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Abstract: Soybean is regarded as one of the most produced crops in the world, presenting a
source of high-quality protein for human and animal diets. The general objective of the study
was to determine the optimal soybean land suitability and conduct its mapping based on the
multicriteria analysis. The multicriteria analysis was based on Geographic Information System
(GIS) and Analytic Hierarchy Process (AHP) integration, using Sentinel-2 multitemporal images for
suitability validation. The study area covered Osijek-Baranja County, a 4155 km2 area located in
eastern Croatia. Three criteria standardization methods (fuzzy, stepwise and linear) were evaluated for
soybean land suitability calculation. The delineation of soybean land suitability classes was performed
by k-means unsupervised classification. An independent accuracy assessment of calculated suitability
values was performed by a novel approach with peak Normalized Difference Vegetation Index (NDVI)
values, derived from four Sentinel-2 multispectral satellite images. Fuzzy standardization with the
combination of soil and climate criteria produced the most accurate suitability values, having the top
coefficient of determination of 0.8438. A total of 14.5% of the study area (602 km2) was determined as
the most suitable class for soybean cultivation based on k-means classification results, while 64.3%
resulted in some degree of suitability.
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1. Introduction

The increasing demand for food and bioenergy in the world stimulated the development of land
suitability calculation methods, as a basis for effective agricultural land management and environmental
sustainability [1,2]. Conventional agriculture is characterized by a very high input of fertilizer, pesticides
and herbicides, having a negative long-term impact on sustainability [3]. The selection of naturally
suitable areas for the particular crop type cultivation reduces the overall application of inputs,
creating an optimal environment for crop growth [4]. Agricultural land management plans based on
inappropriate evaluation of natural resources limit crop yields and increase production costs [5]. Chen
et al. [6] recommended the development of crop-specific evaluation indices through land suitability
determination to ensure the sustainability of agricultural production. Delineation of suitability classes
with homogenous characteristics is a fundamental segment of land evaluation, allowing effective
implementation of land use planning in the field [7]. Mapping of such suitability classes for particular
crop cultivation is essential for the transfer of knowledge to the end-users, whether to land management
experts or individual farmers and farming companies [8].

Multicriteria analysis is widely recognized as the method for the selection of the most suitable
(optimal) location and its alternatives in various areas, such as agriculture [9–11], forestry [12], land
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management [13] and environmental planning [14]. With the integration of spatial components
from Geographic Information System (GIS), an approach of GIS-based multicriteria analysis enables
a suitability modeling for any entity related to space [15]. The benefit of GIS-based multicriteria
analysis in agriculture is its universal applicability regarding crop types, area size and location in the
world. Its potential is conditioned only by the crop expert’s knowledge of the optimal agroecological
conditions of the selected crop type and the quality of the input spatial data [16,17]. The core
procedures of multicriteria analysis are based on the establishment of the relationship between
relevant criteria [18]. Many methods have been developed to determine the relative relationship
between criteria for the suitability calculation, one of the most notable being the Analytic Hierarchy
Process (AHP) [19]. Standardization of criteria values is a necessary procedure in the calculation of
suitability models [20]. Input values of all criteria are commonly transformed into a unique number
interval during the standardization process for further processing. Many authors noted an impact of
the selection of standardization methods in multicriteria analysis on land suitability values [21–24].
Standardization using simple linear scale transformation was usually the selected method in these
studies. The hybridization of GIS-based multicriteria analysis with unsupervised classification presents
a novel approach in the management of calculated suitability values, enabling the effective creation of
land suitability classes [25]. The delineation of suitability classes is regarded as a necessary procedure in
suitability analyses and precision agriculture, as it significantly facilitates the application of GIS-based
multicriteria analysis results in the field [26]. Van Niekerk noted the superiority of computer algorithms
over traditional manual mapping techniques for the delineation of suitability classes, as they allow
objective and time-efficient classification [27].

Soybean is a fundamental component of agricultural land management plans worldwide,
presenting a major source of protein for humans and a high-quality animal feed [28]. According
to the Food and Agriculture Organization of the United Nations (FAO) publication [29], soybean
accounted for about one-third of the total harvested area devoted to annual and perennial crops, while
its share in global oil-crop output was 44%. According to the projection by the European Commission
for the period between 2019 and 2030, the production of soybean food products will continue to
grow due to demand for locally produced plant-protein food [30]. The same source stated that the
soybean area would show significant land-use change, resulting in a 5% harvested area increase by
2030. The long-term projection from the United States Department of Agriculture to 2029 predicts
continuous global demand for soybean oil for biodiesel production [31]. The competitive position
of soybean among arable crops has steadily improved due to consistent improvements in yield and
reductions in production costs [29]. However, additional investment for soybean yield improving
research was urged to land policymakers and managers [32].

Medium-resolution multispectral satellite imagery presents an important data source for the
observation of crop characteristics in yield improving research and mapping for agricultural land
management [33,34]. Sentinel-2 is a multispectral satellite mission from the European Space Agency
Copernicus program, started in 2015 [35]. The constellation of Sentinel-2 mission is based on two
satellites, Sentinel-2A (S2A) and Sentinel-2B (S2B), orbiting 180◦ apart [36]. Sentinel-2 provides the
possibility of an effective crop monitoring, having a 290 km swath width, high imaging resolution
(up to 10 m) and revisit time of two to three days at mid-latitudes [36]. Crop parameters with the
application of remote sensing are commonly monitored using vegetation indices [37]. The most
used vegetation index is the Normalized Difference Vegetation Index (NDVI), which enables the
determination of the relationship between photosynthetic and optical properties of crops [38]. NDVI
is the most widely used indicator in studies regarding crop biomass and chlorophyll content [39].
Satellite-derived vegetation indices have been successfully used as a part of various crop models, such
as the estimation of maximum evapotranspiration and irrigation requirements [40] and multitemporal
crop monitoring [38].

The general objective of the study was the determination of optimal soybean land suitability and
its mapping based on GIS-based multicriteria analysis. For this purpose, the evaluation of the three
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most commonly used standardization methods in recent GIS-based multicriteria analysis studies was
conducted. The validation of calculated suitability values was performed using a novel peak NDVI
method derived from Sentinel-2 multitemporal images as an independent accuracy assessment.

