
remote sensing

Article

Detection, Segmentation, and Model Fitting of
Individual Tree Stems from Airborne Laser Scanning
of Forests Using Deep Learning

Lloyd Windrim *,† and Mitch Bryson †

Australian Centre for Field Robotics, University of Sydney, Sydney NSW 2006, Australia;
m.bryson@acfr.usyd.edu.au
* Correspondence: l.windrim@acfr.usyd.edu.au
† Current address: Australian Centre for Field Robotics, University of Sydney, Sydney NSW 2006, Australia.

Received: 9 April 2020; Accepted: 30 April 2020; Published: 6 May 2020
����������
�������

Abstract: Accurate measurements of the structural characteristics of trees such as height, diameter,
sweep and taper are an important part of forest inventories in managed forests and commercial
plantations. Both terrestrial and aerial LiDAR are currently employed to produce pointcloud data
from which inventory metrics can be determined. Terrestrial/ground-based scanning typically
provides pointclouds resolutions of many thousands of points per m2 from which tree stems can
be observed and inventory measurements made directly, whereas typical resolutions from aerial
scanning (tens of points per m2) require inventory metrics to be regressed from LiDAR variables
using inventory reference data collected from the ground. Recent developments in miniaturised
LiDAR sensors are enabling aerial capture of pointclouds from low-flying aircraft at high-resolutions
(hundreds of points per m2) from which tree stem information starts to become directly visible,
enabling the possibility for plot-scale inventories that do not require access to the ground. In this paper,
we develop new approaches to automated tree detection, segmentation and stem reconstruction
using algorithms based on deep supervised machine learning which are designed for use with
aerially acquired high-resolution LiDAR pointclouds. Our approach is able to isolate individual
trees, determine tree stem points and further build a segmented model of the main tree stem that
encompasses tree height, diameter, taper, and sweep. Through the use of deep learning models,
our approach is able to adapt to variations in pointcloud densities and partial occlusions that are
particularly prevalent when data is captured from the air. We present results of our algorithms using
high-resolution LiDAR pointclouds captured from a helicopter over two Radiata pine forests in
NSW, Australia.

Keywords: airborne laser scanning; forest inventory; deep learning

1. Introduction

Accurate inventories of forests are an important part of effective forest management in regards
to assessing the potential value of managed commercial plantations, assessing potential for fire
hazards and monitoring for pests and disease [1]. Important metrics for forest inventories include
structural metrics such as tree height, Diameter at Breast Height (DBH), stem basal area and volume,
and stem form such as taper and sweep. Traditionally, these properties are measured at an individual
tree level in large-scale sampling plots using fieldwork/manual measurements from the ground [2].
With the advent of Terrestrial Laser Scanning (TLS) sensors and systems, inventory metrics and other
related structural attributes of trees can be captured and automatically processed in the field [3–13].
TLS produces LiDAR pointcloud densities of many thousands of points per m2 which can be used to

Remote Sens. 2020, 12, 1469; doi:10.3390/rs12091469 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-2230-0632
https://orcid.org/0000-0001-8784-6970
http://dx.doi.org/10.3390/rs12091469
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/9/1469?type=check_update&version=2

Remote Sens. 2020, 12, 1469 2 of 29

directly measure tree stems; automated processes can then be developed to segment stem points and
fit circular or cylindrical models, which are then used to extract tree-level structural metrics.

For inventories over large areas of forest, forests in remote areas or otherwise difficult or
dangerous areas to access via the ground, surveys and inventories must be performed by aerial
means. Airborne Laser Scanning (ALS) involves similar principles of operation as for TLS, but where
the scanner is mounted to a high-flying aircraft, producing pointclouds with much lower densities.
Most past work on ALS for forest inventories focused on methods in which inventory metrics are
regressed from pointcloud information [14–20], rather than from directly measured individual tree
stems, owing to the lower resolution and typical lack of direct stem measurements. These methods rely
on a sample of field-based measurements of inventory metrics to build regression models that can work
with low resolution pointclouds. More recently, miniturised high-resolution LiDAR systems (e.g., [21])
are enabling the capture of pointcloud densities from low-flying aircraft that are capable of measuring
the structure and shape of tree stems directly (i.e., dense ALS, with densities of hundreds of points
per m2), but still at a much lower density and coverage than TLS. The ability to directly measure tree
stem properties relevant for inventories from dense ALS would enable the opportunity for accurate
aerial inventory that does not rely on ground-based measurements, which has the potential to increase
the areal coverage, efficiency and safety of inventory activities.

In this paper, we develop new methods for the detection of individual trees, segmentation
of stem points, and reconstruction of stem geometry (i.e., radius, sweep, taper) using dense aerial
LiDAR pointclouds. Unlike TLS, where stems are often directly observed across the whole length
and circumferential coverage of each tree [22], dense aerial pointclouds still contain many sections of
missing points on stems in both the horizontal and vertical directions, owing to occlusions that occur
when scanning from the air and through the forest canopy. Our algorithms can adapt to missing data
and variations in point resolutions owing to the nature of aerial scanning by exploiting an approach
built around deep learning on 3D pointclouds. 3D pointcloud learning is an emerging research
area [22–24], driven by applications such as self-driving cars [25–28] remote sensing, airborne LiDAR
and forestry [13]. The geometric models that are extracted for individual trees from our method can be
used to directly measure forest inventory metrics (e.g., stocking, volume, DBH, etc.) thus enabling the
potential for aerial forest inventory without the need for information collected from the ground.

1.1. Related Work

Many valuable structural metrics usually cannot be directly measured from ALS data due to
factors such as scanning angle, insufficient point density and the canopy obstructing pulses from
stems. Instead, methods typically determine how variables that can be accurately derived from ALS
(e.g., canopy height) are empirically related to structural metrics measured in the field. To find
correlations and model this dependence, methods fit linear models [14,15], use non-parametric
regression [16,17] and copulas [29] among other techniques. Structural metrics are estimated at
the stand-level using area-based approaches [18–20] or at the tree-level using either individual tree
detection [16,17,29] or multisource single-tree inventory (MS-STI) techniques [30,31]. There is typically
a trade-off where simple methods generalise well but perform poorly at extreme cases where the trees
of interest differ significantly to those measured in the field, and vice versa for complex methods.

More recently, aerial methods for forest inventory moved towards detecting and delineating
individual trees. Individual tree detection from low resolution ALS is usually accomplished by using
the 3D structure of the canopy. Methods can be broadly grouped into several categories, with the
most common approach involving detecting tree crowns as local maxima in a canopy height model
(CHM), which is a 2D raster where the cell values represent the height of the canopy and other
vegetation above the ground. Once trees are detected, tree points are delineated using algorithms
such as marker-based watershed [32–34] or seeded region-growing [14,35], where the markers or
seeds which guide the delineations are the tree detections. Other methods include clustering [36,37],
morphological operations on 2D projections of the 3D data [38], graph-based methods [39,40] and

Remote Sens. 2020, 12, 1469 3 of 29

a range of other techniques [41–45]. Tree detection allows for inventory metrics such as tree count,
density and position maps to be inferred.

TLS is able to sense trees beneath the canopy, from the ground. Because there is no obstruction
by the canopy, the stem of a tree can be measured directly from the data, which is usually captured
with a much higher resolution than ALS due to its proximity to the target [3–13]. Rather then find
correlations with LiDAR variables, methods are usually built around automatically segmenting the
stem and/or fitting models (e.g., circular, cylindrical) to it, which are then used to extract tree-level
structural metrics. These methods work well because the stem is accurately reconstructed in the
data—hence the structural metrics can be extracted with more precision than the statistical estimation
approaches typically used with ALS data. However, TLS is not as practical as ALS for estimating
large forest inventories as it has a much smaller feasible area coverage, and requires ground-based
access/fieldwork, which may be difficult in remote areas, rugged terrain or in forests with significant
undergrowth. As such, TLS finds applications in automatically extracting structural metrics from
smaller sample plots as well as developing and updating allometric models non-destructively [46].

There have been advances in the processing of high resolution 3D pointcloud data made in the
fields of computer vision and robotics, driven by the demand for it in applications such as self-driving
cars. Deep learning algorithms including Voxnet [22] and Shapenet [23] where filters convolve in 3D,
pointnet [24] and its extensions [47,48] where networks are trained directly on points, and Voxelnet [49]
which incorporates both of the former, were used for tasks such as object detection, classification and
segmentation in pointcloud data. For self-driving car applications, robust algorithms were designed to
process LiDAR pointcloud data captured in challenging, unstructured outdoor environments [25–28].
With the ability to collect high resolution ALS data, it is possible to draw from the advancements of
recent work in these fields, and adapt them for application to forestry. The field of remote sensing
progressively adopted deep learning techniques. They were used to process data collected from
satellite imagery [50–52], hyperspectral imagery [53,54] and LiDAR [55–57]. Deep learning methods
were incorporated into LiDAR forestry methods in recent work, most prominently in TLS applications
where the point densities are high. Tree species classification was performed using pointclouds that
were converted from 3D data to other forms, such as waveforms [58], 2D projections [59] and depth
images [60]. Very recently, tree stems were labelled in TLS data using 3D-CNNs in Xi et al. [13].
Hamraz et al. apply a 2D-CNN to a 2D representation of the ALS data to classify whether a tree is
coniferous or deciduous [61] and Ayrey and Hayes use a 3D-CNN to map voxelised ALS plots to forest
metrics (above ground biomass, tree count and percent needleleaf) at the plot level [62].

1.2. Contributions of This Work

In previous work, the authors developed an approach to detecting trees and segmenting tree
points using a combination of a region-based CNN object detection framework and a 3D-CNN
using a voxelised pointcloud representation [21]. Our current work builds on and extends the
work in this paper by developing and evaluating new data representations and deep learning
architectures, comparing these to traditional, non-machine learning approaches, and evaluating results
with additional annotations from the multiple dense aerial pointcloud datasets. We also develop a new
algorithm for stem reconstruction via non-linear least squares model fitting to complete a unified
pipeline for individual tree detection and delineation, stem segmentation and stem model fitting,
which can be used to estimate tree-level structural attributes that are valuable for foresters.

The specific contributions of our paper are:

• A tree detection approach proposed in previous work [21] is extended by adding a new
representations for the encoding of 3D pointcloud data into 2D rasterised summaries for detection.
Evaluations are carried out with multiple aerial datasets.

