 

Figure 19. Intensity normalization maps associated with an HDL 32E LiDAR unit for (a) ROI 1, (b) 
ROI 2, and (c) ROI 3. 

  
(a) (b) 

Figure 20. Training and validation loss curves for (a) U-net model 1 and (b) U-net model 2. 

Comparing the deep learning approaches, U-net model 1 shows high recall but poor precision 
rate resulting in a low F1-score. This means that false-positive detection for model 1 is significant (i.e., 
the model cannot distinguish well between lane markings and high-intensity outliers). On the other 
hand, U-net model 2 shows large, comparable precision and recall values leading to a much higher 
F1-score than model 1. This better performance can be explained by 2.5 times more training samples 
in U-net model 2 in comparison to U-net model 1. Larger training data helps U-net model 2 to learn 
a variety of scenarios and enables it to lower its false-positive rate in comparison to model 1. Samples 
of original intensity images and corresponding images with predicted lane markings derived from 
the deep learning strategies are displayed in Figure 21. As far as the shape of the detected lane 
markings is concerned, U-net model 1 tends to obtain irregular detections, especially when the lane 

Figure 19. Intensity normalization maps associated with an HDL 32E LiDAR unit for (a) ROI 1, (b) ROI
2, and (c) ROI 3.

Table 6. Experimental settings for training the U-net models.

Experimental Setting Description Associated Values

Learning rate
Step size by which gradient of the
loss function is scaled to update

the network weights
8 × 10−4

Batch size
Number of training examples fed
to the network for a single update

of the network weights
8

Epoch

One cycle (forward and backward
pass) where the network has seen

all training examples once
constitutes an epoch.

100

Early stopping

The training is stopped when
validation loss does not improve

from the current lowest value for a
certain number of consecutive

epochs called patience. This helps
in preventing overfitting to

training data.

Patience: 15

Decay of learning rate

The learning rate is also decayed
by a factor of 10 when validation
loss does not improve from the

current lowest value for patience
number of consecutive epochs.

Patience: 5
Decay factor: 10
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Table 7. Performance metrics for the lane marking extraction strategies in dataset 2.

Lane Marking Extraction Strategies Precision Recall F1-Score

Original intensity thresholding 84.1% 63.5% 72.3%
Normalized intensity thresholding 83.9% 74.4% 78.9%

Deep learning with manual labeling 60.5% 98.9% 75.1%
Deep learning with automated labeling 84.0% 87.9% 85.9%

Comparing the deep learning approaches, U-net model 1 shows high recall but poor precision
rate resulting in a low F1-score. This means that false-positive detection for model 1 is significant
(i.e., the model cannot distinguish well between lane markings and high-intensity outliers). On the
other hand, U-net model 2 shows large, comparable precision and recall values leading to a much
higher F1-score than model 1. This better performance can be explained by 2.5 times more training
samples in U-net model 2 in comparison to U-net model 1. Larger training data helps U-net model 2 to
learn a variety of scenarios and enables it to lower its false-positive rate in comparison to model 1.
Samples of original intensity images and corresponding images with predicted lane markings derived
from the deep learning strategies are displayed in Figure 21. As far as the shape of the detected lane
markings is concerned, U-net model 1 tends to obtain irregular detections, especially when the lane
marking is surrounded by high-intensity outliers, as shown in Figure 21d. On the other hand, U-net
model 2 is capable of extracting the regular structure of lane markings, as shown in Figure 21e.