2. Materials and Methods

The proposed method of GIS-based multicriteria analysis for soybean suitability calculation and
its validation consists of six major steps (Figure 1). These are the selection and preprocessing of relevant
criteria, data standardization, weight determination, criteria aggregation, validation of calculated
suitability models and creation of final suitability maps. Open-source GIS software was used in this
research: SAGA GIS v7.4.0 (Hamburg, Germany) [41] for data preprocessing and calculations, QGIS
v3.8.3 (Grüt, Switzerland) [42] for data visualization and GRASS GIS v7.8.2 (Bonn, Germany) [43] for
the calculation of solar irradiation.
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Figure 1. The workflow of soybean land suitability calculation and evaluation.

2.1. Study Area

The study area covers Osijek-Baranja County, a 4155 km2 area located in eastern Croatia (Figure 2).
According to the Croatian Bureau of Statistics [44], Osijek-Baranja County has the largest utilized
agricultural area in Croatia, covering 13.6% of total country agricultural land in 2016. Corine 2018 Land
Cover data showed that agricultural areas are the dominant land cover class in the county, covering
64.5% of the county’s area. Forests are the second-largest class covering 26.7% of the county’s area,
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followed by artificial surfaces (3.8%), wetlands (2.7%) and water bodies (2.3%). Croatia follows a world
trend of an increase in soybean cultivation. According to [45], a total of 111,316 t was produced in
2013 and 244,075 t in 2016, a 119% soybean production increase during four years. Soybean is the
fourth highest cultivated crop in the study area behind maize, wheat and sunflower, covering 8.54%
of the total agricultural land in the county during 2019 per Croatian Paying Agency for Agriculture,
Fisheries and Rural Development data. Osijek-Baranja County has a moderately warm, rainy climate
on a Köppen scale, according to the same source. Early soybean variants were commonly sown in
eastern Croatia in recent years [46]. Sowing of these variants was conducted in late April, while harvest
typically occurred mid-October. The Croatian agricultural and forestry advisory service recommends
the application of 30 kg/ha of nitrogen (N), 60 kg/ha of phosphorus pentoxide (P2O5) and 90 kg/ha of
potassium oxide (K2O) during basic fertilization in autumn and minor adjustments before sowing [47].
Irrigation of soybean fields has been extremely overlooked in the study area, with only 64 ha employing
some sort of irrigation system, according to Croatian Paying Agency for Agriculture, Fisheries and
Rural Development data for 2019.
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Figure 2. Study area: (a) location of Osijek-Baranja County, (b) location of used weather stations and
soil samples, (c) location of centroids of test soybean parcels.

2.2. Selection and Preprocessing of Relevant Criteria

Climate and soil criteria were considered to have the most significant impact on soybean cultivation,
based on previous research regarding soybean land suitability [48–52]. Relevant climate and soil
criteria selected in this study are shown in Table 1. The selected number of criteria in each criteria
group is six, which meets the specifications for the application of the AHP method for the consistency
of information between criteria [53]. The main data sources for the modeling of selected criteria
were: Croatian Meteorological and Hydrological Service (DHMZ) data during the soybean growth
period between April and October for years 2015–2019; Croatian Agency for the Environment and
Nature (CAEN) soil samples collected during 2016; a basic pedologic map of Croatia; Shuttle Radar
Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) global digital elevation models.
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Table 1. Selected criteria for soybean suitability calculation.

Criteria Group Criterion Name Unit Description Source Native Format

Climate

Tmin
◦C Mean minimum air

temperature DHMZ tabular

Tavg
◦C Mean average air

temperature DHMZ tabular

Tmax
◦C Mean maximum air

temperature DHMZ tabular

Precipitation mm Total precipitation amount DHMZ tabular
AirHumidity % Mean relative air humidity DHMZ tabular

Solar Irradiation kWh
/m2

Mean daily global
horizontal irradiation ASTER raster

Soil

SoilType / Soil type classes Basic pedologic
map of Croatia

vector
(polygon)

pH / Soil pH values CAEN vector (point)
SoilTexture / Soil texture classes CAEN vector (point)

C/N /
Carbon-to-nitrogen soil

ratio CAEN vector (point)

Slope ◦ Terrain slope SRTM raster

TWI /
Topographic wetness

index SRTM raster

Climate criteria consisting of Tmin, Tavg, Tmax, Precipitation and AirHumidity were interpolated
from 15 DHMZ weather station data. Soil samples for modeling of soil criteria were downloaded
from HAOP Web Feature Service. Samples were collected in the field by Croatian Geological Survey
and Croatian Agency for Agricultural Land according to standards ISO 10390:2005 for soil pH, ISO
11277:2009 for soil texture and ISO 11466:1995 for soil C/N. From 72 regularly distributed samples in
the study area, 48 were detected as agricultural area land cover and filtered for further processing. The
solar irradiation criterion was defined as Global Horizontal Irradiation (GHI), according to previous
research [54]. GHI was calculated using the novel method developed by Gašparović et al. [55], based
on the ASTER digital elevation model, Linke turbidity factor [56] and effective cloud albedo acquired
from Meteosat Second Generation satellites SARAH Edition 2 [57]. According to Gašparović et al. [55],
GHI produced 3% higher accuracy than commercial solar irradiation data, compared to the data
measured from ground stations. The same approach for GHI calculation was successfully applied in
similar research [14]. The final GHI used in this research was an average daily mean value (kWh/m2)
between April and October in 2013 to 2015. A three-year period was used to reduce the influence of
weather conditions. The time frame between April and October covers the vegetation period of all
major soybean varieties cultivated in the study area. Tmin represents a mean minimum air temperature
for April and May, as soybean is most susceptible to frost at early vegetation stages that occur during
April and May. Tmax represents mean maximum air temperatures in June, July and August and refers
to the drought risk. Soil type classes were derived from a basic pedologic map of Croatia. Soil pH
was selected as a criterion due to soybean demands for neutral soil, with neutral and mildly acidic
soils having optimal values. Soybean does not have strict demands regarding soil C/N [58], but it
has a major impact on sustainable planning of overall agricultural production in the study area. Soil
C/N deficiency presents a major issue in the study area [59], so crop types with larger demands for
C/N would benefit more for being cultivated on soil with higher soil organic content. Soil texture
classification was conducted in twelve classes from the soil texture triangle, according to silt, sand and
clay soil content [60]. Loam was considered as the most suitable soil texture, allowing the optimal root
system development for soybean [61]. The process of soil texture raster generation from silt, sand and
clay soil content rasters was automatized using Python v3.7.4 (Wilmington, Delaware, United States of
America) [62]. The slope was determined using SRTM 1-arc second global digital elevation model. The
slope is associated with the exploitation of air humidity in soybean cultivation, which is important for
its development in reproductive growth stages. Terrain slope values were considered as hilly terrain
restricts the adequate exploitation of agricultural machinery. Topographic wetness index (TWI) was
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calculated in SAGA GIS for the determination of specific catchment areas, representing the effect of
inclined slopes on the soil water content [63].