• A stem segmentation approach proposed in previous work [21] is extended by incorporating
voxel representations that include LiDAR return intensity into the learning representation, and we
develop a new point-based deep learning architecture (based on Pointnet [24]), for tree pointcloud

Remote Sens. 2020, 12, 1469 4 of 29

segmentation. Evaluations are carried out with multiple aerial datasets and different segmentation
architectures are compared.

• We develop a new stem reconstruction technique using RANdom SAmple Concensus (RANSAC)
and non-linear least squares that fits a flexible geometric model of a tree’s main stem to segmented
stem points to compute the tree centreline position and stem radius at multiple points along
the length of the stem. This model can then be used to extract inventory metrics such as height,
diameters etc.

2. Materials

2.1. Study Areas

Pointcloud data was acquired from a Riegl VUX-1 LiDAR scanner attached to a helicopter flying
over commercial pine plantation forests at Tumut, NSW, Australia (collected in November 2016) and
Carabost, NSW, Australia (collected in February, 2018). Both forests were composed primarily of
23 year old (Carabost) and 26 year old (Tumut) Pinus radiata species, with stocking densities of 400
(Tumut) and 600 (Carabost) stems per hectare. The topography at each site was relatively flat with
sparse patches of undergrowth approximately 1–2 m high, and slightly higher at the Carabost site.

2.2. Data Collection

During the LiDAR acquisitions, the helicopter flew approximately 60–90 m from the ground,
resulting in a pointcloud density of approximately 300–700 points per m2, a resolution much higher
than conventional ALS collected from higher flying manned aircraft (typically 5–80 points per m2),
but still less than conventional TLS, which may provide scans of many thousands of points per m2.
The resulting datasets exhibit LiDAR hits on tree stems, but with frequent sections of missing hits
along stems, due to occlusions in the data and a high degree of ‘clutter’ points from the surrounding
forest canopy and undergrowth.

3. Methods

The aim of this approach is to locate individual trees in an ALS pointcloud and estimate their
structural attributes, such as diameter at breast height (DBH), crown width, tree height and stem
volume. To accomplish this, a multi-stage pipeline comprising ground characterisation and removal,
delineation of individual trees, segmentation of tree points into stem and foliage and model fitting to
stem points is proposed. The structural attributes of each tree can be inferred from its fitted model.

3.1. Overview

A high-level overview of the proposed pipeline is given in Figure 1. From the high resolution
ALS data acquired over a forest, the ground is characterised with a digital terrain model (DTM) and
ground points are removed from the pointcloud. Then, individual trees are detected and their tree
points are delineated, allowing for the inference of attributes such as a stem map, tree counts and plot
density, as well tree-level structural metrics such as crown width and tree height. Next, stem points
are segmented from the pointclouds for individual trees, after which a model-fitting process fits small
cylinders to the segmented stem points of each detected tree (i.e., stem reconstruction). From these
cylinders, structural metrics such as the DBH, stem profile and stem volume can be obtained for each
tree. A graphical overview of the pipeline is shown in Figure 2.

Remote Sens. 2020, 12, 1469 5 of 29

Figure 1. High-level overview of pipeline for obtaining forest attributes for inventory. The green
boxes indicate the high-level processes and the blue boxes indicate the inventory attributes that can
be obtained.

Figure 2. Graphical overview of pipeline for obtaining forest attributes for inventory. See Figure 5 for
a more detailed graphical depiction of the stem segmentation module.

3.2. Ground Characterisation and Removal

Many of the ALS pulses received are returns from the ground. These points are important for
the characterisation of the ground with a DTM, which in itself is a useful component for inventory.
The DTM can be used for estimating attributes such as tree height. It is also necessary to know which
points are returns from the ground so that they can be removed from the pointcloud. This simplifies
the subsequent detection, segmentation and reconstruction steps. The method used in this paper
produces a relatively coarse DTM. If a finer resolution is required (e.g., for precise measurement of
tree height), than another tool should be used, such as points2grid (https://opentopography.org/
otsoftware/points2grid) from Open Topography or Simple Morphological Filter (https://pdal.io/)
from the PDAL library.

To build a DTM for the ground, the entire pointcloud is discretised into 2× 2 metre bins in the
xy-plane. The point (x,y,z coordinate) in each bin with the smallest height is stored. Next, a grid
with 4× 4 metre cells that spans the size of the pointcloud is created. A K-D Tree [63] is used to
find the closest four points (in terms of euclidean distance in the xy-plane) from the subset stored
previously to the centre location of each grid cell. The average of these four points, weighted by their
distance to the grid cell centre, is calculated as the ground height for the given xy location in the grid.

https://opentopography.org/otsoftware/points2grid
https://opentopography.org/otsoftware/points2grid
https://pdal.io/

Remote Sens. 2020, 12, 1469 6 of 29

The height of each grid cell is computed in this way and then meshed using a delauney triangulation
[64], which outputs a smooth DTM.

Once the DTM has been estimated, ground points can be removed by discarding all points within
a height threshold above the DTM (which varies along the xy-plane). This threshold should be adjusted
for different tasks. For example, it is useful to set it to two metres when doing tree detection, as this
removes many of the points that belong to ground-based vegetation which can register as false positive
trees. However, when doing the stem segmentation and reconstruction, the threshold should be
lower because the DBH is usually measured at around 1.3 m (although a stem model can still be fit
without these points). In the experiments, a threshold of 2 m is used for tree detection and 1 m for
stem segmentation.

3.3. Individual Tree Detection

Once the ground points are removed from the pointcloud, individual trees are detected as subsets
of points (i.e., trees are delineated). The task of delineation is more difficult than simply detecting tree
crowns, but it allows for the extraction of inventory metrics such crown width and is necessary for
stem segmentation. In this work, delineation is accomplished using a common approach to object
detection in pointclouds [25,26] whereby a 2D, 3-channel image is generated from a birds-eye view
projection (BEV) (i.e., projected into the xy-plane, see Figure 3) of the pointcloud for a Faster R-CNN
object detector [65]—an approach designed for 2D imagery, to make bounding box detections on.
Individual trees are delineated by projecting the 2D bounding box detections (Figure 4a) from the
xy-plane into 3D cuboids that in-case the points belonging to each tree (Figure 4b).

(a) (b) (c)

Figure 3. Comparison of the two different BEV representations of a Carabost plot. (a) Carabost plot
pointcloud. (b) Vertical density mapped to jet colour scale (vd). (c) Vertical density, maximum height
and average return (vd/mh/mr).

(a) (b)

Figure 4. Example of a predicted bounding box detection on a 2D raster in the xy-plane (from BEV),
and its projection to a 3D cuboid that delineates the points for the tree. (a) 2D bounding box detection;
(b) 3D cuboid detection.

Remote Sens. 2020, 12, 1469 7 of 29

The BEV Faster R-CNN approach to object detection has primarily found uses in vehicle
perception applications [25,26]. However, there are reasons to justify its application in forestry,
mainly that trees are reasonably uniform across a forest, with vertical cylindrical shapes that project
conveniently into the BEV image without too much occlusion. The effectiveness of BEV rasters as
a representation of ALS forest data was investigated in [66,67]. However, these methods use simpler
approaches to delineating trees in the raster (e.g., watershed).

3.3.1. Individual Tree Detection: BEV Representations

The BEV is a three-channel image that encodes the 3D information in the pointcloud. In vehicle
perception tasks, the BEV channels comprise vertical density, maximum height and average return
and are obtained by discretising the pointcloud into voxels [25,26]. The vertical density is computed
by summing the number of occupied voxels in the z axis for each xy grid location and dividing by the
total number of occupied and un-occupied voxels. The max height is computed as the z-location of the
highest occupied cell for each xy grid location. The average return is found by taking the mean of the
return values of all points in all grids along the z-axis for each xy grid location.

This work explores the effectiveness of the BEV representation for tree detection by testing two
different representations. The first representation is the vertical density converted to a three-channel
colour image, encoding information about the density of points in the vertical axis—similar to the tree
detection method proposed in Windrim et al. 2019 [21]. Trees have a characteristic appearance in this
representation as their stems contribute to a high density circular shape near the centre of the lower
density surrounding foliage. In this work, the grid size was 600× 600× 1000 m with a resolution of
0.2 m. This produces a 2D matrix, which is mapped to a 3-channel colour image using a ‘jet’ colour
scale, producing a 600× 600× 3 colour image. The second representation concatenates the vertical
density, maximum height and average returns to make a three-channel image. An example of the two
different BEV representations of the same plot is shown in Figure 3.

3.3.2. Individual Tree Detection: Training

To train the object detector, several 3D crops from the ground-removed pointcloud (with sizes
less than 120× 120 m in x and y respectively, to fit within the 600× 600 grid with 0.2 m resolution) are
converted to BEV images. The trees in each image are annotated with axis-aligned bounding boxes.
Shrub and partial tree background classes are also annotated to reduce the number of false positives
tree detections. The partial tree class contains trees which lie on the crop boundary. The BEV images
with their bounding box labels are used to train a Faster-RCNN object detector. The Faster-RCNN
network with a Resnet-101 backend [68] was trained for 10,000 iterations using Stochastic Gradient
Descent (with momentum), a learning rate of 0.003, momentum of 0.9 and batch size of 1. The network
was initialised with weights from training on the MS COCO dataset [69].

3.3.3. Individual Tree Detection: Inference

For inference, a window slides in the xy-plane of the ground-removed pointcloud and at each
location the points whose x and y values are contained within the bounds of the window are cropped
out and converted to a BEV. Trees, shrubs and partial trees in the BEV are detected with bounding
boxes and class names using the trained Faster-RCNN model. Shrub and partial tree bounding boxes
are discarded. Please note that the window slides with an overlap such that partial trees will appear
as full trees in another window. Bounding boxes for all trees across the pointcloud are accumulated
together and their coordinates are changed from local BEV coordinates to locations in the larger
pointcloud. Finally, the 2D bounding boxes are projected into 3D cuboids such that all points whose x
and y coordinates fall within the bounding box are detected as trees. The result is a set of x, y, z points
associated with each tree in the pointcloud.

Remote Sens. 2020, 12, 1469 8 of 29

3.4. Stem Segmentation

Once each individual tree has been detected as a set of 3D points, the points can be further
segmented into stem and foliage components. For this, two deep learning approaches to pointcloud
segmentation are tested. The first uses a voxel representation, where the set of points for a given tree
are converted to a 3D occupancy grid and a 3D convolutional architecture is used to infer a semantic
label for each voxel, which are converted back to points. The second approach, called pointnet, uses the
raw point representation of the data to train a neural network to infer labels.