Figures 22 and 23 depict samples of original intensity images and corresponding images with
predicted lane markings obtained from the four different strategies in yellow edge lane marking and
worn-out dash lane marking areas, respectively (both samples are over asphalt pavement). In these
figures, one can observe that the deep learning approaches show much higher recall (i.e., most of the
true lane markings have been identified), while the intensity thresholding ones show higher precision
(i.e., a lower percentage of false positives). This is expected since the lane markings extracted by the
intensity thresholding were processed through the noise removal strategy that removes a significant
number of lane marking outliers. However, during the noise removal procedure, some true lane
markings could be wrongly eliminated, especially for yellow lane markings where point density is
low. This results in a lower recall rate for the intensity thresholding approaches. The deep learning
approaches, in contrast, can extract lane markings in such cases. This can be explained by the fact that
they detect lane markings based on both content and context (intensity as well as point density and
location of points), while the intensity thresholding approaches rely on content alone (intensity and
point density), as shown in Figure 22. However, the deep learning approaches miss worn-out dash lane
markings in some areas, as shown in Figure 23e,f. This is because of the training data bias where the
point density of dash lane markings is usually high because of a small scanner-to-object distance for
these markings. Since worn-out dash lane markings have low point density, missing detection could
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be expected from deep learning approaches. One should note that the argument of context does not
hold here (contrary to edge lane markings) since dash lane markings have a smaller length. In contrast,
the intensity thresholding approaches can extract these lane markings if their properties satisfy the
criteria specified by the Thpt and Thdist thresholds during the noise removal strategies, as shown in
Figure 23c,d. By utilizing the respective shortcomings of the intensity and deep learning approaches
in areas of low point density, a conservative estimate of lane marking gap regions is reported along
with their locations, which can be visually inspected through RGB imagery. Thus, based on results
illustrated in Figures 22 and 23, lane markings from normalized intensity thresholding strategy are
analyzed to identify gaps along edge lines while lane markings extracted through U-net model 2 are
utilized to report gaps along dash lines in Section 5.3.
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thresholding strategy and deep learning approaches avoid this problem. These three strategies 
eliminate high noise in concrete pavement area while extracting all lane markings. 
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Figure 23. Worn-out dash lane marking area in dataset 3: (a) RGB imagery of location i, (b) original
intensity image, predicted lane marking images of (c) original intensity thresholding, (d) normalized
intensity thresholding, (e) U-net model 1, and (f) U-net model 2.

5.1.3. Comparison Between Asphalt and Concrete Pavement Areas

In addition to the condition of the lane marking, the nature of the pavement surface plays a
critical role in lane marking extraction. As mentioned previously, while asphalt pavements have
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low reflectivity, concrete pavements produce high-intensity values, which are close to those for lane
markings. Figure 24 illustrates typical intensity images for asphalt and concrete pavement regions
in dataset 3. Low intensity contrast between lane markings and its surrounding concrete pavement
leads to high noise in the original intensity thresholding strategy. For the same regions in Figure 24,
the predicted lane marking images derived from all strategies are presented in Figures 25 and 26.
In asphalt pavement area, all the strategies lead to complete extraction of lane markings, as shown in
Figure 25. However, in concrete pavement area, the original intensity thresholding cannot completely
extract edge lane markings, as shown in Figure 26b, but the normalized intensity thresholding strategy
and deep learning approaches avoid this problem. These three strategies eliminate high noise in
concrete pavement area while extracting all lane markings.Remote Sens. 2020, 12, x FOR PEER REVIEW          25 of 41 
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The length of the road segments where lane markings have been extracted are also compared in
dataset 3 with dominant concrete pavement. Figure 27 shows the results of the length comparison.
As mentioned previously, road surface point clouds covering two-lane highways were used for lane
marking extraction. Thus, all the datasets contain dash center lines and solid edge lines on either side
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of the center dash lines, hereafter respectively called “center, left, and right lane markings,” as shown
in Figure 27a. The length of the lane markings (center, left, and right lane markings) obtained from all
strategies are evaluated for both asphalt and concrete pavement areas in dataset 3. One should note
that in dataset 3, the driving lane was maintained throughout the data collection campaign and was
bounded by the center and right lane markings. Dataset 3 is 15.29 mile (24.61 km) long and the total
length of the different lane markings extracted in asphalt and concrete pavement areas are tabulated in
Figure 27b,c, respectively. As shown in Figure 27b,c, the percentages of the extracted lane markings
indicate gaps, which could be caused by, (1) missing/worn-out lane markings and/or road intersections
or (2) shortcomings of the strategies themselves. Following are the findings of the analysis:

1. In asphalt pavement area, the results from the different strategies are comparable except for the
right lane markings where U-net model 1 has poor performance. The results of model 1 are
unexpected, and it is hypothesized that this is a result of unintended adversarial noise [34] in
intensity images generated for these areas.