Preprocessing of input criteria consisted of the conversion of polygon vector criterion to a raster
format, georeferencing of weather station data and conversion to point vector format, evaluation of
interpolation methods for climate and soil points, interpolation of these values using the most accurate
method and clipping of rasters to study area extents. The selected projection coordinate system was the
Croatian Terrestrial Reference System (HTRS96/TM, EPSG: 3765) with 250 m spatial resolution (ground
sample distance), so all rasters were reprojected and resampled accordingly. Interpolation methods
selected for interpolation accuracy assessment were Ordinary Kriging (OK) [64], Inverse Distance
Weighting (IDW) [65] and Angular Distance Weighting (ADW) [66]. OK and IDW were selected as
they resulted as the most accurate interpolation methods for the interpolation of soil parameters in
studies by Yao et al. and Qiao et al. [67,68]. IDW and ADW produced the highest accuracy of tested
deterministic interpolation methods for climate data in a study by Xavier et al. [69]. Descriptive
statistics (Table 2) were calculated for the determination of input samples normality and stationarity
with the aim of selection of optimal interpolation method [70]. The mathematical model and fitting
range for OK interpolation were selected on the highest possible fitting coefficient of determination to
variogram. Both IDW and ADW were performed with a weight parameter of 2. Accuracy assessment
was conducted based on cross-validation with the leave-one-out procedure, with the coefficient of
determination (R2), root-mean-square error (RMSE) and normalized RMSE (NRMSE) as statistical
indicators. NRMSE was calculated by dividing RMSE with a respective average of measured values
from input climate or soil samples.

2.3. Data Standardization

Three standardization methods were evaluated in this research: linear standardization, stepwise
standardization and fuzzy standardization. The defined number intervals for standardization were
closed intervals containing values from zero to one (0.00, 1.00) or one to zero (1.00, 0.00), where 0.00
designates least favorable and 1.00 designates the most favorable impact on suitability values. The
integration of qualitative and quantitative criteria values was conducted in this procedure. Values
from the selected number interval during standardization were designated to either thematic classes in
case of qualitative criteria or input numeric values for quantitative criteria, according to the level of
suitability. Linear, stepwise and fuzzy standardization were applied to all selected criteria, except for the
qualitative criteria SoilType and SoilTexture. For the two qualitative criteria, stepwise standardization
was selected as a standardization method, being the only method that could operate with qualitative
values. Consequentially, these values were used in combination with all three applied standardization
methods for quantitative criteria.

The linear standardization method, based on linear scale transformation, is the most
frequently used deterministic method for standardization in GIS-based multicriteria analysis [71].
The deterministic nature of the method ensures completely objective standardization, with no crop
expert’s impact on the standardization result. Linear standardization produced good results for
the standardization of distances to infrastructure objects [72] and climate data for crop suitability
calculation [73]. The calculation of linear standardization values was based on the score range
procedure [20].

Stepwise standardization is also a commonly used standardization method in GIS-based
multicriteria analysis [74]. It is based on the distinctive selection of the input values in number
intervals defined by the crop expert for the standardization in new classes. An arbitrary value in the
standardization interval has been assigned to each new class, allowing an extensive subjective crop
expert’s impact on the result. Four to six classes were used for stepwise standardization, depending on
the heterogeneity of input criteria values. Stepwise standardization was successfully applied for the
standardization of soil chemical properties [75] and climate criteria [76].
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Fuzzy standardization was based on the application of fuzzy membership functions. Similarly to
stepwise standardization, fuzzy membership functions allowed extensive impact on the standardization
result by the subjective crop expert. Three membership functions were used in this research: linear,
S-shaped and J-shaped [77]. Linear membership function (2) was a base for the calculation of S-shaped (3)
and J-shaped (4) membership function values. Topographic indicators, such as slope, were successfully
standardized using fuzzy membership functions [78]. The same method was also applied for the
standardization of soil criteria [79] and the combination of soil and climate criteria [80] in agriculture
land suitability calculations. Membership function parameters were marked as a and d for the definition
of support, alongside b and c for the definition of the core of the membership function [81]. The variety
of selected membership functions allowed the subjective crop expert’s impact on the intensity of
ascending and descending of standardized values. Intermediate values between parameter values
were gradually calculated, allowing the continuous representation of the criteria effect on suitability.
Equations for the calculation of the standardized values using fuzzy membership functions were
derived from Novák [77].

2.4. Weight Determination

Weight determination was conducted using the AHP method in three approaches for climate
criteria group, soil criteria group and combined criteria group consisting of both climate and soil
criteria. Two pairwise comparison matrices were created to quantify criteria weights for climate and
soil criteria, as a base of the AHP method [82]. Individual weights per criteria group were calculated
using separate pairwise comparison tables. Climate and soil criteria groups were considered as equally
influential in suitability result. The primary motive of using three approaches was the estimation of
criteria groups’ impact on the suitability result in the validation process. This procedure allowed the
criteria modifications for further application, through the elimination of redundant criteria and the
addition of new criteria. AHP is regarded as one of the most advantageous weight determination
methods in the multicriteria analysis by Musakwa [83], primarily due to being flexible, straightforward
and comprehensive. It was successfully applied in GIS-based multicriteria analyses for crop cultivation
suitability [10,84,85], irrigation suitability [76,86] and environmental analyses [14].