To train the segmentation networks, individual tree pointclouds were manually labelled using the
CloudCompare software tool [70]. For each tree, points were labelled as either crown vegetation (referred to
as foliage from this point in the manuscript, collectively referencing branches, twigs and leaves), stem or
clutter class (clutter being anything other then stem or foliage, such as ground vegetation).

3.4.1. Stem Segmentation: 3D-FCN Architecture for Voxel Segmentation

The voxel approach for tree segmentation, shown in Figure 5a, draws from two seminal works in
volumetric deep learning. The first is VoxNet [22], a 3D-CNN architecture for classification of LiDAR
scans of object captured in urban environments (e.g., cars, pedestrians, bicyles). The second approach
is V-net [71], which is a 3D fully convolutional encoder-decoder neural network (3D-FCN) designed
for segmentation of 3D medical imagery (e.g., an MRI). The network designed for tree segmentation
in this work adopts the 3D-FCN structure of V-net, but with similar convolutional layers (which are
mirrored in the deconvolutional layers) to VoxNet.

(a) (b)

Figure 5. Graphical comparison of the voxel and point-based segmentation approaches. (a) Voxel-based
3D-FCN approach. (b) Pointnet approach.

For input, the network with architecture given in Figure 6a takes an occupancy grid for each
tree of size 150× 150× 100 voxels with resolution 0.1× 0.1× 0.4 m in the x, y and z axes respectively.
Two types of occupancy grid are experimented with: a binary type (Figure 7a) with only ones and
zeros indicating occupancy and unknown occupancy/free space, and a non-binary type (Figure 7b)
which instead has a pulse return value for each occupied voxel in the grid (and zeros for unknown
occupancy/free space). The binary type is similar to the stem segmentation method proposed in
Windrim et al. 2019 [21]. The network, comprising an encoder and decoder, is trained to reconstruct

Remote Sens. 2020, 12, 1469 9 of 29

target semantic grids consisting of one binary occupancy grid for each of the three classes—empty space,
foliage and stem (see Figure 5a). To adapt a ’one-hot’ style representation for the target labels, for each
set of corresponding voxels across the three output grids, only one voxel is occupied (with a one) such
that each voxel only has one class label. For locations with no points, the free space grid voxels will
be occupied with a one. Points labelled as clutter are represented as occupied cells in the input, but
in the output they occupy the empty space grid. This is to train the network to remove clutter from
its output. As seen in Figure 6a, the network contains five fully convolutional layers, two of which
are deconvolutional in the decoder. There are skip connections between corresponding encoder and
decoder layers to preserve the resolution of the voxels when upsampling (i.e., deconvolving).

(a)

(b)

Figure 6. Segmentation network architectures. The blue blocks represent layers of the network
and the red blocks show the changing shape of the data as it moves through the network. For the
Voxel-based 3D-FCN, 3D convolutions occur in the last three dimensions. For the Pointnet architecture,
2D convolutions occur in the last two dimensions (although the filters have no space to actually
convolve in the last dimension, which has a size of one). Please note that Pointnet usually contains
MLP layers, but here it was implemented with equivalent 2D convolution layers. (a) Voxel-based
3D-FCN approach. (b) Pointnet approach.

To train the voxel networks, the three 150× 150× 100 occupancy grids output by the network are
treated in a similar fashion to one-hot vectors for classification: a softmax non-linearity is applied across
corresponding cells before a cross-entropy loss function compares predictions to the labelled target
occupancy grids. The networks are trained with batches of individual tree pointclouds. Each batch of
pointclouds—the input and labelled target, are converted to their occupancy grid representations on
the fly. This is so that the batch can be augmented with random rotations and flipping about the z-axis,
which must occur on the pointcloud before voxelisation. All voxel networks are trained from scratch.
Networks are trained until convergence, with a learning rate of 0.001 which is decayed to 0.0001 after
500 iterations. The Adam optimiser is used [72], and classes are balanced at each batch by weighting
their contributions to the total loss. The batch size and data augmentation is dependant on the total
number of training samples and constrained by the GPU memory (11 GB). The batch size is six trees
with four additional augmentations for each sample (30 trees per batch in total).

Remote Sens. 2020, 12, 1469 10 of 29

(a) (b)

Figure 7. An example comparison of the voxel 3D representations of data input into the 3D-FCN
(segmentation network). (a) Binary. (b) LiDAR pulse returns.

For inference, pointcloud crops detected as trees using the methodology of Section 3.3 are
converted to binary occupancy grids (i.e., voxels) and passed through the trained voxel network.
The network produces three binary occupancy grids (one for each class), which are converted to
a labelled 3D pointcloud. The resultant pointcloud is usually of a lower resolution due to the
downsampling of the voxelisation process. To recover the original resolution, a K-D Tree is built
from the low resolution labelled point cloud that is output by the network and points from the original,
high resolution pointcloud are used to query the K-D Tree in order to find the closest labelled point
(within a thresholded distance). The result is a high resolution labelled pointcloud for the tree. Ideally
there are no clutter points output in the low resolution pointcloud, so the clutter points in the original,
high resolution pointcloud will exceed the distance threshold and have no label.

3.4.2. Stem Segmentation: Pointnet Architecture for Point Segmentation

Unlike the voxel architecture, the pointnet architecture uses a point-based representation of the
data to train the network (Figure 5b). The approach taken in this work is based on the popular
Pointnet [24] architecture, which is a style of neural network designed for points and is flexible enough
to be used for both classification and segmentation. In this work, it is used to map the points for
individual trees to foliage, stem and clutter class labels (i.e., segmentation).

The architecture used (Figure 6b) is similar to that of [24], but without the T-net components due
to the rotational symmetry about the z-axis. Also, for computational efficiency, the MLP layers are
implemented as 2D CNNs. Similar to the voxel architecture, two types of network are developed,
one with points simply represented with x, y and z elements, and one with x, y, z and LiDAR pulse
return. The latter has a similar architecture to Figure 6b, but with an input size of bs × 4× n × 1
to incorporate the return intensity. Thus, the filters in the first layer are of size 4× 1× 1 instead of
3× 1× 1. The architecture for both styles of network constitutes a global feature, which is obtained by
pooling over the axis which spans the n points, and is replicated and appended to one of the lower
level feature representations before several more layers of features are learnt. The network outputs
a score for each of the three classes, for all points.

To train the network, the scores are passed through a softmax layer and compared with one-hot
point class labels using a cross-entropy loss function. While the network architecture can support
pointclouds with different numbers of points, computational constraints require the same number of
points across pointclouds in a given batch. Hence, to avoid significant downsampling, the batchsize
is kept low (two), and each pointcloud is paired up with a similar sized pointcloud so that the
downsampling is minimised. Conveniently, a lower batchsize produces networks which generalise
better [73]. As in [24], a tree pointcloud P ∈ IRN×3, where N is the number of points, is normalised
into a unit sphere:

Remote Sens. 2020, 12, 1469 11 of 29

Pij = Pij −
1
N

N

∑
i=1

Pi,j, (1)

P̀ij =
Pij

max
√

∑3
j=1(Pij)2

(2)

Networks are trained from scratch with a learning rate of 0.00001 (no decay), and are trained until
convergence using the Adam optimiser. As with the voxel networks, class balancing over the batch
was used.

For inference, pointclouds detected as trees are fed forward through the trained pointnet
architecture in batches of one so that there is no downsampling. Hence, there is no need for any
upsampling, as was necessary with the voxel-based networks (Section 3.4.1).

3.5. Stem Reconstruction/Model Fitting

Once points along the stem of each tree are identified, they are passed to a final stage of processing
used to estimate a geometric model of the tree stem based on a least-squares fit to the pointcloud.
A Principle Component Analysis (PCA) is calculated on the stem points to determine the vector
direction of principle variance, corresponding to the rough direction of the centreline of the tree
(Figure 8b). A rotational coordinate transformation is then calculated from this vector, such that the
resulting z-axis is aligned along the direction of the central stem, and all stem points are transformed
into this coordinate system. The peak point of the tree (point with maximum z-axis value) is identified.

Along the z-direction, the points are binned into groups every 1m, and for each bin,
a 2D/horizontal circle is estimated based on a best fit with the points using a RANdom SAmple
Consensus (RANSAC) algorithm. The RANSAC algorithm selects three points at random from all stem
points in the bin and computes the parameters of a circle xc, yc (the horizontal center position) and r
(radius) that intersects the three points. The remaining points that lie within±5 cm of the circle’s radius
are counted and used to score the circle. This process is repeated with different random selections of
points for N = 200 iterations, and the circle with the maximum number of fitting consensus points
is kept as an initial estimate of the tree stem centreline and radius at this bin height. For each bin,
points that lie within ±5 cm of the circle’s radius (inlier points) are kept for further processing.

The radius and x-y coordinates of the centers of each circle at each bin create an initial estimate
for the profile of the tree’s main stem (Figure 8c). These parameters are refined in a final stage of
processing that uses non-linear least squares minimisation of a cost function that combines fitting with
LiDAR inlier points, positioning of the top of the tree and curvature constraints along the stem. A state
vector consisting of the tree segments is constructed x = [xc1, yc2, r1, xc2, yc2, r2, . . . , xcM, ycM, rM] for
M vertical segments. A non-linear least squares cost function is then constructed:

f (x) =
M

∑
j=1

Npj

∑
i=1

(
rj − r̂j,i

)2
+ Ecurve + Etip (3)

where Npj is the number of inlier LiDAR points for stem section j and r̂j,i is the horizontal distance
of inlier point i in stem section j from the current estimate of the centerline of stem section j (r̂j,i =√
(xij − xcj)2 + (yij − ycj)2. The terms Ecurve and Etip represent cost terms that penalise sharp changes

Remote Sens. 2020, 12, 1469 12 of 29

in tree curvature between each stem sections and deviations of the final stem section at the top of the
tree from the tree’s peak point:

Ecurve = Wxy

M−2

∑
j=1

(
xcj+2 − 2xcj+1 + xcj + ycj+2 − 2ycj+1 + ycj

)2
+ Wr

M−2

∑
j=1

(
rj+2 − 2rj+1 + rj

)2 (4)

Etip = Wtip

(
(xcM − xtip)

2 + (ycM − ytipj)
2
)

(5)

where Wxy, Wr and Wtip are weight terms that control the balance between fitting LiDAR points,
positioning the tree tip and minimising curvature (in tree sweep in the x-y direction, and the change
in tree taper (radius)). For our dataset, values of Wxy = 1.0, Wr = 10.0 and Wtip = 1.0 were found to
produce good fits to the trees observed. The terms in Equation (4) provide discrete approximations to
the second order derivatives in xc, yc and r (curvature in x-y, known as tree sweep, and curvature in r,
known as tree taper) along the length of the stem.