2. In concrete pavement area (however), U-net model 2 can extract much longer length of the left lane
markings compared to other strategies. For the center lane markings, the normalized intensity
thresholding strategy results in the largest lane marking extraction followed by the deep learning
approaches. The right lane markings have consistent results under all strategies since it is near
the driving lane where the lane markings have high point density. Overall, we conclude that the
normalized intensity thresholding and deep learning approaches can extract lane marking much
better than the original intensity thresholding strategy in concrete pavement area.

5.2. Lane Width Estimation Results

In this section, we compare the lane width estimation results for all strategies across the three
datasets. As mentioned previously, an estimate of the lane width is automatically derived every 20 cm
using the approach proposed by Ravi et al. [18]. Depending on the starting position for lane width
estimation, which depends on the extracted lane markings, the locations of lane width estimates might
slightly differ from one strategy to another. Thus, for lane width comparison, a difference is calculated
if the distance between two estimates is less than 20 cm. Consequently, the number of comparisons
is slightly different for each strategy. Throughout the following comparisons, lane width values
based on the normalized intensity thresholding serve as the reference for comparison because its lane
markings were used to automatically generate the training labels for U-net model 2. While explaining
the different results, this section refers to lane markings before noise removal as “hypothesized lane
marking points,” and the ones after noise removal as “lane marking centerline points.” Finally, the
section concludes with a quantitative comparison between manually evaluated and automatically
derived lane width estimates from different strategies.

5.2.1. Datasets 1 and 2: Mainly Asphalt Pavement

For dataset 1, Table 8 lists the number of comparisons, estimated length (total distance over which
lane width estimates are obtained), and difference statistics for the four strategies. The lane width
estimates in dataset 1 using various strategies are illustrated in Figure 28. These results indicate that
lane width estimates from the intensity thresholding approaches are similar. Lane width estimates
from the normalized intensity thresholding, on the other hand, differ from the ones obtained from the
deep learning approaches. This difference is attributed to the fact that the deep learning approaches,
with higher recall values, extract most of the actual lane markings including worn-out lane markings,
which might be missed by thresholding strategies (i.e., more interpolation is conducted for the intensity
thresholding strategies). Additionally, compared with the mean values of the differences in lane 1,
the mean values in lane 2 are higher for all strategies because of the large scanning distance over lane 2
resulting in sparse point density and lower accuracy of the derived road surface point cloud. Due to
the same reason, the total length of the highway, where lane width estimates are reported, is less in
lane 2 for all strategies. However, the deep learning approaches can deliver lane width estimates over
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a longer length in lane 2 than intensity thresholding approaches. This is consistent with the previous
discussion that the deep learning approaches can detect a complete edge lane marking with low point
density, as shown in Figure 22.Remote Sens. 2020, 12, x FOR PEER REVIEW          27 of 41 
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Figure 27. Illustrations of (a) lane marking schematic diagram and length of lane markings extracted
from different strategies in (b) asphalt pavement areas and (c) concrete pavement areas for dataset 3.

To further evaluate the strategies, we also processed dataset 2, which is mainly asphalt pavement
but has more concrete pavements than dataset 1. The lane width estimates in dataset 2 from the
different lane marking extraction strategies are presented in Figure 29. The number of comparisons,
estimated length, and difference statistics for dataset 2 are summarized in Table 9. The normalized
intensity thresholding strategy produces lane width estimates over a larger distance when compared
to the strategy using original intensity values in both lanes. Compared with the intensity thresholding
approaches, as shown as the red box in Figure 29, more lane width values were estimated using the
deep learning approaches, especially in poor lane marking areas. The hypothesized lane markings,
lane marking centerline points, and interpolated points obtained from the different strategies in such
area (red box in Figure 29) are illustrated in Figure 30. From this figure, we can observe that worn-out
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lane markings were removed by the minimum point threshold (Thpt). However, they were kept in the
deep learning approaches due to the minimum area threshold (Tharea), which was applied to 3D masks
generated from its predictions. It is also observed that U-net model 1 results in almost 1-mile longer
lane width estimation than U-net model 2 in both lanes. This longer estimation is owed to a higher
recall rate of 98.9% in U-net model 1, as reported in Table 7. However, U-net model 1, with the low
precision of 60.5%, needs higher computation time than model 2 for eliminating many false positives
through the noise removal strategies. In this dataset, it took approximately 22 min for noise removal
from the results from U-net model 1 and around 18 min for model 2.