Each combination of two criteria per criteria group was evaluated in pairwise comparison matrices
by assigning the preferred criteria value ranging from 1 (equal preference) to 9 (extreme preference) [82].
The determined values were associated with preferred criteria in the pairwise comparison matrix,
while the reciprocal value was assigned to the less-preferred criteria. The consistencies of pairwise
comparisons per matrix were evaluated by Consistency Ratio (CR) (1), using the Consistency Index
(CI) (2) and the Random Consistency Index (RI) [87]:

CR =
CI
RI

, (1)

CI =
λ − n
n − 1

, (2)

where λ is the average value of consistency vector and n is the number of parameters. RI values were
predefined by Saaty [87], depending on the number of compared criteria in the pairwise comparison
matrix. The acceptable value of CR is 0.10, while higher values indicate that the revision and modification
of the pairwise matrix should be conducted [88].

2.5. Criteria Aggregation

The weighted linear combination was the selected method for criteria aggregation in the process
of soybean suitability calculation. It is the most commonly used aggregation method in the GIS-based
multicriteria analyses [89]. The advantages of the selected method were simplicity and time-efficiency
in the criteria aggregation, as well as the objective selection of the most suitable location and its
alternatives, ranked by the suitability values [90].
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The nine suitability combinations of three standardization methods and three weight determination
methods were calculated, resulting in nine suitability maps. Soybean suitability index (SSI) was
selected as soybean land suitability value, ranging from 0 to 1. According to Eastman [20], the equation
for SSI calculation using weighted linear combination was (3):

SSI =
∑

wiXi × C (3)

where wi denotes the weight of factor i, Xi denotes the standardized values of factor i and C denotes a
Boolean layer of constraints.

2.6. Validation of Calculated Suitability Models

Calculated suitability values were validated by NDVI values derived from Sentinel-2 Level 2A
images. No official database or reliable records about yield exist in Croatia, so NDVI was selected as a
basis for validation. Since it was derived from Sentinel-2 images, nearly global applicability is ensured.
Four images were downloaded, reprojected to HTRS96/TM and clipped to study area extents to cover
the soybean seed filling growth stage (R6). This growth stage is associated with the highest total
above-ground biomass during the soybean phenology cycle [91]. NDVI derived from Sentinel-2 images
produced a high correlation with biomass and chlorophyll content of crops in previous research [92].
Soybean total above-ground biomass also resulted in a high correlation with yield [93]. These factors
were selected as representative for validation with NDVI, as higher biomass and yield are expected on
more suitable land for soybean cultivation. Not all soybean variants cultivated in the study area reach
the R6 stage at the same time due to different periods of sowing, so the necessity for multitemporal
images emerged. The time frame starting from 15 July to 10 August was determined for all soybean
varieties in the study area to reach the R6 growth stage, based on the empirical knowledge of soybean
cultivation in the study area. Four Sentinel-2 images were selected for validation from this time frame
based on their availability and lowest possible cloud cover percentage (Table 3). The used images were
temporally evenly distributed in the time frame of the R6 soybean growth stage and sensed in very
similar meteorological conditions (Figure 3). All four NDVI images were used for the determination of
peak NDVI of soybean test parcels, with slightly more than two-thirds having its peak NDVI during
late July.

A total of 204 soybean test parcels, evenly distributed on the study area, were selected as the
ground truth data. The total cumulative area of soybean parcels was 849.3 ha, with an average
individual area of 4.16 ha. Shapefile vector data representing soybean parcels were collected from
Croatian Paying Agency for Agriculture, Fisheries and Rural Development official spatial database,
filtered by the soybean crop type. Four NDVI rasters derived from downloaded Sentinel-2 images
were overlayed with the centroids of soybean parcels, so all NDVI values within a soybean parcel
were averaged and designated to that centroid. Since spatial resolutions of suitability rasters and
Sentinel-2 images were different (250 m and 10 m, respectively), centroids of reference soybean parcels
with peak NDVI values were used to perform validation of suitability rasters. Centroids of soybean
test parcels were forced inside polygons during creation to represent geometrically irregular parcels
accurately. The comparison of these data sets was achieved with fast processing time, as point vector
was overlayed with raster data. Peak NDVI values per centroid were determined as the maximum
NDVI value per centroid, based on four NDVI rasters derived from multitemporal Sentinel-2 images.

The use of peak NDVI allowed the detection of the R6 growth stage for all ground truth polygons,
which represented all soybean variants in the study area. Such a procedure proved to be robust
regarding the atmospheric effects like clouds and haze on satellite images since validation does not
depend on the individual images. Identification data of Sentinel-2 images used for the validation of
suitability models are shown in Table 2.
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Figure 3. Weather data at the sensing time of four used Sentinel-2 images from weather station Osijek
provided by the Croatian Meteorological and Hydrological Service (DHMZ).

Table 2. Identification of Sentinel 2 images, date and the number of peak Normalized Difference
Vegetation Index (NDVI) values per image.

Tile ID Satellite Sensing Date Day of Year Peak NDVI Values

T34TCR S2B 19th July 2019 200 38
T33TYL S2A 24th July 2019 205 102
T33TYL S2A 3rd August 2019 215 49
T33TYL S2B 8th August 2019 220 15

Four regression functions were selected for the calculation of R2 between suitability values and
reference peak NDVI values. Selected functions were linear (R2

lin), logarithmic (R2
log), exponential

(R2
exp), second-order polynomial (R2

poly2) and third-order polynomial (R2
poly3). Different regression

functions were evaluated to determine the most accurate relationship model between suitability values
and peak NDVI. Validation of each suitability model was based on the highest R2 calculated using
these functions. RMSE and Cohen’s d index were calculated as a complementary statistical values
to R2 for accuracy assessment. Cohen’s d values were interpreted according to [94]. Peak NDVI and
suitability values were normalized in the (0.00, 1.00) range prior to RMSE and Cohen’s d calculation to
describe suitability results while referring to the same number interval.