Levenburg-Marquardt optimisation was used to produce a refined estimate x̂ = argmin(f (x))
that minimises the cost function f (x), starting from the initial RANSAC circle fits. The final model
representing the geometry of the stem was constructed by joining the stem sections into a single
tapering, sweeping cylinder (Figure 8d,e).

Figure 8. Tree stem reconstruction process: (a) segmented pointcloud (stem points shown in red),
(b) stem points and rough principle direction of the tree stem estimated using PCA, (c) RANSAC circles
at each stem section and (d) refined stem sections estimate based on robust least-squares fitting process.
(e) shows examples of the final fitted stem model.

4. Experimental Setup

For the experiments, 17 non-overlapping plots comprising 188 trees were extracted from the
Tumut site pointcloud (Figure 9) and 8 non-overlapping plots comprising 259 trees were extracted
from the Carabost site pointcloud. To train the R-CNN detectors, these plots were converted into
raster images, for which all trees were annotated with bounding boxes (the process for this is given
in Section 3.3.2). For the detection and segmentation experiments, individual trees were sampled
and extracted from these plots (75 for Tumut and 81 for Carabost) and annotated at the point-level.

Remote Sens. 2020, 12, 1469 13 of 29

Thus, each of the plots had bounding box annotations around all trees and point-label annotations for
a sample of the trees.

Figure 9. The pointcloud dataset collected from the Tumut site with the 17 extracted plots used in
experiments highlighted in colour. The plots with black boundaries were used for testing. An example
of one of the test plots is shown, with its corresponding point-level semantic annotation its right, and
raster image with bounding box annotations to its left.

To evaluate both the detection and segmentation methods, a three fold cross-validation was
used for each site. For each fold, a single plot was used for testing (unique to that fold). The test
plot either had point-level annotations for every tree (note that detection was evaluated in 3D,
not with 2D bounding boxes), or it was cropped such that it had point-level annotations for every tree.
The remaining annotations from all other plots for a given site were used for training the detection
and segmentation models for that fold. For the Tumut site, the three test plots had 12, 8 and 11 trees.
For the Carabost site, the three test plots had 9, 17 and 13 trees. The training/validation/testing splits
for each fold are given in Table 1.

Table 1. The number of trees used to train, validate and test the segmentation and detection models
for each fold of the cross-validation. The test splits did not overlap across folds. Please note that
raster bounding box annotations were used to train and validate the detection models, individual tree
pointcloud annotations were used to test the detection models and point-level annotations were used
to train, validate and test the segmentation models.

Dataset Fold
Detection split Segmentation split

Train Val Test Train Val Test

1 164 12 12 60 3 12
Tumut 2 168 12 8 60 7 8

3 165 12 11 60 4 11

1 233 17 9 66 6 9
Carabost 2 216 26 17 60 4 17

3 209 37 13 66 2 13

The tree detection methods proposed in Section 3.3 were compared against ALS approaches
for detecting trees. One technique finds a CHM [74], for a test plot and detects tree crowns as local
maximas in the CHM. Marker-controlled watershed segmentation is then used to delineate the points
belonging to individual trees, similar to the approach taken in [32–34]. Note this is a similar principle
to seed-based region growing segmentation methods (see [14,75]). Another technique uses DBSCAN to

Remote Sens. 2020, 12, 1469 14 of 29

cluster the pointcloud as in [36], and discards clusters with points below a threshold. Each remaining
cluster of points is considered a tree.

The tree segmentation methods proposed in Section 3.4 were compared against other methods
for segmenting stems in tree pointclouds. One approach, developed for high resolution TLS forest
data, trained a classifier using an Eigen feature representation of points [76]. Another approach,
also developed for TLS data, identified stem points as those inside a non-vertical cylinder, found using
linear regression for a 3D line fit [3].

To evaluate reconstructed stem models, measurements of Diameter at Breast Height (DBH) were
extracted from reconstructed stems and compared against measurements of DBH made in the field
using traditional/manual inventory techniques at the time of LiDAR capture. Estimates of DBH were
extracted by computing the diameter of the reconstructed profile at a height of 1.3 m, by linearly
interpolating between the diameters of adjacent stem sections. DBH values were compared to those
measured in the field using traditional inventory.

Two sets of results were computed. Firstly, to test the accuracy of the stem reconstruction,
independent of the point segmentation accuracy of the proceeding processing step (Section 3.4),
we produced stem reconstructions and DBH estimates using the ground truth stem point labels for
each tree (gt DBH). We then produced stem reconstructions using the stem points provided by the full
processing pipeline (pred DBH).

A 64-bit desktop computer with an Intel Core i7-7700K Quad Core CPU@4.20GHz processor and
Nvidia GeForce GTX 1080Ti graphics card was used for all of the experiments. Neural Networks
were implemented in python using TensorFlow. Training time of a detection and segmentation model
was in the order of the hours. Inference time for detection with a single plot was in the order of
seconds, as was segmentation on a single tree. Thus, a large section of forest (i.e., several plots) can be
completely processed using the pipeline in minutes to hours, depending on its size and point density.

4.1. Metrics

To evaluate the tree detection performance the accuracy, precision, recall and F1 score were used.
If a set of points detected as a tree and a ground-truth tree point set had an intersection over union (IoU)
in 3D greater than 50%, it was counted as a successful detection (true positive), otherwise it was counted
as a misdetection. Misdetections were further categorised as false positives (detection predicted with
no ground truth detection) and false negatives (ground truth detection with no predicted detection).
Thus, the metrics are defined as:

Accuracy =
TP

TP + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2× precision× recall
precision + recall

(9)

where TP, FP and FN are the number of true positives, false positives and false negatives respectively
for a test plot.

Metrics used to evaluate the 3D tree segmentation accuracy were the precision and recall of point
labels for each class, as well as the IoU for each class (foliage and stem). These scores were calculated by
converting the ground truth labelled pointclouds and the predicted pointclouds into grids (with a cell
resolution of 5 cm) and comparing them. For a given tree:

Remote Sens. 2020, 12, 1469 15 of 29

Preci =
count(Spred−i ∩ Sgt−i)

count(Spred−i)
(10)

Reci =
count(Spred−i ∩ Sgt−i)

count(Sgt−i)
(11)

IoUi =
count(Spred−i ∩ Sgt−i)

count(Spred−i ∪ Sgt−i)
(12)

where Spred−i and Sgt−i are the predicted and ground truth point sets (converted to grids), respectively,
for class i and count(·) represents a count of the points in the set. Scores range from 0 to 1, with 1 being
a perfect score.

To evaluate the accuracy of DBH prediction, the root mean square error (RMSE) is used, which is
the standard deviation of prediction errors.

5. Results

5.1. Ground Characterisation and Removal

Figure 10 shows examples of DTMs extracted from pointclouds and the pointclouds with ground
points removed. The pointclouds have different terrains, and in each case the shape of the DTM
resembles the terrain.

(a) (b) (c) (d)

(e) (f)

Figure 10. Qualitative results of ground characterisation. Selected Tumut and Carabost plots are shown
with the ground characterised with a DTM (magenta) and the ground points removed—in this case,
ground points were considered to be within 1 metre of the DTM. (a) Tumut plot. (b) Tumut plot with
computed DTM and ground points removed. (c) Carabost plot 1. (d) Carabost plot 1 with computed
DTM and ground points removed. (e) Carabost plot 2. (f) Carabost plot 2 with computed DTM and
ground points removed.

5.2. Individual Tree Detection

Table 2 compares the individual tree detection results of the methods proposed in this work
with those of other approaches. The scores for the Tumut site were higher overall than those for the
Carabost site. The R-CNN method that used the vertical density mapped to a colour scale (R-CNN vd)

Remote Sens. 2020, 12, 1469 16 of 29

performed best, with the R-CNN method that used vertical density, maximum height and mean return
(R-CNN vd/mh/mr) with similar but slightly worse performance for both sites. For the Tumut site,
the precision is at its maximum for all three test plots for both the R-CNN methods, indicating that they
never detected false positives (objects that were not trees). However, both methods have an average
recall of less than one, indicating problems with missing some of the trees in the test plot. For the
Carabost site, R-CNN vd/mh/mr had precision and recall scores that were less than one, but R-CNN
vd again had maximum precision with recall less than one. Figure 11 shows qualitative detection
results from both datasets, from two out of three of the cross-validation folds. The raw point cloud is
shown with the corresponding vd and vd/mh/mr BEV images and their respective R-CNN bounding
box detections, as well as the resultant point delineations and ground truth delineations.

Table 2. Individual tree detection cross-validation results comparing methods described in this work
(those with a *) with other ALS methods. The acronyms vd, mh and mr stand for vertical density,
maximum height and mean return. Detection metrics are described in Section 4.1 (see Equation (9)).
The mean and standard deviation across the three folds is reported. The top performing method in
each category is highlighted in bold.

Dataset Method Accuracy Precision Recall F1

CHM + watershed 0.586± 0.144 0.731± 0.144 0.729± 0.085 0.728± 0.115
Tumut DBSCAN 0.507± 0.125 0.702± 0.045 0.676± 0.213 0.663± 0.117

RCNN vd * 0.928± 0.053 1.000± 0.000 0.928± 0.053 0.962± 0.028
RCNN vd/mh/mr * 0.886± 0.103 1.000± 0.000 0.886± 0.103 0.937± 0.059

CHM + watershed 0.749± 0.223 0.794± 0.213 0.910± 0.066 0.837± 0.155
Carabost DBSCAN 0.180± 0.086 0.583± 0.118 0.202± 0.094 0.296± 0.119

RCNN vd * 0.670± 0.235 1.000± 0.000 0.670± 0.235 0.780± 0.157
RCNN vd/mh/mr * 0.650± 0.215 0.926± 0.105 0.664± 0.196 0.766± 0.169

(a)

(b)

(c)

Figure 11. Cont.

Remote Sens. 2020, 12, 1469 17 of 29

(d)

(e)

(f)

Figure 11. Individual tree detection results for selected test plots. The colour key for the bounding box
detections superimposed on the BEV images (rows 2 and 3) is red: tree, aqua: partial tree, white: shrub.
The first two test plots are from the Tumut dataset (folds 1 and 2) and the second two plots are from
the Carabost dataset (folds 1 and 3). (a) Test plot pointclouds (with return intensity). (b) BEV images
(vd) with R-CNN bounding box detections. (c) BEV images (vd/mh/mr) with R-CNN bounding box
detections. (d) vd tree delineations. (e) vd/mh/mr tree delineations. (f) Ground truth tree delineations.

