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Abstract: In recent years, deep learning has dramatically improved the cognitive ability of the network
by extracting depth features, and has been successfully applied in the field of feature extraction and
classification of hyperspectral images. However, it is facing great difficulties for target detection due to
extremely limited available labeled samples that are insufficient to train deep networks. In this paper,
a novel target detection framework for deep learning is proposed, denoted as HTD-Net. To overcome
the few-training-sample issue, the proposed framework utilizes an improved autoencoder (AE) to
generate target signatures, and then finds background samples which differ significantly from target
samples based on a linear prediction (LP) strategy. Then, the obtained target and background samples
are used to enlarge the training set by generating pixel-pairs, which is viewed as the input of a
pre-designed network architecture to learn discriminative similarity. During testing, pixel-pairs of
a pixel to be labeled are constructed with both available target samples and background samples.
Spectral difference between these pixel-pairs is classified by the well-trained network with results of
similarity measurement. The outputs from a two-branch averaged similarity scores are combined to
generate the final detection. Experimental results with several real hyperspectral data demonstrate
the superiority of the proposed algorithm compared to some traditional target detectors.

Keywords: hyperspectral imagery; deep learning; convolutional neural network; target detection

1. Introduction

Hyperspectral remote sensing usually uses hundreds of narrow contiguous wavelength bands to
obtain rich spectral information. The fine spectral characteristics effectively reflect the subtle features
of different materials and bring strong separability to varying types of ground features. Hyperspectral
remote sensing has been widely used in geology, vegetation survey, agriculture, environment, military,
and other fields [1–3]. Target detection in hyperspectral images is a crucial task in the field of
hyperspectral remote sensing, which seeks to discriminate human-made targets that are different from
the natural background from the perspective of spectral features.

Spectral angle mapper (SAM) [4] is a classification based on spectral angle, which measured the
matching degree between pixel and reference spectral. A typical matched filter (MF) [5] realized
an adaptive detection of radar targets based on an antenna array. In [6], a modified k-means
clustering was used in the matched filter to detect the weak signal of hyperspectral images. In [7],
the adaptive coherence estimator (ACE) proposed a general problem of detecting subspace signals in
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subspace interference and wideband noise, established generalized likelihood ratio (GLR) invariance.
In [8], among many background subspace estimation methods, the different experimental effects
of global and local approaches were compared and analyzed from the perspective of the use of
pixels in the target neighborhood. In [9–11], a sparse representation-based target detector (SR-TD)
was proposed. Based on the sparse linear combination relationship between the test sample and
the training sample, a sparse vector was constructed to help determine the category of the test
sample. Considering that background pixels can be well represented by their neighbor pixels,
but target pixels cannot, a coordinated representation-based object detection (CR-TD) was proposed
in [12]. In [13], the proposed unsupervised background extraction-based target detection (UBETD)
method can automatically learn the information of background from the image to robustly detect
the interested target in real-time. In [14], a method of comprehensively using local and non-local
priors was proposed for infrared (IR) small target detection. In [15], a fractional Fourier entropy
(FrFE)-based hyperspectral anomaly detection method was proposed to enhance the discrimination
between anomalies and background.

Recently, given the superior data analysis capabilities of deep learning, deep learning-based
methods are increasingly used in the field of remote sensing image analysis [16,17]. Combining
a stacked autoencoder and spatial-dominated information, a deep learning framework(SAE) for
hierarchically extracting depth features was proposed [18]. In [19], hierarchical learning-based features
were extracted for logistic regression classification. In [20], a local discriminative embedding algorithm
was proposed for extracting spectral features, which was fused with spatial features for classification.
In [21], the autoencoder was improved by adding a regularization term to the loss function to determine
the similarity of the samples. An analysis of the overall spatial features was added, and a collaborative
representation classifier was used to solve the problem of small sample size. In [22], there was a
more in-depth discussion on multi-feature fusion. A classification model was proposed, which was
a fusion of PCA, guided filtering, and deep learning. In [23], a supervised deep-learning network
was proposed, which connected the residual block with each 3-D convolutional layer to eliminate the
decrease in the accuracy of other models. Furthermore, a hyperspectral image classifier based on a deep
convolutional neural network (CNN) was proposed [24], which directly input the one-dimensional
spectrum to the network for training, opening the start of CNN in the hyperspectral classification field.
In [25], the above network was improved, and CNN can directly learn structural features from the
input data, similar to different spectral band-pass filters. A CNN-based framework was employed to
automatically encode spectral and spatial feature information and connect a Multi-Layer Perceptron to
complete the classification task [26]. However, the high correlation between the spectral bands makes
it difficult for the network to distinguish between different categories. Regarding the issue above,
an end-to-end CNN architecture was proposed to enhance the discrimination ability of the network,
and the model parameters were optimized to reduce the over-fitting phenomenon to improve HSI
classification performance [27]. In [28], from the perspective of increasing the number of training
samples, a pixel-pair method based on CNN was proposed, and it had been proved that pixels had
excellent ability to distinguish features. In [29], a two-branch CNN was introduced that combined
features in the spectral and spatial domains. In [30], several effective strategies were added to the
network to optimize the network structure and improve classification performance.