2.7. Creation of Final Suitability Maps

Unsupervised classification using the k-means algorithm was applied for the delineation of five
suitability classes for each calculated suitability model. Created suitability classes were classified
according to FAO standards in classes representing very suitable (S1), moderately suitable (S2),
marginally suitable (S3), currently unsuitable (N1) and permanently unsuitable area (N2) [95].
Unsupervised classification was therefore conducted in five classes to meet the FAO specification.
Ranking of class suitability values was conducted using mean suitability values of all pixels per class.
The selected method approached the suitability values on a relative basis using a computer-automated
classification. This procedure enabled the creation of suitability classes independently of selected
criteria or study area properties. Such an approach reduced the effect of subjectivity in the pairwise
comparisons of criteria in AHP, which is its major disadvantage [96]. For the application of this
method in the regionalization of agricultural production, the integration of suitability values for
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different crop types, and consequentially from different crop experts, is necessary. By managing the
suitability values using unsupervised classification, the integration was possible since the relative
criteria relationship was retained. The crop experts’ judgment levels have been balanced in the process,
preventing overestimation or underestimation of suitability. The applied approach also ensured the
objectiveness in the creation of suitability classes, as the training data creation was not necessary, in
contrast to supervised classification. Training data creation presents a common source of human error
in classification due to the operator’s subjectivity in the selection of training polygons [97]. Input data
in the k-means algorithm was raster representing suitability values from the most accurate suitability
model. Algorithms based on unsupervised classification were successfully applied for suitability
classification with a single raster input [27]. K-means was successfully applied in various combinations
with GIS-based multicriteria analysis in crop suitability analyses [25,98,99] and delineation of suitability
classes in precision agriculture [100]. Final suitability maps were created by the removal of constrained
areas from the unsupervised classification results. CORINE 2018 Land Cover data was applied to
exclude agricultural land cover, as no other land cover was available for efficient soybean cultivation.
The goal of this step was to exclude permanent natural (forests, wetlands, water bodies) and built-up
objects from classification in a 250 m spatial resolution, so CORINE 2018 Land Cover data was selected
as the most fitting data source due to its high thematic accuracy (85%) [101]. All calculated suitability
models were mutually compared using Pearson’s correlation coefficient in the correlation matrix.

3. Results

The descriptive statistics of input samples for evaluation of interpolation methods are shown in
Table 3. Moderate skewness and high kurtosis deviations were observed from optimal values of zero
and three, respectively. While low coefficients of variation indicated high data stationarity, low data
normality was observed for both climate and soil criteria. Sand soil content was the only exception
from this observation, as it produced both low normality and stationarity.

Table 3. Descriptive statistics of climate and soil samples for interpolation.

Criteria name n mean CV SK KT

Tmin 15 13.8 0.029 0.075 −1.302
Tavg 15 18.2 0.033 0.284 −1.365
Tmax 15 22.9 0.046 −0.469 −1.048

Precipitation 15 457.5 0.100 1.275 0.818
AirHumidity 15 71.9 0.052 1.077 1.689

pH 48 6.7 0.159 0.061 1.400
SoilTexture (Clay) 48 31.5 0.332 0.525 0.176
SoilTexture (Silt) 48 57.8 0.215 0.600 0.563

SoilTexture (Sand) 48 10.7 1.190 1.945 4.348
C/N 48 7.6 0.251 0.747 1.537

CV: coefficient of variation, SK: skewness, KT: kurtosis.

Accuracy assessment results of tested interpolation methods are shown in Table 4.
Both deterministic methods outperformed OK in a case of climate data with a lower number of
samples. IDW was selected as an optimal method for the interpolation of climate data, producing
higher accuracy values than ADW for Tmin, Precipitation and AirHumidity. Accuracy of interpolation
for Tavg and Tmax produced mixed results, as ADW produced higher R2 for Tavg and higher RMSE
and NRMSE for Tmax than IDW, but lower RMSE, NRMSE and R2, respectively. All tested methods
produced lower mean accuracy for soil data compared to climate data. IDW produced the highest
accuracy values for the interpolation of moderately variable data: Clay, Silt and C/N. ADW produced
the highest R2 for pH interpolation and second-best RMSE and NRMSE values behind IDW. OK
produced slightly higher RMSE and NRMSE for interpolation of sand, but 0.0346 lower R2 than IDW.
IDW was therefore also selected as an optimal interpolation method for soil data.
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Table 4. Accuracy assessment of tested interpolation methods.

Input Data OK IDW ADW
R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE

Tmin 0.6992 3.479 0.252 0.8371 0.778 0.056 0.7598 0.817 0.059
Tavg 0.7491 1.965 0.108 0.8150 0.797 0.043 0.8198 0.831 0.045
Tmax 0.6060 4.091 0.178 0.8029 1.155 0.050 0.7248 1.050 0.045

Precipitation 0.6787 72.451 0.158 0.8165 25.915 0.056 0.7806 26.269 0.057
Air Humidity 0.6589 8.106 0.112 0.7311 5.049 0.070 0.6842 5.983 0.083

pH 0.5991 0.643 0.096 0.7313 0.526 0.078 0.7407 0.603 0.090
Clay 0.5512 6.570 0.208 0.7022 5.751 0.182 0.6467 6.604 0.209
Silt 0.5930 10.299 0.178 0.6695 9.247 0.160 0.6487 10.458 0.180

Sand 0.6183 1.472 0.137 0.6529 1.477 0.138 0.6458 1.531 0.143
C/N 0.5872 1.873 0.246 0.7726 0.654 0.086 0.6937 0.744 0.097

The most accurate statistical values per interpolation result were bolded.

Soil texture classes resulting after classification were silty clay, silty clay loam, clay loam, loam
and silt loam. The dominant soil texture class in the study area was silty clay loam, covering 72.1% of
the total area. The next two largest classes, silty clay and silt loam, had significant silt content, covering
21.6% of the study area combined. Clay loam and loam mostly covered the transitional areas between
two larger classes, resulting in 3.2% and 3.1% of the study area, respectively. All preprocessed input
criteria rasters are shown in Figure 4.