Table 8. Lane width difference statistics for different lane marking extraction strategies in dataset 1.

Strategy Original Intensity
Thresholding

Normalized
Intensity

Thresholding

Deep Learning with
Manual Labeling

Deep Learning with
Automated Labeling

Lane 1 2 1 2 1 2 1 2
Length of Dataset (mile) 18.04
Estimated Length (mile) 17.74 15.22 17.81 15.11 17.79 15.90 17.68 15.70

# of Comparisons 142,689 121,115 - - 142,312 121,615 141,424 121,256
Mean (cm) 0.2 −0.3 - - 0.2 −0.4 0.3 −0.5
STD (cm) 1.1 1.1 - - 1.3 1.3 1.2 1.3

RMSE (cm) 1.1 1.1 - - 1.3 1.3 1.3 1.4
Max. (cm) 7.0 13.3 - - 18.5 13.2 16.8 15.6
Min. (cm) −7.0 −7.2 - - −19.8 −10.9 −11.7 −16.1

Note: compared with normalized intensity thresholding lane width estimates.
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Table 9. Lane width difference statistics for different lane marking extraction strategies in dataset 2.

Strategy Original Intensity
Thresholding

Normalized
Intensity

Thresholding

Deep Learning with
Manual Labeling

Deep Learning with
Automated Labeling

Lane 1 2 1 2 1 2 1 2
Length of Dataset (mile) 33.87
Estimated Length (mile) 23.31 21.52 24.37 22.33 30.18 26.79 29.12 25.66

# of Comparisons 176,316 162,047 - - 194,015 177,399 188,888 175,347
Mean (cm) 0.0 0.1 - - −0.1 0.3 0.0 0.3
STD (cm) 1.8 2.1 - - 2.2 2.4 2.3 3.0

RMSE (cm) 1.8 2.1 - - 2.2 2.4 2.3 3.0
Max. (cm) 21.2 23.3 - - 17.7 24.0 40.3 59.8
Min. (cm) −23.0 −28.8 - - −19.4 −24.8 −18.3 −40.1

Note: compared with normalized intensity thresholding lane width estimates.
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Figure 29. Estimated lane width values in (a) lane 1 and (b) lane 2 for dataset 2.

5.2.2. Dataset 3: Mainly Concrete Pavement

For dataset 3, Figure 31 shows the lane width profile derived from the different lane marking
extraction strategies, and Table 10 summarizes the number of comparisons, estimated length,
and difference statistics among the four strategies. As shown in Figure 31, it is apparent that
lane width estimates obtained from the original intensity thresholding strategy and deep learning
approaches differ significantly from the normalized intensity thresholding strategy in some areas.
The RGB imagery for two such areas are shown in Figure 32a,b, also indicated as red boxes I and II in
Figure 31. Referring to the red box I in Figure 31, hypothesized lane markings, lane marking centerline
points, and interpolated centerline points for all lane marking extraction strategies are displayed in
Figure 32c. This figure shows that five dash lane markings were not extracted using the intensity
thresholding strategy due to higher noise in concrete pavement. Figure 32d, which refers to the red box
II in Figure 31, compares hypothesized lane markings, lane marking centerline points, and interpolated
centerline points obtained from the different strategies. Three dash lane markings were not detected in
the deep learning strategy using U-net model 2. This misdetection is caused by the training data bias
of U-net model 2, as shown in Figure 23.
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Figure 31. Estimated lane width values in (a) lane 1 and (b) lane 2 for dataset 3.

Table 10. Lane width difference statistics for different lane marking extraction strategies in dataset 3.