5.3. Stem Segmentation

The stem segmentation results are reported in Table 3. Unlike the detection scores which are
calculated at the plot level, the segmentation scores are calculated at the tree level. Hence, for each
fold, the mean segmentation accuracy across all trees in the test plot was calculated. This value
was then averaged over the three folds to give the mean and standard deviation scores (Table 3).
Qualitative segmentation results are also shown in Figure 12.

From Table 3, similarly to the detection results, the segmentation results indicate that overall,
better performance was achieved on the Tumut site. The voxel-based 3D-FCN approach that used
the return intensity of each point performed best, attaining the highest IoU and precision scores for
stem segmentation for both datasets, and the highest stem recall for Carabost and second highest
stem recall for Tumut. It also had the highest IoU and recall scores for foliage segmentation, with the
second highest score for foliage precision. In most cases, incorporating the return intensity information
into a method resulted in higher segmentation scores. Also, the voxel-based 3D-FCN approaches
performed better overall than the pointnet approaches.

Remote Sens. 2020, 12, 1469 18 of 29

Table 3. Stem and foliage point segmentation cross-validation results. Methods with a * are those described in this work, and (r) indicates methods which used the
LiDAR pulse return information. Please note that the RANSAC approach only extracts stems (does not label foliage). Segmentation metrics are described in Section 4.1
(see Equation (12)). The mean and standard deviation over all trees across the three folds is reported. The top performing method in each category is highlighted
in bold.

Stem Foliage

Dataset Method IoU Precision Recall IoU Precision Recall

Eigen features 0.127± 0.052 0.155± 0.051 0.426± 0.214 0.609± 0.126 0.955± 0.006 0.626± 0.131
Eigen features (r) 0.242± 0.082 0.287± 0.081 0.565± 0.135 0.544± 0.026 0.963± 0.009 0.555± 0.025

RANSAC 0.225± 0.032 0.513± 0.076 0.277± 0.036 0.000± 0.000 0.000± 0.000 0.000± 0.000
Tumut Voxel 3D-FCN * 0.491± 0.016 0.595± 0.030 0.771± 0.040 0.956± 0.005 0.985± 0.007 0.971± 0.003

Voxel 3D-FCN (r) * 0.524± 0.008 0.652± 0.025 0.744± 0.036 0.961± 0.009 0.985± 0.004 0.975± 0.006
Pointnet * 0.342± 0.007 0.517± 0.082 0.572± 0.037 0.936± 0.016 0.976± 0.006 0.959± 0.011

Pointnet (r) * 0.472± 0.050 0.554± 0.065 0.727± 0.003 0.946± 0.015 0.985± 0.003 0.960± 0.013

Eigen features 0.041± 0.003 0.044± 0.004 0.448± 0.061 0.343± 0.192 0.956± 0.008 0.350± 0.197
Eigen features (r) 0.031± 0.019 0.038± 0.015 0.241± 0.169 0.000± 0.000 0.000± 0.000 0.000± 0.000

Carabost RANSAC 0.297± 0.081 0.343± 0.075 0.627± 0.112 0.000± 0.000 0.000± 0.000 0.000± 0.000
Voxel 3D-FCN * 0.367± 0.065 0.510± 0.051 0.642± 0.116 0.949± 0.011 0.974± 0.006 0.975± 0.007

Voxel 3D-FCN (r) * 0.406± 0.046 0.527± 0.021 0.703± 0.131 0.952± 0.005 0.976± 0.008 0.975± 0.006
Pointnet * 0.227± 0.016 0.313± 0.064 0.505± 0.111 0.906± 0.015 0.971± 0.007 0.932± 0.023

Pointnet (r) * 0.260± 0.010 0.364± 0.036 0.573± 0.097 0.876± 0.069 0.976± 0.005 0.896± 0.073

Remote Sens. 2020, 12, 1469 19 of 29

(a)

(b)

(c)

(d)

(e)

(f)

Figure 12. Stem and foliage segmentation results for the different methods. Red points are stem and
blue points are foliage. The first seven trees are from the Tumut dataset, and the remaining six are
from the Carabost dataset. (a) Individual tree pointclouds (with return intensity). (b) Ground truth
point segmentation labels. (c) Voxnet point segmentation. (d) Voxnet with returns point segmentation.
(e) Pointnet point segmentation. (f) Pointnet with returns point segmentation.

Remote Sens. 2020, 12, 1469 20 of 29

5.4. Stem Reconstruction/Model Fitting

Figure 13 illustrates examples of reconstructed stems. The reconstructed profiles follow the taper
and sweep of each tree and are able to predict sections of stem for which data is missing, owing to
occlusions or for when stem points cannot be reliably extracted or directly observed at the base of trees
due to the presence of undergrowth. Sections of stem at the bottom half of trees adhered well to the
visible points, whereas the accuracy of the positioning of the stem in the upper sections of the tree was
more variable, owing to the difficulty in distinguishing stem points from foliage points where the tree
diameter becomes very small.

Figure 13. Examples of reconstructed stems: shown in blue are individual tree pointclouds, with
segmented stem points (using the Voxnet approach in Section 3.4.1) shown in red. The reconstructed
tree stems are show in green.

Table 4 shows the DBH RMSE, maximum error (in cm) and average error as a percentage
of the actual stem DBH. Please note that stem diameters varied from approximately 70 to 96 cm.
The‘maximum error for the pred DBH corresponded to a tree stem in which stem points had only
been segmented for the upper half of the tree only (no information available at breast height).
The reconstruction was still able to fit the model to the partial stem at the top of the tree and produce
an estimate of diameters at the tree stem through the fitting of the geometric model, although the
resulting estimate of diameter was low in comparison to the other trees.

Table 4. DBH errors from reconstructed stems for DBH predicted using stem reconstructions on the
manually annotated stem points and DBH predicted using stem reconstructions on the automatically
segmented stem points of the full pipeline.

DBH Estimates from Manual Seg DBH Estimates from Pipeline Seg

DBH RMSE DBH Max. Error Avg. Perc. Error DBH RMSE DBH Max. Error Avg. Perc. Error

9.45 cm 17.2 cm 9.05% 15.39 cm 24.5 cm 15.85%

Remote Sens. 2020, 12, 1469 21 of 29

6. Discussion

6.1. Individual Tree Detection

Because ALS data typically does not contain stem information, individual tree detection
approaches designed for ALS do not usually make use of the stems. For example, methods that
build CHMs [32–34] use canopy local maximas as a proxy for the stems. However, stems are a far
more reliable cue for defining an individual tree. TLS approaches for tree detection have access to stem
information and hence incorporate it into their methodology [77,78].

The problem with naively applying TLS approaches to high resolution ALS data where stems are
visible is that the quality of the stem scans are inferior to those of TLS. In many cases, only part of the
stem or part of the stems circumference will be present. The advantage of an object detection approach
that uses a BEV, such as the one in this paper, is that stem information is naturally incorporated into
the feature space, so if it is present, it is used to distinguish individual trees. However, the method
is robust to the presence and quality of the stem, and uses other cues as well (such as crown height).
This is ideal for high resolution ALS, where you cannot rely on the stem information but also should
not discard it.

The detection scores in Table 2 support these deductions. The CHM with watershed method
performs best on the Carabost dataset, but is out-performed by a relatively large margin by the
R-CNN approaches on the Tumut dataset. A local maxima is a simple feature in comparison to those
being learnt by the neural network in the R-CNN, likely to be complex shapes in the vertical density,
mean height and return intensity of the canopy and stem. The simple local maxima approach is
susceptible to error in many scenarios. For example, when smaller trees are very close to taller adjacent
trees, they can appear as a shoulder and not produce a local maxima. In the tree detection method
comparison of Kaartinen et al. [41], the results showed that for a CHM-based watershed approach
the detection rate dropped from almost 100% for isolated or tall trees to around 75% for groups of
similar trees and to under 15% for trees that were next to a bigger tree. Similarly, if a tree is bending
significantly such that its crown impedes on anothers, it is difficult to distinguish them from the canopy
alone. In the Carabost dataset, trees were generally straighter and more upright in comparison to
the Tumut dataset, where trees would bend into other trees. This could explain the lower detection
accuracy of the CHM with watershed approach on the Tumut dataset. Alternatively, if a crown has
two separate areas of foliage that grow taller than their surroundings they may both be detected as
local maxima. This type of error decreases the precision, which for the CHM with watershed approach,
was lower than the R-CNN methods for both datasets. In all of these examples, using the stem as a cue
was beneficial for distinguishing individual trees.

Another issue with local maxima approaches is that ground vegetation (not removed in
pre-processing) will appear as local maxima, requiring methods built on top of the local maxima
detection to filter these points out (e.g., by classifying the local maxima as tree crowns or false positive
detections). The R-CNN approach has a built-in classifier, so filtering out ground vegetation detections
is trivial. In the experiments in this work, ground vegetation greater than two metres (the ground
point threshold) was more prominent in the Carabost site than Tumut (see Figure 11a), but in most
cases they were shielded by the canopy and were not detected as a local maxima.

The performance of clustering approaches decreases in denser forests as there is no clear boundary
between clusters. This was evident in the results of Table 2 as the clustering performance is worse for
Carabost than for Tumut. It was the worst performing method for both datasets.

While the CHM and clustering methods cannot be improved without adding to their algorithms,
the R-CNN approaches can be improved simply by adding more training examples. There were
more trees in the training data used to train the R-CNN models for the Carabost site, but this was
because the Carabost site had a greater density of trees. The actual number of example rasters used
for training the Carabost models were less than for the Tumut models, and this would explain the
drop in performance from Tumut to Carabost for both R-CNN methods (in combination with the

Remote Sens. 2020, 12, 1469 22 of 29

added difficulty of the Carabost site being denser than Tumut). Hence, with more training rasters,
the performance on the Carabost dataset is expected to improve. At·present, the detection accuracy
is competitive in comparison to other works in the literature. In a comparison of six different tree
detection methods in ALS data collected over different types of forests, Vauhkonen et al. [79] reported
an average detection rate of 65%, and in a study by Dalponte et al. [80] comparing three different
ALS tree detection methods (CHM with watershed, CHM with region-growing and clustering) and
a hyperspectral method, the detection rate for the ALS methods ranged from 16.2–27.8% (or 38.8–60.9%
when only considering trees with a DBH greater than 17.5 cm). From Table 2, the R-CNN approaches
have accuracies of 65.0% and 67.0% for Carabost, and 88.6% and 92.8% for Tumut. It is worth noting
that the precision score for both R-CNN methods is almost 100% for both datasets (i.e the commission
error is low). For both datasets, R-CNN is more effective than the other methods at not falsely
detecting trees.