Hyperspectral image classification methods based on deep learning have been continuously
developed, however, research on hyperspectral target detection based on deep learning is currently
scarce. One of the difficulties of hyperspectral target detection is that available spectral signatures
are usually not enough to satisfy the requirement of training deep architecture. In the light of this
issue, a hyperspectral target detection framework using a deep network with data augmentation
(denoted as HTD -Net) is proposed, where an improved autoencoder (AE) [31] is firstly employed
to generate target signatures and select distinctive background samples that are the most different
from target samples in the detecting image with the criterion of linear prediction (LP) [32]. Two types
of pixel-pairs are created: one type, representing similarity, is composed of target samples; the other
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type, representing dissimilarity, is composed of target and background samples, which is viewed as
the input of a pre-designed network architecture to learn discriminative similarity. For a testing pixel,
two groups of difference constructed with target pixels and background pixels are classified by the
well-trained network with results of similarity measurement. Two similarity scores are derived by
averaging these two groups, and then the detection output is obtained by combining two similarity
scores. Consequently, a testing pixel is claimed as a target if it is more similar to target samples than to
background samples; otherwise, it is claimed as a background pixel.

The main contributions of this work are summarized as follows. First, a CNN architecture
is designed to learn similarity discrimination with linear regression. Second, to solve the
few-training-sample issue in the detection task, an improved AE is utilized to generate potential
target signatures, and these target signatures are used to extract background samples to provide a more
accurate representation of background. Third, target-target similar pixel-pairs and target-background
dissimilar pixel-pairs are generated and used to train a CNN. The final detection result is obtained from
considering the two types of similarity scores, where the significantly increased number of training
samples (i.e., pixel-pairs) can significantly improve the detection performance.

The structure of this paper is explained as follows. In Section 2, the proposed detection framework
is introduced in detail. In Section 3, the analysis of the proposed method is provided. In Section 4,
the experimental results and the corresponding analysis are presented. Section 5 concludes.

2. Proposed Target Detection Framework

The proposed hyperspectral target detection framework is illustrated in Figure 1, which mainly
includes four steps (marked as overstriking red), i.e., utilizing a modified AE to generate target samples,
selecting background samples from detecting images based on LP, training a CNN using the difference
between pixel-pairs, and combining the output from target and background signatures adaptively.
The detailed implementation is further summarized in Algorithm 1.

Algorithm 1 The Proposed HTD-Net

Input: the known target samples and the detecting image.
1. Utilize a modified AE to generate potential target samples;
2. Find background samples based on LP;
3. Enlarge the background training set by selecting pixels whose Euclidean distance are nearest to owned background
samples;
4. Train similarity discrimination using CNN (SD-CNN) by constructing similar pixel-pairs between target samples and
dissimilar pixel-pairs between target and background samples;
5. For each pixel to be detected, pixel-pairs are fed into the well trained SD-CNN.
6. Combine similarity scores from both target and background samples;
Output: Final output.
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Figure 1. Flowchart of the proposed HTD -Net framework for hyperspectral target detection.

2.1. Generation of Target Samples

Since target samples are usually insufficient to train a CNN, a data augmentation strategy is
designed to generate more target signatures. For CNN using natural scene images, there are many
ways to increase the number of samples, such as rotation, folding, adding noise, and so on. However,
these methods are inappropriate for hyperspectral target detection since target signatures have known
spectral information only. Rotation and folding will undoubtedly destroy spectral details and result in
spectral distortion, and adding noise cannot enlarge spectral diversity. Therefore, autoencoder with
generation capability is adopted, and a sample generator is built to solve the problem of insufficient
target samples. Meanwhile, a loss function is used to ensure the similarity between generated and
original samples.