Strategy Original Intensity
Thresholding

Normalized
Intensity

Thresholding

Deep Learning with
Manual Labeling

Deep Learning with
Automated Labeling

Lane 1 2 1 2 1 2 1 2
Length of Dataset (mile) 15.29
Estimated Length (mile) 14.50 13.88 14.98 14.28 14.53 14.37 14.66 14.39

# of Comparisons 116,432 111,426 - - 116,851 112,660 117,905 112,955
Mean (cm) 0.1 −0.1 - - 0.1 −0.2 0.0 −0.1
STD (cm) 2.4 2.3 - - 1.9 2.2 1.1 1.5

RMSE (cm) 2.4 2.3 - - 1.9 2.2 1.1 1.5
Max. (cm) 53.7 25.4 - - 40.4 15.8 58.9 14.2
Min. (cm) −24.7 −32.4 - - −13.2 −34.3 −19.4 −32.9

Note: compared with normalized intensity thresholding lane width estimates.

In summary, the performance of the original intensity thresholding strategy gradually declines
with an increase in the area of concrete pavement, but the other three strategies can extract more lane
markings in such area as validated by a longer distance where lane width estimates are reported across
all datasets. The longer lengths for lane width estimation in dataset 2 for both lanes confirm the claim
that the deep learning approaches perform better in areas of worn-out edge lane markings when
compared to intensity thresholding strategies. The standard deviations of the difference statistics for
all datasets, which range from 1.1 to 3.0 cm, indicating that the lane width estimates from the different
strategies are compatible within a 1 to 3 cm range.
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Figure 32. RGB imagery in (a) location i and (b) location ii, and illustrations of hypothesized lane
markings (left), and lane marking centerline and interpolated points overlaid on the same hypothesized
lane markings (right) in concrete pavement areas for the red boxes (c) I and (d) II in Figure 31 for
dataset 3.
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5.2.3. Comparison With Manual Lane Width Measurements

In order to demonstrate the robustness of the lane marking extraction and lane width estimation
strategies, the automatically derived lane width estimates are compared to manually evaluated ones
for all datasets. Figure 33 shows a road surface point cloud and manually established points for lane
width estimation. For manual lane width estimation, two points are defined on a dash line, and another
point is defined on the corresponding edge lane marking. The two points on the dash lane marking are
used to derive a line through them. The third point on the edge lane marking is projected onto that
line. Finally, a 3D distance between the point along the edge lane marking and its projection on the
dash lane marking is used as the manually evaluated lane width. One should note that we used the
dash lane marking to define the lane width direction since it is usually straight (in contrast to edge lane
markings that could be curved).
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A lane width difference is calculated if the distance between the manual and automated estimates
is less than 20 cm apart as per the Thdist threshold. Although the same manually evaluated lane width
estimates are used to examine the lane width estimates in each dataset, the number of comparisons is
different for each strategy due to the expected variation in the locations of automatically derived lane
width estimates. The quantitative metrics, including the mean, standard deviation, root-mean-square
error (RMSE), and maximum difference between the manually and automatically evaluated lane width
estimates are summarized in Table 11. Overall, there is no difference greater than 7 cm for all datasets,
and the RMSE values of the differences range from 1.2 to 2.8 cm, indicating good agreement among
the manually and automatically-evaluated estimates. Moreover, the differences are coherent with
the 2–4 cm expected accuracy range of the point cloud for the used system. The slightly larger mean
differences in lane 2 reflect the slightly poor accuracy for points with longer scanning distance.

5.3. Lane Marking Gap Results

As mentioned previously, all the datasets include center, left, and right lane markings, as shown
in Figure 27a. For each dataset, derived lane markings from the normalized intensity thresholding
strategy are used to report right and left lane marking gaps (i.e., along edge lane markings) while U-net
model 2 results are utilized to report the same along center (i.e., along dash lane markings). One should
note that in all the datasets, the left lane markings are yellow edge lines, while the center and right
lane markings are white dash and edge lines, respectively. For the different datasets, the driving lane,
which is bounded by the center and right lane markings, was maintained during the data collection.
The long lane marking gap regions along the road surface for the three datasets are reported in Figure 34.
The figure also shows an example of a location with a long gap (more than Thmiss) for each of the
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datasets. It can be seen that the dash lane markings in Figure 34b,c are obviously worn-out or missing
(identified through U-net model 2) in the RGB imagery, while the yellow markings in Figure 34a are
slightly worn (identified through normalized thresholding strategy) in the image. The total length and
average (total length of the gaps divided by the length of the dataset) of long lane marking gaps in
datasets 1, 2, and 3 are summarized in Table 12. On the other hand, short lane marking gap regions
along center, left, and right lane markings for the three datasets are reported in Figure 35, which also
shows an example of a location with a short gap (less than Thmiss). The RGB imagery in Figure 35 shows
the worn-out lane markings at locations i, ii, and iii for datasets 1, 2, and 3, respectively. Overall, this
reporting algorithm quickly identifies a large number of regions that require further visual inspection,
which can reduce cost and time for on-site inspections.