Parameters for each standardization method were selected as shown in Figure 5. The presence of
a few extreme input values prevented the linear standardization method to expand the full (0.00, 1.00)
number interval to the majority of pixels, resulting in an inaccurate representation of these criteria.
This primarily refers to slope and C/N, where the number interval covers most of the pixels in (0.85,
1.00) and (0.00, 0.25) number interval, respectively. Intermediate values for stepwise standardization
were selected based on standardization classes count, alongside a minimum value of 0.00 and a
maximum of 1.00. The J-shaped and linear methods were the most commonly used fuzzy membership
function for standardization, both being applied for 4 out of 10 quantitative criteria. Precipitation,
SolarIrradiation and AirHumidity resulted in a high variability, while Tavg, Tmin and Tmax produced
moderate variability of the climate conditions in the study area. All soil criteria resulted in high
variability in the study area.

Pairwise comparison matrices were created for climate (Table 5) and soil criteria (Table 6).
Consistency tests for both matrices resulted in the allowed tolerance. The weight sums of interpolated
criteria were 0.877 for climate and 0.431 for soil criteria group.

Calculated R2, RMSE and Cohen’s d values for the validation of suitability models are displayed
in Table 7. Suitability calculated using the climate criteria group constantly produced the lowest
R2, with a maximum for fuzzy standardization using exponential regression. Stepwise and fuzzy
standardization models both produced the highest accuracies for soil and combined criteria groups,
with combined variants being slightly more accurate. Overall, fuzzy standardization with combined
criteria produced the highest R2 and RMSE, presenting the optimal model for soybean land suitability
mapping. RMSE values were based on normalized values, so they resulted in (0.00, 1.00) number
interval and therefore enabled objective accuracy assessment of suitability values. Cohen’s d values
indicated the strongest relationship between fuzzy standardization and soil criteria with peak NDVI
values. The fuzzy standardization with combined criteria also resulted in a small effect size, having a
large value gap between the third-lowest d value of fuzzy standardization with climate criteria.
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Table 5. Pairwise comparison matrix of climate criteria for the weight determination in AHP.

Tmin Precipitation Solar
Irradiation Tavg Tmax AirHumidity Weight

Tmin 1 2 3 3 4 7 0.388
Precipitation 1/2 1 2 3 3 6 0.261

SolarIrradiation 1/3 1/2 1 2 3 4 0.156
Tavg 1/3 1/3 1/2 1 2 3 0.104
Tmax 1/4 1/3 1/3 1/2 1 3 0.082

AirHumidity 1/7 1/6 1/4 1/3 1/3 1 0.042

n = 6, CI = 0.050, RI = 1.240, CR = 0.040.
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Table 6. Pairwise comparison matrix of soil criteria for the weight determination in Analytic Hierarchy
Process (AHP).

SoilType pH Slope SoilTexture C/N TWI Weight

SoilType 1 2 3 3 4 7 0.383
pH 1/2 1 2 3 4 6 0.254

Slope 1/3 1/2 1 3 4 5 0.178
SoilTexture 1/3 1/3 1/3 1 2 4 0.104

C/N 1/4 1/4 1/4 1/2 1 3 0.073
TWI 1/7 1/6 1/5 1/4 1/3 1 0.039

n = 6, CI = 0.093, RI = 1.240, CR = 0.075.

Table 7. Accuracy assessment values of calculated suitability models using reference peak NDVI values.

Value
Fuzzy standardization Stepwise standardization Linear standardization

Climate Soil Climate
+ Soil Climate Soil Climate

+ Soil Climate Soil Climate
+ Soil

R2
lin 0.4056 0.6839 0.8416 0.3016 0.6116 0.6947 0.3290 0.4855 0.6337

R2
log 0.4143 0.6644 0.8273 0.3175 0.6046 0.6944 0.3249 0.4819 0.6279

R2
exp 0.4191 0.6672 0.8417 0.2844 0.5760 0.6771 0.3422 0.4755 0.6289

R2
poly2 0.4161 0.6907 0.8429 0.3319 0.6117 0.6975 0.3293 0.4858 0.6337

R2
poly3 0.4162 0.6923 0.8438 0.3326 0.6291 0.7095 0.3310 0.4929 0.6357

RMSE 0.1874 0.1435 0.0962 0.2070 0.1891 0.1926 0.2156 0.2089 0.1925
d 0.2717 0.0049 0.0147 0.2987 0.3720 0.5990 0.2780 0.3434 0.4738

The most accurate statistical values per suitability result are bolded. R2lin: R2 from linear regression; R2log: R2

from logarithmic regression; R2exp: R2 from exponential regression; R2poly2: R2 from second-order polynomial
regression; R2poly3: R2 from third-order polynomial regression; RMSE: root mean square error, d: Cohen’s d index.

Visual representation of regression functions that produced the highest coefficient of determination
per model is presented in Figure 6. The similarity of stepwise and fuzzy standardization with soil
and combined criteria results can be observed, with fuzzy models resulting in slightly smaller
dispersion. RMSE values showed similar results, as fuzzy methods produced lower RMSE than
stepwise standardization for both soil (difference 0.0456) and combined criteria group (difference
0.0964). Climate criteria resulted in the lowest sensitivity to the selected standardization method,
having closely distributed values for all applied standardization methods. The third-order polynomial
regression function resulted in the highest R2 in the validation of all soil and combined criteria.
The exponential function most accurately represented the relationship of suitability and peak NDVI
values for climate criteria with fuzzy and linear standardization methods.

Shares of suitability classes calculated using k-means unsupervised classification regarding the
covered area are shown in Table 8. According to the most accurate suitability values calculated using
fuzzy standardization and combined criteria, 64.3% of the study area is suitable for soybean cultivation
to some degree. The S1 class covers 602 km2 of the county area. The area determined as very suitable
covers three major parts: the eastern part near Dalj, mainly characterized with high average minimal
air temperatures; the northeastern part by the Baranja hill with optimal C/N values, pH and SoilType
values; and the central-south part by the city of Đakovo with suitable SoilTexture and SoilType values.
The final suitability maps after the removal of constrained areas from the unsupervised classification
results are shown in Figure 7. The most accurate suitability model was exported to vector Shapefile
and raster GeoTIFF format.
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Table 8. Shares of suitability classes for calculated models from unsupervised classification.