In addition to robustly using the stem information and having the capacity to improve with
additional training data, R-CNN can be trained to distinguish between normal trees and trees in the
pointcloud that only partially appear because they lie on the boundary of a plot crop. This permits the
use of a sliding window (as is proposed in the pipeline in this paper) with an overlap such that no
tree is missed or half detected due to the boundaries. Trees detected on the boundary are classified as
partial detections so that they can be ignored, as they will appear in full in the next iteration of the
sliding window. The use of the sliding window enhances the scalability of the pipeline to large areas.

There are some drawbacks of the proposed detection method. The R-CNN bounding box
detections (which become cuboid detections in 3D) are rigid and do not follow the contour of the tree
crown, which is usually more circular. If there are trees close together, this often results in some of the
foliage being cut-off. Examples of this can be seen in Figure 11. It could be argued that for the purposes
of the proposed pipeline, it is more important to capture the stem than all of the foliage for later
estimating structural metrics such as the DBH, stem volume and stem profile. Another drawback is the
trade-off between having stem information and ground vegetation present in the BEV representations.
The lower the threshold is that removes points above the DTM, the more stem information is used
at the expense of more ground vegetation not being removed—which alters the appearance of the
BEV. For example, in the second plot in Figure 11a there are two trees that are close to each other
with ground vegetation between them. In both the vd and vd/mh/mr BEV images (the bottom left
corner detection for plot two in Figure 11b,c) these two trees appear similar to a single tree and are
incorrectly detected as one tree (the two trees clustered as orange in plot two of Figure 11d and green
in plot two of Figure 11e). In this example, the vertical density of the ground vegetation bridges the
gap in the crown foliage, and the density of points on the stems is not high enough for R-CNN to
distinguish the two trees. It is surprising that the mean height feature of the vd/mh/mr BEV did not
distinguish the ground vegetation enough from the foliage to avoid confusing the two trees as one.
However, by training on more edge-case examples such as this, the R-CNN approach becomes more
robust to the variability induced by ground vegetation underneath the crowns.

The results of using the vd and vd/mh/mr BEVs with R-CNN are relatively similar (Table 2),
with some subtle differences. For the Tumut site, both BEVs have 100% precision, but the vd BEV has
a slightly higher recall score (i.e., slightly lower omission error) than the vd/mh/mr BEV. From the
qualitative Tumut results (the first two plots in Figure 11b,c), the performance is approximately the
same for plot one, but for plot two the vd/mh/mr method results in a tree misdetected as a partial.
With that said, the tree is almost a partial, but the majority of its stem is inside the cropped region.
This would contribute to the lower recall. Plot two also shows an example a shrub that is detected
and correctly classified by the vd/mh/mr method, but not detected at all with the vd method,
demonstrating that the vd/mh/mr method is more effective at characterising ground vegetation,
which has a distinctive mean height. For the Carabost site, the vd/mh/mr has a lower precision
and recall than the vd method. In plot three of Figure 11c, a large tree is completely missed by
the vd/mh/mr, which is picked up with the vd method. When comparing the two BEV images,

Remote Sens. 2020, 12, 1469 23 of 29

the decrease in vertical density at the boundary of the trees in the vd BEV makes them appear more
separated than in the vd/mh/mr BEV. For the vd/mh/mr BEV, the vertical density feature may have
been over-powered by the canopy height of the two trees being quite similar, and the foliage at the
boundary with approximately the same return intensity. Plot four is the most difficult test plot to
distinguish individual trees due to the density. The vd/mh/mr BEV detections show that there are
more detections within detections which would decrease the precision. It is plausible to filer these out
in a post-process as it is unlikely to ever have a tree within another tree’s bounding box (unless it is
smaller and sits under the crown).

6.2. Stem Segmentation

The voxel-based methods achieved better overall results than the point-based methods for the
stem segmentation. It was hypothesised that the raw point representation would produce better results
given that information is inevitably lost when points are converted to voxels. However, the results
suggest that any losses incurred during the conversion from points to voxels are compensated for in
the superior mapping of the voxel-based architecture. This possibly because the voxel resolutions were
high enough to resolve the stems. However, if an 11Gb GPU is not available and a coarser resolution
of voxels have to be used, then it is likely that the point-based approach will have better performance.

The addition of the return intensity information was useful for both the voxel-based and
point-based methods. This is because the reflectance on average is quite distinctive between foliage
and stem. It is not however completely reliable as there is a large amount of variation in the return
intensity within the stem and foliage classes.

The high recall scores for the stem class suggests that the voxel approaches were conservative in
their labelling of stem points. This is also evident in the qualitative results (Figure 12), which show
some of the foliage being labelled as stem. This is most likely due to the voxels being too coarse to
resolve regions with both stem and foliage. The stem class is prioritised for a voxel with stem and
foliage points, and this bias is in-grained into the network during training. As a result, when voxels are
converted back to points after inference, a few foliage points close to the stem acquire the stem label.
While this reduces the segmentation performance, it has less of an impact on the stem reconstruction
step, which robustly fits circles to the stem points, rejecting the mislabelled foliage points as outliers.

The Eigen feature approach lacked the expressive power of the deep learning approaches.
It worked reasonably well for the parts of the stem which have no surrounding foliage, but break down
once there is foliage. This explains why they worked better on the Tumut data than the Carabost data,
which had less bare stem. Even the addition of return intensity information did not yield an acceptable
improvement. The RANSAC approach used a geometric model which was too rigid. It could not
account for tree stems with a large amount of sweep.

6.3. Stem Reconstruction/Model Fitting

The stem reconstruction algorithms developed here are able to fit coherent stem models to
segmented pointclouds even in the presence of labelling errors or when points along the stem are
missing or occluded (Figure 13). When comparing against field-measured DBH, our approach is
able to estimate stem diameters with an error of approximately 15% of actual DBH. Estimates of
DBH from automated segmentation approaches that work with TLS data typically achieve a higher
accuracy than this due to higher scanning densities and lack of point occlusions. Kankare et al. report
an error of 7.2% [31] and Liang et al. achieve an error of 4.2% in DBH for Norway spruce stands
(with a smaller diameter of the Radiata pine in our study) using TLS scans [10]. For ALS studies
where DBH is regressed/inferred from pointcloud data (data not sufficient resolution to observe
stems directly), Kankare et al. et al. reported an error that increases to 16.3% when using ALS at
a resolution of 10 pulses per m2 [31]. Although our accuracy in DBH is approximately equivalent
for direct measurements, the direct observation of the stem also allows for diameter estimates to be
provided at a range of different heights along the stem, which should provide the ability to more

Remote Sens. 2020, 12, 1469 24 of 29

accurately estimate the total volume of the tree and additionally provide estimates of the taper and
sweep of the stem. Sweep is an important measurement of stem quality, particularly at the base of the
stem, as it affects the total volume of usable/extractable high-grade timber that is available at harvest.
The errors of our stem reconstruction technique decreases to approximately 9% when using the ground
truth labelled stem points to fit our stem model, hence providing the potential for better inventory
estimates with improvements in the machine learning pointcloud segmentation model that may be
achievable with additional training data.

6.4. Scalability and Generalisation

In terms of the scalability of the pipeline to larger forest areas, the tree detection process
uses a sliding window in the xy-plane, so if the forest area increases by m times laterally and
n times longitudinally, then the detection runtime increases by a factor of m × n. GPU memory
constraints dictate the size and resolution of the sliding window (which determine the time it takes
to traverse the entire dataset). The use of rasters enables the runtime to scale well with point
density. However, CPU memory constrains the point density, and overly dense pointclouds should be
downsampled (note that resolution will be lost during voxelisation and rasterisation anyway). For the
neural network component of the tree segmentation step, a batch of multiple trees can be processed
efficiently on a GPU. In the experiments, the K-d tree upsampling component of the voxel-based
segmentation process bottlenecked the speed, but it could be made more efficient with a parallelised
implementation on a GPU to enable scaling up to larger and more dense pointclouds. At the point
densities and number of trees used in this study (300–700 points per m2) the non-parallelised operation
was not prohibitively expensive.

While the forests tested on in the experiments were homogeneous plantations, the method was
not designed around the forests being homogeneous or thinned. It was designed to be robust to the
size, shape and class of the trees, providing sufficient training data is available. More datasets should
be tested on to investigate this.

7. Conclusions

This paper has developed new approaches to automated tree detection, segmentation, and
stem reconstruction from high-resolution aerial LiDAR pointclouds using algorithms based on deep
supervised machine learning. Our approach is able to determine tree stem points and further build
a segmented model of the main tree stem that encompasses tree height, diameter, taper, and sweep,
which may be useful in applications such as forest inventory. Through the use of deep learning
models, our approach is able to adapt to variations in pointcloud densities and partial occlusions
that are particularly prevalent when data is captured from the air. Our combined processing pipeline
allows for characteristics of individual stems to be ascertained even when direct observation points
are missing along or across tree stems, owing to occlusions when imaging through the canopy.
The methods developed here have potential applications in forest inventories for forest science, ecology,
management, and for commercial forestry operations, by enabling inventory metrics on individual trees
(including direct measurements of stem volume, stem form and potentially product-level information)
to be measured from the air, rather than from the ground/in the field.

Future research will focus on validating the approaches developed here to other forest types.
We will explore the potential of the techniques developed here for measuring trees in forests composed
of heterogeneous species, where height, stem form, crown shape and other structural attributes of
the trees vary more considerably across a stand. We will continue to develop and extend our models
for stem reconstruction by exploring methods to directly regress inventory metrics from segmented
stem points. One potential way in which the accuracy of the stem reconstruction algorithms presented
here could be improved is through the use of specific parametric models for tree taper that depend
on tree species in order to improve diameter estimates, particularly along sections of the tree stem
which contain many missing LiDAR points. Species-specific taper models could be combined with an

Remote Sens. 2020, 12, 1469 25 of 29

approach to species classification using pointcloud information in the canopy within mixed forests
which could rely on the types of 3D pointcloud deep learning models used here.

Author Contributions: L.W. and M.B. were responsible for conceptualization, methodology, software, validation,
investigation and writing. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by Forest and Wood Products Australia grants Forest and Wood Products
Australia Grant PNC377-1516 and National Institute for Forest Production Innovation grant NIF073-1819.