Table 11. Lane width difference statistics between various strategies and manual measurements.

Dataset
Strategy Original Intensity

Thresholding

Normalized
Intensity

Thresholding

Deep Learning
with Manual

Labeling

Deep Learning
with Automated

Labeling

Lane 1 2 1 2 1 2 1 2

1

Length of
Dataset (mile) 18.04

Estimated
Length (mile) 17.74 15.22 17.81 15.11 17.79 15.90 17.68 15.70

# of Comparisons 150 148 149 146 147 153 149 152
Mean (cm) 0.9 1.2 0.6 1.3 1.0 1.2 0.9 1.1
STD (cm) 2.3 2.4 2.5 2.4 2.3 2.5 2.4 2.4

RMSE (cm) 2.5 2.7 2.6 2.7 2.5 2.7 2.6 2.6
Max. (cm) 6.9 6.2 6.6 6.9 6.6 6.6 6.9 7.0
Min. (cm) −4.6 −5.2 −5.6 −5.9 −4.7 −6.8 −3.9 −5.4

2

Length of
Dataset (mile) 33.87

Estimated
Length (mile) 23.31 21.52 24.37 22.33 30.18 26.79 29.12 25.66

# of Comparisons 176 204 190 204 218 222 215 219
Mean (cm) −0.4 −0.4 −0.2 −0.3 −0.4 −0.6 −0.3 −0.4
STD (cm) 2.4 2.6 2.5 2.7 2.4 2.6 2.5 2.8

RMSE (cm) 2.4 2.6 2.5 2.7 2.4 2.6 2.5 2.8
Max. (cm) 6.7 6.5 6.5 6.5 4.9 6.8 6.9 6.9
Min. (cm) −6.6 −6.7 −6.3 −6.0 −6.8 −6.8 −6.5 −6.5

3

Length of
Dataset (mile) 15.29

Estimated
Length (mile) 14.50 13.88 14.98 14.28 14.53 14.37 14.66 14.39

# of Comparisons 196 181 204 192 200 192 203 193
Mean (cm) 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.4
STD (cm) 1.2 1.5 1.2 1.5 1.4 1.5 1.3 1.5

RMSE (cm) 1.2 1.6 1.3 1.5 1.4 1.6 1.4 1.5
Max. (cm) 3.5 5.0 3.7 4.8 3.9 6.6 6.5 4.8
Min. (cm) −3.1 −4.3 −4.8 −3.4 −6.1 −4.5 −5.4 −3.5

Table 12. Statistics of long lane marking gaps for datasets 1, 2, and 3.

Dataset Length of
Dataset Lane Marking # of Long Gaps Total Length of

Long Gaps (ft)
Average Gap

(ft/mile)

1 18.04 mile
Left 29 7431.8 (2265.2 m) 412.0

Center 1 151.0 (46.0 m) 8.4
Right 0 0.0 (0.0 m) 0.0

2 33.87 mile
Left 41 15,392.7 (4691.7 m) 454.5

Center 14 3608.2 (1099.8 m) 106.5
Right 0 0.0 (0.0 m) 0.0

3 15.29 mile
Left 16 3107.0 (947.0 m) 203.2

Center 6 1136.7 (346.5 m) 74.3
Right 0 0.0 (0.0 m) 0.0
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Figure 34. Illustrations of long lane marking gap regions versus mile marker (top) together with an 
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Figure 34. Illustrations of long lane marking gap regions versus mile marker (top) together with an
example location defined by start and end points overlaid on hypothesized lane markings (bottom-left)
and corresponding RGB imagery (bottom-right) for (a) dataset 1, (b) dataset 2, and (c) dataset 3.
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Figure 35. Illustrations of short lane marking gap regions versus mile marker (top) together with an 
example location defined by start and end points overlaid on hypothesized lane markings (bottom-
left), and corresponding RGB imagery (bottom-right) for (a) dataset 1, (b) dataset 2, and (c) dataset 3. 