Model S1 (%) S2 (%) S3 (%) N1 (%) N2 (%)

Fuzzy
standardization

Climate 13.1 25.5 26.2 23.2 12.0
Soil 23.6 14.7 30.5 21.7 9.5

Climate + Soil 14.5 22.2 27.6 22.5 13.2

Stepwise
standardization

Climate 33.4 26.9 3.6 27.5 8.6
Soil 19.1 23.0 15.9 18.5 23.5

Climate + Soil 9.2 26.3 25.0 20.9 18.6

Linear
standardization

Climate 16.8 23.5 24.6 24.9 10.2
Soil 19.2 20.5 21.6 15.4 23.3

Climate + Soil 18.6 25.5 23.9 17.1 14.9

Suitability classes: very suitable (S1), moderately suitable (S2), marginally suitable (S3), currently
unsuitable (N1) and permanently unsuitable (N2).
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The correlation matrix of all combinations of calculated suitability models (Table 9) showed a
constantly high correlation of suitability values calculated using soil and combined criteria for all three
standardization methods. Suitability values using climate criteria produced a moderate correlation
with combined criteria values. A high correlation was achieved for fuzzy and stepwise standardization
with combined criteria, which produced two most accurate suitability values.

Table 9. Correlation matrix between calculated suitability models.

FC FS FCS SC SS SCS LC LS LCS

FC 1.000 0.285 0.578 0.578 0.278 0.396 0.718 0.242 0.520
FS 1.000 0.947 0.343 0.909 0.892 0.313 0.779 0.736

FCS 1.000 0.486 0.866 0.891 0.506 0.743 0.799
SC 1.000 0.333 0.555 0.493 0.292 0.452
SS 1.000 0.969 0.326 0.901 0.834

SCS 1.000 0.415 0.870 0.853
LC 1.000 0.294 0.689
LS 1.000 0.895

LCS 1.000

FC: fuzzy standardization-climate criteria, FS: fuzzy standardization-soil criteria, FCS: fuzzy
standardization-combined criteria, SC: stepwise standardization-climate criteria, SS: stepwise standardization-soil
criteria, SCS: stepwise standardization-combined criteria, LC: linear standardization-climate criteria, LS: linear
standardization-soil criteria, LCS: linear standardization-combined criteria.
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4. Discussion

Linear standardization was proven to be less effective in adjusting to standardization specifications
for nearly all quantitative criteria. This occurred due to the linear standardization’s property of
monotonous ascending or descending of standardized values in the specified number interval.
Therefore, nonlinear varying standardization requirements of Precipitation, SolarIrradiation, Tavg,
Tmax, AirHumidity, pH and TWI could not be fully adjusted. However, linear standardization
performed as the second-best standardization method for climate criteria, as few extreme values were
present in these criteria. Stepwise standardization allowed high subjective impact on standardized
results due to the ability to join the arbitrary input value ranges to standardization classes. These classes
were discretely defined, with no intermediate values between classes. The most important property of
the stepwise standardization method was the ability of the standardization of qualitative criteria, which
presents a necessity for the integration with quantitative criteria. Fuzzy standardization methods
allowed the best adjustment of standardized values to the crop expert’s specifications for quantitative
criteria, consequentially resulting in the highest accuracies of suitability models. Aside from setting
the intervals of least and most favorable input values, the crop expert also had supervision over
the intensity of increasing and decreasing the standardized values by selecting the optimal fuzzy
model. Sigmoidal and J-shaped membership functions were also recognized as the most convenient
for the standardization of similar criteria in a study by Aydi et al. [89]. Investigated properties of
fuzzy standardization proved that it could be used as a universal standardization method, possibly
upgrading the calculation of suitability values where linear and stepwise standardization were
previously combined [74]. The FAO guidelines offered a standard for the delineation of suitability
classes, which enables a comparison between similar suitability models. These standards were applied
in many studies regarding suitability analyses recently [10,15,78]. The creation of suitability classes
is considered as a necessary procedure in effective land management in similar studies. They were
previously used in suitability analyses regarding crop cultivation and irrigation [99].

Suitability models calculated with the combined criteria group produced the highest accuracy,
showing the importance of climate and soil criteria groups in crop-related suitability analysis. A low
correlation between models using only climate and soil criteria was observed for all standardization
methods. Climate and soil criteria groups were both necessary for reliable suitability calculation [7,102].
The possible reason for the lower accuracy of suitability models that used climate criteria compared to
soil or combined criteria is a relatively small study area (4,155 km2), causing low variability for selected
climate criteria. Precipitation produced the highest variability of all data from weather stations, with a
CV of only 0.100. However, climate data was considered as mandatory criteria group especially in
the case of the larger study area, having an impact on high suitability values for combined criteria.
Many recent studies successfully integrated GIS-based multicriteria analysis with AHP as a weight
determination method for crop suitability calculation [11,25,80,83,84]. Besides weight determination,
three modifications of AHP in this study enabled the determination of the reliability of input data
used for the modeling of criteria per criteria groups. The combined criteria group produced the
highest accuracy for all standardization methods. Fuzzy and stepwise standardization methods also
produced moderate accuracy using soil criteria, while climate criteria produced the lowest accuracy.
Linear standardization produced similar accuracies for all AHP modifications. Fuzzy standardization
resulted in higher accuracy using the combined criteria group than the other two methods, due to better
adjustment of values to the crop expert’s specifications in the standardization process. All interpolation
methods performed better in case of less variable climate data compared to soil data. OK usually
outperformed IDW in studies comparing interpolation methods for soil and climate data but has some
limitations regarding normality and stationarity of input samples [103]. IDW outperformed OK in case
of low normality and high variability of sample data [104]. Kriging was unable to produce quality
results in when its prerequisites of sample data normality and stationarity were not met in a different
study, where IDW resulted in higher accuracy [25]. This emphasizes the importance of the selection of
optimal interpolation method in similar studies as it depends on the properties of input samples [105].