The autoencoder (AE) is an unsupervised learning algorithm [31]. We can also consider the
autoencoder as a feature learning method in a self-supervised mode, and its learning strategy can be
abstracted into a convex optimization problem that minimizes reconstruction errors. A simple model
of AE has two major components, i.e., an encoder and a decoder. The encoder can map the input to the
hidden layer subspace through common convolution operations in deep networks, to form hidden layer
features. After obtaining the hidden layer representation through the encoding operation, the decoder
uses the hidden layer representation to reconstruct the input inversely. Usually, this simple AE ends
up learning a low-dimensional representation when the values of the hidden layer are used. However,
here, we use the values of the output layer to generate samples simulating the target signatures.
The typical feature of AE is that the learning goal of its output is the input, so the training process
of AE is a process in which the output continuously approaches the input. Let X = [x1, x2, ..., xM]

denote the input vector, where M is the number of input nodes. Let hW,b(X) = [x̂1, x̂2, ..., x̂M] denote
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the corresponding output. The objective of the AE network is to learn an approximate relationship:
hW,b(X) ≈ X. The loss function of the AE is

JW,b =
1
2

M

∑
i=1

(x̂i − xi)
2. (1)

A simple AE does not fit the complex spectral curve of pixels well. In order to preserve the
rich texture information of HSI, the idea from U-net [33] is borrowed, where a modified AE with a
contracting path and a symmetric expanding path is designed (denoted as U-AE). The architecture of
U-AE is illustrated in Figure 2, which consists of five convolutional layers, a maximum pooling layer,
an upsampling layer, and a copy connection. Compared with full connection layers, the convolutional
layers include fewer parameters but extract more precise features. The upsampling operator replacing
the pooling operator increases the spectral resolution. In order to ensure that context can be captured,
high spectral resolution features from the contracting path are combined with the upsampled output.
Most noticeably, although the U-AE belongs to unsupervised learning, it needs training samples to
construct the model, but it does not need to know the labels of the training data. During training,
the available target and background samples in the training image are utilized for training this
unsupervised network. The objective is to learn the distribution of the original data and to better
fit and generate the data. When using the trained U-AE to generate samples, a small number of
target pixels is selected as input data of the U-AE. The specific sample proportion will be introduced
in Section 4. With fewer target sample pixels, more target sample pixels are generated to achieve
data augmentation.
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Figure 2. The architecture of the U-AE (It is assumed that the selected dataset consists of
224 spectral bands).

The comparison of generated signatures between the designed U-AE and the typical AE is shown
in Figure 3. It can be seen that AE yields severe spectral distortion in the range of 1 to 50 bands,
which has lost the original spectral signatures and created a new category. The generated signatures
of the U-AE preserve more context and are more similar to inputs than those generated from the
traditional AE.
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Figure 3. Comparison of generated signatures between U-AE and autoencoder (AE) (a) Input samples,
(b) Generated signatures of the traditional AE, and (c) Generated signatures of U-AE.

2.2. LP-Based Background Sample Selection

For hyperspectral target detection, in order to establish an accurate background model, we further
use target signatures to select background samples. The objective is to find background samples,
which are the most dissimilar to target signatures in an entire image. LP can capture representative
components of the spectrum, and find background samples with the largest difference from the
target spectrum. These pixels are called endmembers and can be assumed as background samples.
The spectral signatures of the endmembers are the most different from the target sample, which provide
an accurate representation of dissimilarity between pixel-pairs. Let Xt denote the given target spectral
characteristic matrix. It is used to estimate background sample y from the entire image as

Xta = y
′
, (2)

where y
′

is the estimate or linear prediction of output y, and a is the weight vector. The linear error
between the linear prediction and the expected value is expressed as

e = ‖y− y
′‖. (3)

If this linear error is maximized, the difference between y
′

and Xt will also be maximized;
thus, the sample obtained can be assumed to be the background. With the least-squares solution,
the weight vector a can be determined as

a = (XT
t Xt)

−1XT
t y. (4)
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Thus, the first background sample b1 can be obtained by maximizing the following residual,

e = ‖b1 − Xt(XT
t Xt)

−1XT
t b1‖2. (5)

After obtaining b1, the target spectral matrix is updated as Xt = [Xt b1] to search for b2. Following
the same step, the entire background matrix Xb = [b1, b2, ..., bnb ] can be found, where nb is the
number of background samples. However, the matrix XT

t Xt may become ill-rank after some iterations,
LP cannot continue to find the next sample, so the background samples that can be found are limited.
Data augmentation is employed again to enlarge the background data set. Based on the Euclidean
distance, a series of samples is found closest to the background samples on the entire image, and these
samples are also considered as background samples.

2.3. Construction of Training Pixel-Pairs

Pixel-pairs can be constructed by combining target samples and background samples. Two types
of pixel-pairs are constructed; that is, one type of pairs selected from target samples that represents
similarity, and the other type of pairs with two pixels being selected from target and background
samples that represents dissimilarity. As shown in Figure 1, the pixel-pairs are constructed using
target-target and target-background samples.