Figure 35. Illustrations of short lane marking gap regions versus mile marker (top) together with an
example location defined by start and end points overlaid on hypothesized lane markings (bottom-left),
and corresponding RGB imagery (bottom-right) for (a) dataset 1, (b) dataset 2, and (c) dataset 3.
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6. Conclusions and Recommendations for Future Research

Lane marking extraction through intensity thresholding of LiDAR-based MMS point clouds has
traditionally suffered from the problem of large false positives. Hence, prior knowledge is required
for noise removal. In contrast, learning-based approaches can detect lane markings from an intensity
image without a specific prerequisite, but they are limited by the tedious procedure of manual
labeling for training data generation. In this paper, in order to address these challenges, normalized
intensity thresholding and deep learning strategies with automatically generated labels are proposed
for extracting lane markings from LiDAR-based MMS point clouds. To test the performance of the
proposed strategies, an original intensity thresholding strategy and a deep learning strategy using
manually established labels are also implemented. In addition, the performance evaluation of all
strategies is also carried out in asphalt and concrete pavement areas. For the original and normalized
intensity thresholding strategies, lane markings were directly extracted from the road surface point
cloud. For the deep learning approaches, lane markings were detected from generated intensity images
using U-net models trained on manually established (model 1) and automatically-generated labels
(model 2). Additionally, the lane markings extracted through the normalized intensity thresholding
strategy and U-net model 2 were used to report lane marking gap regions along edge lines and
dash lines, respectively. Lastly, the lane marking derived from all strategies are utilized for lane
width estimation.

In this research, three datasets, with a total length of about 67 miles, were surveyed on two-lane
highways that covered both concrete and asphalt pavement areas. Compared with the lane markings
from thresholding of the original intensity, hypothesized lane markings derived from the normalized
intensity thresholding strategy have less false positives. On the other hand, U-net model 2 performs
better than model 1, as indicated by a higher F1-score. The precision, recall, and F1-score obtained for
U-net model 1 are 60.5%, 98.9%, and 75.1%, respectively. Moreover, the derived precision, recall, and
F1-score for U-net model 2 are 84%, 87.9%, and 85.9%, respectively. Further, the same metrics for the
normalized intensity thresholding strategy were obtained as 83.9%, 74.4%, and 78.9%, respectively,
indicating a performance better than U-net model 1 but not model 2. The original intensity thresholding
strategy has an inferior overall performance than the above strategies with an F1-score of 72.3%.
In concrete pavement area, high-intensity outliers are successfully eliminated by the normalized
intensity thresholding and both deep learning strategies, unlike the thresholding of original intensity
values. In addition, the lane width estimation results demonstrate that the deep learning approaches
could extract more lane markings than other strategies in poor edge lane marking area and non-driving
lane. Since this research is based on an MMS equipped with accurately calibrated imaging and ranging
systems, reported lane marking gaps can be visually inspected in the RGB imagery to evaluate the
cause of such gaps (e.g., missing and/or worn-out lane markings).

Future research will focus on developing an intensity normalization algorithm for an MMS
equipped with single-beam LiDAR scanners. According to the assumption that the intensity values
across laser beams should be similar for the same surface, utilization of an MMS equipped with two
or more single-beam LiDAR scanners should also achieve the same intensity normalization effect.
Another focus will be to increase the number of training samples for the U-net model trained on
automatically generated labels by including samples from other single-beam LiDAR datasets. This will
enhance the generalization capability of the U-net model across different types of sensors as well as
improve the detection results on problematic cases such as worn-out dash lane markings with low
point density. Additionally, the RGB information from imagery will be combined with point cloud
data to improve the accuracy of lane marking extraction (especially those that are worn-out).
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