Remote Sens. 2020, 12, 1463 18 of 24

No standard methodology of crop suitability values validation calculated by GIS-based
multicriteria analysis was noted during the literature review. Moreover, the majority of these studies
did not employ any validation procedure for crop suitability results [11,25,51,83,84,89]. Multitemporal
NDVI offers a potential solution in the validation of crop suitability, due to its global accessibility from
global multispectral satellite missions (Sentinel-2, Landsat 8) and being a reliable predictor of various
crop properties [92]. Moreover, Sentinel-2 derived NDVI was a reliable predictor in a study of crop
yield and was superior to other individual tested vegetation indices [106]. The applicability of NDVI
was expanded in this study as it enabled an effective validation of suitability models, primarily due to
the objective assessment of all major soybean varieties using peak NDVI values. An application of
NDVI in the validation of wheat suitability combined with yield data was successfully made in a study
by Dedeoğlu and Dengiz [107]. However, the application of peak NDVI values that were used for direct
validation of suitability values before their classification in suitability classes represents a significant
improvement for its applicability in suitability validation. Data about conducted agrotechnical
operations (sowing, fertilization, spraying) for every test soybean parcel remain an ambiguity and
could affect the reliability of validation using peak NDVI. Fertilization is traditionally balanced in the
entire study area, but its exact effect on NDVI values for validation remain to be tested. Soybean satisfies
around 60% of its nitrogen requirements by nitrogen fixation [108], which is one of the reasons for
farmers in the study area to apply conventional fertilization without conducting detailed soil analysis
commonly. Therefore, nitrogen fertilization was not expected to have a significant impact during
validation using NDVI. The effect of pests, diseases and weather trend on crop status prevent NDVI
from being fully reliable validation data, as vegetation depends on numerous individual factors [109].
A relatively small study area partially reduced the effects of weather conditions, having low variability.
The averaging of NDVI values from soybean parcels to centroids allowed the lower impact of potentially
affected areas by pests or disease. A possible solution for the mentioned restrictions is the integration
of multiple complementary vegetation indices for validation, as the spectral resolution of Sentinel-2
allows for the calculation of most known vegetation indices [110]. The Soil-Adjusted Vegetation Index
(SAVI) is considered as one of the complementary indices to NDVI, as it minimized the soil brightness
effect in areas with sparser vegetation in a comparable study [111]. Of the four Sentinel-2 images used
for the calculation of peak NDVI, the dataset sensed on 8 August 2019 produced the lowest amount of
peak NDVI values due to the lack of precipitation at the beginning of the month. This case implies the
importance of considering meteorological conditions for adjustment of the time frame for validation.
The validation time frames should be slightly calibrated for each growing season, as drought could
accelerate the ripening process of soybean, therefore lowering the vegetation indices values.

While the simplicity and effectiveness of the weighted linear combination for criteria aggregation
were previously mentioned and successfully applied, the Ordered Weighted Averaging (OWA) method
offers a potential upgrade to the applied methods. Its potential in GIS-based multicriteria analysis is
primarily notable through the integration of fuzzy measures in the criteria aggregation process [112].
OWA was successfully applied for suitability analysis of crops in combination with AHP [113] and
multicriteria analysis regarding soil chemical properties in combination with IDW as the interpolation
method [114]. The majority of applied methods for GIS-based multicriteria analysis in this study
support the automatization of the calculation process, which will be a subject of future research. Inputs
consisting of criteria selection, pairwise matrix comparison and standardization specifications should
be assigned at the beginning of the algorithm. The main benefits of automatization in this research
were noticeable during the process of soil texture map calculation, which are time-efficiency and
easier applicability of the process to future calculations [78]. Automatization is considered as a major
property for making the GIS-based methods and algorithms considerably more applicable in regular
practice [115]. Since the user does not have to conduct each process in the GIS environment manually,
the accessibility of automated methods expands to users with limited knowledge of geospatial data.

The addition of the ecological criteria group to the multicriteria analysis presents a possibility for
the improvement of the present study. Aside from the ecological criteria group, the proposed method
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supports the addition of multiple other criteria groups through the creation of additional pairwise
comparison matrices, as long as the number of criteria per group satisfies specifications by Saaty and
Ozdemir [53].

5. Conclusions

Soybean suitability values were calculated based on agronomist specifications in this study,
resulting in maps of soybean suitability classes, as a base for land policy managers to improve
soybean quality and reduce production costs. This was achieved by the determination of soybean land
suitability using GIS-based multicriteria analysis and AHP. During the standardization process, it was
observed that the fuzzy standardization method allowed the best adjustment of standardized values to
soybean land suitability specifications. The separation of criteria for soybean suitability calculation
to climate and soil groups allowed weight determination according to specifications of AHP. This
approach also reduced the redundancy of criteria in the process of pairwise comparison matrices
creation. The authors recommend the evaluation and selection of optimal interpolation methods
for the preprocessing of input criteria when applicable, as was the case with the most influential
criteria in this study. The validation method using Sentinel-2 derived peak NDVI values enabled the
determination of the most accurate suitability model. The calculation of peak NDVI values based on
four independent NDVI values allowed the objective determination of peak biomass for all major
soybean varieties. This procedure was also proven to be robust regarding the cloud cover on satellite
images since validation does not depend on the individual images. Fuzzy standardization resulted
in the most accurate standardization method combined with all three criteria groups. The suitability
model using fuzzy standardization with a combined criteria group produced the highest R2 and
RMSE from nine calculated suitability values. According to suitability classes created by unsupervised
classification of the most accurate suitability values, 64.3% of the study area was determined as suitable
for soybean cultivation in some degree. The most suitable class for soybean cultivation covered 14.5%
of the study area, an equivalent of 602 km2 in the field. Three regions of highest suitability for soybean
cultivation were observed in the suitability map: the eastern part near Dalj, the northeast part by the
Baranja hill and the central-south part by the city of Đakovo. The export of final suitability maps to
common raster and vector formats were performed for effective knowledge sharing to agricultural
land policy managers.
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