Acknowledgments: This work has been supported by the Australian Centre for Field Robotics, University of
Sydney. Thanks to David Herries, Susana Gonzales, Christine Stone and Interpine New Zealand for providing
access to airborne laser scanning datasets.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Weiskittel, A.; Hann, D.; Vanclayy, J.K.J. Forest Growth and Yield Modeling; Wiley-Blackwell: Oxford, UK, 2011.
2. West, P.W. Tree and Forest Measurement, 3rd ed.; Springer: Cham, Switzerland, 2015.
3. Högström, T.; Wernersson, Å. On Segmentation, Shape Estimation and Navigation Using 3D Laser Range

Measurements of Forest Scenes. IFAC Proc. Vol. 1998, 31, 423–428. [CrossRef]
4. Forsman, P.; Halme, A. 3-D mapping of natural environments with trees by means of mobile perception.

IEEE Trans. Robot. 2005, 21, 482–490. [CrossRef]
5. Bienert, A.; Scheller, S.; Keane, E.; Mohan, F.; Nugent, C. Tree detection and diameter estimations by analysis

of forest terrestrial laserscanner point clouds. In Proceedings of the ISPRS Workshop on Laser Scanning 2007
and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; pp. 50–55.

6. Othmani, A.; Piboule, A.; Krebs, M.; Stolz, C. Towards automated and operational forest inventories with
T-Lidar. In Proceedings of the 11th International Conference on LiDAR Applications for Assessing Forest
Ecosystems (SilviLaser 2011), Hobart, Australia, 16–20 October 2011. pp. 1–9.

7. Liang, X.; Litkey, P.; Hyyppä, J.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Automatic stem mapping
using single-scan terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2012, 50, 661–670. [CrossRef]

8. Pueschel, P.; Newnham, G.; Rock, G.; Udelhoven, T.; Werner, W.; Hill, J. The influence of scan mode and
circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS
J. Photogramm. Remote Sens. 2013, 77, 44–56. [CrossRef]

9. Olofsson, K.; Holmgren, J.; Olsson, H. Tree stem and height measurements using terrestrial laser scanning
and the RANSAC algorithm. Remote Sens. 2014, 6, 4323–4344. [CrossRef]

10. Liang, X.; Kankare, V.; Yu, X.; Hyyppä, J.; Holopainen, M. Automated stem curve measurement using
terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1739–1748. [CrossRef]

11. Olofsson, K.; Holmgren, J. Single tree stem profile detection using terrestrial laser scanner data,
flatness saliency features and curvature properties. Forests 2016, 7, 207. [CrossRef]

12. Heinzel, J.; Huber, M.O. Detecting tree stems from volumetric TLS data in forest environments with rich
understory. Remote Sens. 2017, 9, 9. [CrossRef]

13. Xi, Z.; Hopkinson, C.; Chasmer, L. Filtering Stems and Branches from Terrestrial Laser Scanning Point
Clouds Using Deep 3-D Fully Convolutional Networks. Remote Sens. 2018, 10, 1215. [CrossRef]

14. Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume
estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens.
2001, 39, 969–975. [CrossRef]

15. Persson, A.; Holmgren, J.; Soderman, U. Detecting and measuring individual trees using an airborne laser
scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932.

16. Maltamo, M.; Peuhkurinen, J.; Malinen, J.; Vauhkonen, J.; Packalén, P.; Tokola, T. Predicting tree attributes
and quality characteristics of scots pine using airborne laser scanning data. Silva Fennica 2009, 43, 507–521.
[CrossRef]

17. Vauhkonen, J.; Korpela, I.; Maltamo, M.; Tokola, T. Imputation of single-tree attributes using airborne laser
scanning-based height, intensity, and alpha shape metrics. Remote Sens. Environ. 2010, 114, 1263–1276.
[CrossRef]

http://dx.doi.org/10.1016/S1474-6670(17)44122-X
http://dx.doi.org/10.1109/TRO.2004.838003
http://dx.doi.org/10.1109/TGRS.2011.2161613
http://dx.doi.org/10.1016/j.isprsjprs.2012.12.001
http://dx.doi.org/10.3390/rs6054323
http://dx.doi.org/10.1109/TGRS.2013.2253783
http://dx.doi.org/10.3390/f7090207
http://dx.doi.org/10.3390/rs9010009
http://dx.doi.org/10.3390/rs10081215
http://dx.doi.org/10.1109/36.921414
http://dx.doi.org/10.14214/sf.203
http://dx.doi.org/10.1016/j.rse.2010.01.016

Remote Sens. 2020, 12, 1469 26 of 29

18. Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage
procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [CrossRef]

19. Gobakken, T.; Næsset, E. Estimation of diameter and basal area distributions in coniferous forest by means
of airborne laser scanner data. Scand. J. For. Res. 2004, 19, 529–542. [CrossRef]

20. Maltamo, M.; Suvanto, A.; Packalén, P. Comparison of basal area and stem frequency diameter distribution
modelling using airborne laser scanner data and calibration estimation. For. Ecol. Manag. 2007, 247, 26–34.
[CrossRef]

21. Windrim, L.; Bryson, M. Forest Tree Detection and Segmentation using High Resolution Airborne LiDAR.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Macau, China, 4–8 November 2019; pp. 3898–3904.

22. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition.
In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–3 October 2015; pp. 922–928. [CrossRef]

23. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for
volumetric shapes. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1912–1920, [CrossRef]

24. Cherabier, I.; Hane, C.; Oswald, M.R.; Pollefeys, M. PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. In Proceedings of the IEEE Cvpr 2017, Honolulu, HI, USA, 21–26 July 2017;
pp. 601–610, [CrossRef]

25. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-View 3D Object Detection Network for Autonomous Driving.
In Proceedings of the IEEE Cvpr 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.

26. Beltran, J.; Guindel, C.; Moreno, F.M.; Cruzado, D.; Garc, F.; Escalera, A.D. BirdNet: A 3D Object Detection
Framework from LiDAR information. In Proceedings of the 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018.

27. Caltagirone, L.; Scheidegger, S.; Svensson, L.; Wahde, M. Fast LIDAR-based road detection using fully
convolutional neural networks. In Proceedings of the IEEE Intelligent Vehicles Symposium, Redondo Beach,
CA, USA, 11–14 June 2017; pp. 1019–1024, [CrossRef]

28. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018. [CrossRef]

29. Xu, Q.; Maltamo, M.; Tokola, T.; Hou, Z.; Li, B. Predicting tree diameter using allometry described by
non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning.
For. Ecol. Manag. 2018, 434, 205–212. [CrossRef]

30. Vastaranta, M.; Saarinen, N.; Kankare, V.; Holopainen, M.; Kaartinen, H.; Hyyppä, J.; Hyyppä, H. Multisource
single-tree inventory in the prediction of tree quality variables and logging recoveries. Remote Sens.
2014, 6, 3475–3491. [CrossRef]

31. Kankare, V.; Liang, X.; Vastaranta, M.; Yu, X.; Holopainen, M.; Hyyppä, J. Diameter distribution
estimation with laser scanning based multisource single tree inventory. ISPRS J. Photogramm. Remote
Sens. 2015, 108, 161–171. [CrossRef]

32. Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating Individual Trees in a Savanna Woodland Using Small
Footprint Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [CrossRef]

33. Ene, L.; Næsset, E.; Gobakken, T. Single tree detection in heterogeneous boreal forests using airborne laser
scanning and area-based stem number estimates. Int. J. Remote Sens. 2012, 33, 5171–5193. [CrossRef]

34. Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree crown delineation and tree species
classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306–317.
[CrossRef]

35. Zhen, Z.; Quackenbush, L.J.; Zhang, L. Impact of tree-oriented growth order in marker-controlled region
growing for individual tree crown delineation using airborne laser scanner (ALS) data. Remote Sens.
2013, 6, 555–579. [CrossRef]

36. Smits, I.; Prieditis, G.; Dagis, S.; Dubrovskis, D. Individual tree identification using different LIDAR and
optical imagery data processing methods. Biosyst. Inf. Technol. 2012, 1, 19–24. [CrossRef]

37. Gupta, S.; Koch, B.; Weinacker, H. Tree Species Detection Using Full Waveform Lidar Data In A Complex
Forest. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, XXXVIII, 249–254.

http://dx.doi.org/10.1016/S0034-4257(01)00290-5
http://dx.doi.org/10.1080/02827580410019454
http://dx.doi.org/10.1016/j.foreco.2007.04.031
http://dx.doi.org/10.1109/IROS.2015.7353481
http://dx.doi.org/10.1109/CVPR.2015.7298801
http://dx.doi.org/10.1109/3DV.2016.68
http://dx.doi.org/10.1109/IVS.2017.7995848
http://dx.doi.org/10.1109/CVPR.2018.00102
http://dx.doi.org/10.1016/j.foreco.2018.12.020
http://dx.doi.org/10.3390/rs6043475
http://dx.doi.org/10.1016/j.isprsjprs.2015.07.007
http://dx.doi.org/10.14358/PERS.72.8.923
http://dx.doi.org/10.1080/01431161.2012.657363
http://dx.doi.org/10.1016/j.rse.2013.09.006
http://dx.doi.org/10.3390/rs6010555
http://dx.doi.org/10.11592/bit.121103

Remote Sens. 2020, 12, 1469 27 of 29

38. Wang, Y.; Weinacker, H.; Koch, B.; Stere, K.; Stereńczak, K. Lidar Point Cloud Based Fully Automatic 3D
Singl Tree Modelling in Forest and Evaluations of the Procedure. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2008, XXXVII, 45–52. [CrossRef]

39. Dong, T.; Zhang, X.; Ding, Z.; Fan, J. Multi-layered tree crown extraction from LiDAR data using graph-based
segmentation. Comput. Electron. Agric. 2020, 170, 105213. [CrossRef]

40. Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR Remote Sensing for Individual Tree Forest
Inventory Using Trunk Detection-Aided Mean Shift Clustering Techniques. Remote Sens. 2018, 10, 1078.
[CrossRef]

41. Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.;
Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction
using airborne laser scanning. Remote Sens. 2012, 4, 950–974. [CrossRef]

42. Solberg, S.; Naesset, E.; Bollandsas, O.M. Single tree segmentation using airborne laser scanner data in a
structurally heterogeneous spruce forest. Photogramm. Eng. Remote Sens. 2006, 72, 1369–1378. [CrossRef]

43. Pitkänen, J.; Maltamo, M. Adaptive Methods for Individual Tree Detection on Airborne Laser Based Canopy
Height Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 36, 187–191.

44. Luostari, T.; Lahivaara, T.; Packalen, P.; Seppanen, A. Bayesian approach to single-tree detection in airborne
laser scanning—Use of training data for prior and likelihood modeling. J. Phys. Conf. Ser. 2018, 1047, 012008.
[CrossRef]

45. Amiri, N.; Polewski, P.; Heurich, M.; Krzystek, P.; Skidmore, A.K. Adaptive stopping criterion for top-down
segmentation of ALS point clouds in temperate coniferous forests. ISPRS J. Photogramm. Remote Sens.
2018, 141, 265–274. [CrossRef]

46. Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola,
A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens.
2016, 115, 63–77. [CrossRef]

47. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
Space. In Proceedings of the Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017.

48. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on
Point Clouds. ACM Trans. Graph. (TOG) 2019, 38, 1–12. [CrossRef]

49. Zhou, Y.; Tuzel, O. VoxelNet : End-to-End Learning for Point Cloud Based 3D Object Detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 4490–4499.

50. Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object
Detection in VHR Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415.
[CrossRef]

51. Wu, H.; Zhang, H.; Zhang, J.; Xu, F. Typical Target Detection in Satellite Images Based on Convolutional
Neural Networks. In Proceedings of the 2015 IEEE International Conference on Systems, Man,
and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 2956–2961. [CrossRef]

52. Zhang, L.; Shi, Z.; Wu, J. A Hierarchical Oil Tank Detector with Deep Surrounding Features for
High-Resolution Optical Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4895–4909.
[CrossRef]

53. Windrim, L.; Ramakrishnan, R.; Melkumyan, A.; Murphy, R. Hyperspectral CNN Classification with
Limited Training Samples. In Proceedings of the British Machine Vision Conference (BMVC), London, UK,
4–7 September 2017; pp. 2.1–2.12,

54. Windrim, L.; Melkumyan, A.; Murphy, R.J.; Chlingaryan, A.; Ramakrishnan, R. Pretraining for Hyperspectral
Convolutional Neural Network Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2798–2810.
[CrossRef]

55. Xiu, H.; Yan, W.; Vinayaraj, P.; Nakamura, R.; Kim, K.S. 3D semantic segmentation for high-resolution
aerial survey derived point clouds using deep learning (demonstration). In Proceedings of the International
Conference on Advances in Geographic Information Systems 2018, Washington, DC, USA, 1 November 2018;
pp. 588–591. [CrossRef]

http://dx.doi.org/10.3390/s8063938
http://dx.doi.org/10.1016/j.compag.2020.105213
http://dx.doi.org/10.3390/rs10071078
http://dx.doi.org/10.3390/rs4040950
http://dx.doi.org/10.14358/PERS.72.12.1369
http://dx.doi.org/10.1088/1742-6596/1047/1/012008
http://dx.doi.org/10.1016/j.isprsjprs.2018.05.006
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.006
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1109/TGRS.2016.2601622
http://dx.doi.org/10.1109/SMC.2015.514
http://dx.doi.org/10.1109/JSTARS.2015.2467377
http://dx.doi.org/10.1109/TGRS.2017.2783886
http://dx.doi.org/10.1145/3274895.3274950

Remote Sens. 2020, 12, 1469 28 of 29

56. Liu, Y.; Piramanayagam, S.; Monteiro, S.T.; Saber, E. Dense Semantic Labeling of Very-High-Resolution Aerial
Imagery and LiDAR with Fully-Convolutional Neural Networks and Higher-Order CRFs. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Honolulu,
HI, USA, 21–26 July 2017; pp. 1561–1570. [CrossRef]

57. Pratikakis, I.; Dupont, F.; Ovsjanikov, M. Unstructured point cloud semantic labeling using deep
segmentation networks. In Proceedings of the Eurographics Workshop on 3D Object Retrieval (2017),
Lyon, France, 23–24 April 2017. [CrossRef]

58. Guan, H.; Yu, Y.; Ji, Z.; Li, J.; Zhang, Q. Deep learning-based tree classification using mobile LiDAR data.
Remote Sens. Lett. 2015, 6, 864–873. [CrossRef]

59. Zou, X.; Cheng, M.; Wang, C.; Xia, Y.; Li, J. Tree Classification in Complex Forest Point Clouds Based on
Deep Learning. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2360–2364. [CrossRef]

60. Mizoguchi, T.; Ishii, A.; Nakamura, H.; Inoue, T.; Takamatsu, H. Lidar-based individual tree species
classification using convolutional neural network. Videometrics Range Imaging Appl. XIV 2017, 10332, 103320O.
[CrossRef]

61. Hamraz, H.; Jacobs, N.B.; Contreras, M.A.; Clark, C.H. Deep learning for conifer/deciduous classification
of airborne LiDAR 3D point clouds representing individual trees. ISPRS J. Photogramm. Remote Sens.
2018, 158, 219–230. [CrossRef]

62. Ayrey, E.; Hayes, D.J. The Use of Three-Dimensional Convolutional Neural Networks to Interpret LiDAR for
Forest Inventory. Remote Sens. 2018, 10, 649. [CrossRef]

63. Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM
1975, 18, 509–517, [CrossRef]

64. Delaunay, B. Sur la sphere vide. J. Phys. Radium 1934, 7, 735–739. [CrossRef]
65. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149, [CrossRef]
66. Holmgren, J.; Lindberg, E. Tree crown segmentation based on a tree crown density model derived from

Airborne Laser Scanning model derived from Airborne Laser Scanning. Remote Sens. Lett. 2019, 10, 1143–1152.
[CrossRef]

67. Lee, A.C.; Lucas, R.M. A LiDAR-derived canopy density model for tree stem and crown mapping in
Australian forests. Remote Sens. Environ. 2007, 111, 493–518. [CrossRef]

68. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

69. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO:
Common objects in context. In Proceedings of the 13th European Conference on Computer Vision (ECCV),
Zurich, Switzerland, 6–12 September 2014; pp. 740–755, [CrossRef]

70. Girardeau-Montaut, D. Cloud Compare—3D Point Cloud and Mesh Processing Software. 2015. Available
online: https://www.danielgm.net/cc/ (accessed on 6 May 2019).

71. Milletari, F.; Navab, N.; Ahmadi, S.a. V-net: Fully convolutional neural networks for volumetric medical
image segmentation. In Proceedings of the International Conference on 3DVision 2016, Stanford, CA, USA,
25–28 October 2016; pp. 565–571,

72. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980,
73. Masters, D.; Luschi, C. Revisiting Small Batch Training for Deep Neural Networks. arXiv 2018, arXiv:1804.07612.
74. Bryson, M. PointcloudITD: A software package for individual tree detection and counting. In Deployment

and Integration of Cost-Effective, High Spatial Resolution, Remotely Sensed Data for the Australian Forestry Industry;
FWPA Technical Report; FWPA: Melbourne, Australia, 2017; pp. 1–19. Available online: https://www.fwpa.
com.au/images/pointcloudITD_information.pdf (accessed on 6 May 2019).

75. Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar
Point Cloud. Photogramm. Eng. Remote Sens. 2013, 78, 75–84. [CrossRef]

76. Lalonde, J.; Vandapel, N.; Hebert, M. Automatic three-dimensional point cloud processing for forest
inventory. Robot. Inst. 2006, 334. [CrossRef]

http://dx.doi.org/10.1109/CVPRW.2017.200
http://dx.doi.org/10.2312/3dor.20171047
http://dx.doi.org/10.1080/2150704X.2015.1088668
http://dx.doi.org/10.1109/LGRS.2017.2764938
http://dx.doi.org/10.1117/12.2270123
http://dx.doi.org/10.1016/j.isprsjprs.2019.10.011
http://dx.doi.org/10.3390/rs10040649
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1051/jphysrad:01951001207073500
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1080/2150704X.2019.1658237
http://dx.doi.org/10.1016/j.rse.2007.04.018
http://dx.doi.org/10.1007/978-3-319-10602-1_48
https://www.danielgm.net/cc/
https://www.fwpa.com.au/images/pointcloudITD_information.pdf
https://www.fwpa.com.au/images/pointcloudITD_information.pdf
http://dx.doi.org/10.14358/PERS.78.1.75
http://dx.doi.org/10.1184/R1/6552104.v1

Remote Sens. 2020, 12, 1469 29 of 29

77. Yao, T.; Yang, X.; Zhao, F.; Wang, Z.; Zhang, Q.; Jupp, D.; Lovell, J.; Culvenor, D.; Newnham, G.; Ni-Meister,
W.; Schaaf, C.; Woodcock, C.; Wang, J.; Li, X.; Strahler, A. Measuring forest structure and biomass in New
England forest stands using Echidna ground-based lidar. Remote Sens. Environ. 2011, 115, 2965–2974.
[CrossRef]

78. Lindberg, E.; Holmgren, J.; Olofsson, K.; Olsson, H. Estimation of stem attributes using a combination of
terrestrial and airborne laser scanning. Eur. J. For. Res. 2012, 131, 1917–1931. [CrossRef]

79. Vauhkonen, J.; Ene, L.; Gupta, S.; Heinzel, J.; Holmgren, J.; Pitkänen, J.; Solberg, S.; Wang, Y.; Weinacker, H.;
Hauglin, K.M.; et al. Comparative testing of single-tree detection algorithms under different types of forest.
Forestry 2012, 85, 27–40. [CrossRef]

80. Dalponte, M.; Reyes, F.; Kandare, K.; Gianelle, D. Delineation of individual tree crowns from ALS and
hyperspectral data: A comparison among four methods. Eur. J. Remote Sens. 2015, 48, 365–382. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2010.03.019
http://dx.doi.org/10.1007/s10342-012-0642-5
http://dx.doi.org/10.1093/forestry/cpr051
http://dx.doi.org/10.5721/EuJRS20154821
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Contributions of This Work

	Materials
	Study Areas
	Data Collection

	Methods
	Overview
	Ground Characterisation and Removal
	Individual Tree Detection
	Individual Tree Detection: BEV Representations
	Individual Tree Detection: Training
	Individual Tree Detection: Inference

	Stem Segmentation
	Stem Segmentation: 3D-FCN Architecture for Voxel Segmentation
	Stem Segmentation: Pointnet Architecture for Point Segmentation

	Stem Reconstruction/Model Fitting

	Experimental Setup
	Metrics

	Results
	Ground Characterisation and Removal
	Individual Tree Detection
	Stem Segmentation
	Stem Reconstruction/Model Fitting

	Discussion
	Individual Tree Detection
	Stem Segmentation
	Stem Reconstruction/Model Fitting
	Scalability and Generalisation

	Conclusions
	References