We discuss two strategies of learning label based on the constructed pixel-pairs:
(1) The first one is logistic regression. In particular, pixel-pairs representing similarity are labeled

as 1, and the pixel-pairs representing dissimilarity are labeled as 0. The corresponding cross-entropy
cost function is

Cost = − 1
n

n

∑
i
[θ ln Ai + (1− θ) ln(1− Ai)] (6)

where n is the batch-size, Ai is the output of the sigmoid layer, and θ is the label (0 and 1).
(2) The second one is linear regression. Considering the diversity, labels of 0 and 1 cannot represent

multiple similarities between pixel-pairs. Inspired by hypothesis-testing-based detection algorithms,
we use the output of typical ACE to represent the similarity between pixel-pairs. Suppose Sij = [ti, tj]

is a pixel-pair after data mean removal, and the corresponding label can be computed as

Label(Sij) =
(tT

i G−1tj)
2

(tT
i G−1ti)(tT

j G−1tj)
(7)

where G is the estimated covariance matrix of the test image. This formula has the commutative
invariance property so that Label([ti, tj]) = Label([tj, ti]). The larger the value of Equation (7), the more
similar the two pixels are. Here, the mean square error (MSE) is used as the cost function

Cost =
1
n

n

∑
i=1

[(ki − k̂i)
2], (8)

where ki is the output of the full connection layer, and k̂i is the label. The performance of the two
strategies will be compared in the following section.

2.4. Similarity-Discrimination CNN

After obtaining new training data, a framework of similarity discrimination using CNN (denoted
as SD-CNN) is used to extract depth features. Parameters for each layer and architecture of the
designed SD-CNN are illustrated in Figures 4 and 5.

In general, a typical CNN represents a feed-forward neural network that consists of various
combinations of convolutional layers, max-pooling layers, and fully connected layers. In this work,
we use 16 successive convolutional layers rather than stacking alternatively convolutional layers and
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pooling layer. After convolution, the depth features are processed by an average-pooling layer (AVG),
and then its output is used as the input of a fully-connected (FC) layer. Each component in the SD-CNN
is described as follows.
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Figure 4. Parameters for each layer of the designed similarity discrimination-convolutional neural
network (SD-CNN).
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Figure 5. Architecture of the designed SD-CNN.

(1) Input Layer: the inputs to the SD-CNN are the differences of spectral signatures between
pixel-pairs. Let Dl ∈ <1×d×1(l = 1, 2, ..., N) denote the difference between pixel-pair Sij = [ti, tj],
where d is the number of spectral bands, N is the number of pixel-pairs. Dl can be computed as

Dl = |ti − tj|, (9)

where | � |means the absolute value operation. The objective of the SD-CNN is to decide whether the
two pixels are similar or not.
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(2) Convolutional Layer: due to the local connections and tied kernel weights of convolutional
layers, it is easier for CNNs to train and have fewer parameters than fully-connected networks
with the same number of hidden units. A conventional CNN architecture includes alternatively
stacking of convolutional layers and pooling layers. However, due to the fact that pooling layers blur
the discrimination among different spectral bands, it may result in information loss in the spectral
dimension. Taking consider of this sake, in the designed network, the pooling layers are replaced
with convolutional layers (i.e., C4, C7, C10, C13, and C16) whose kernels stride is two. There are
16 successive convolutional layers. In these convolutional layers, two kinds of kernels are used.
As illustrated in Figure 4, the first one with one stride, which is denoted as blue, is padded with zeros
so that the size of the output is invariable, and the second one with two strides, which is denoted
as yellow, has no padding so that the number of spectral features of output is halved. The second
kernels perform as the role of subsampling layers to reduce the spectral dimensionality and retain the
spectral information by the convolutional operator. For example, in the first convolutional layer (C1),
30 kernels of size 1× 3 filter the input spectral difference, producing a 1× d× 30 tensor, and in C4,
30 kernels of size 1× 3 with 2 stride filter the output of C3, producing a 1× (d/2)× 30 tensor. In the
following convolutional layers, the size of kernels is fixed as 1× 3, and the number of kernels is fixed
as 30.

(3) Average-pooling Layer and Fully-connected Layer: once the spectral dimension is desirable to
use, an AVG is employed to synthesize the features of each row in the output tensor. Then all of those
average is fed into the FC layer whose output is a single value.

(4) Output Layer: the output denotes the probability that a pixel belongs to the target. For logistic
regression, the output of FC is usually fed into a sigmoid layer. For linear regression, this output is
directly used for computing cost function. Figure 4 further lists detailed parameters in each layer.

2.5. Combined Target and Background Similarity Scores

For each testing pixel z in the detecting image, pixel-pairs generated with target and background
samples are individually fed into the well-trained CNN. The outputs are two sets of similarity scores.
We simply average these values to generate target prediction rt(z) and background prediction rb(z).
The final output for target detection is calculated as

D(z) = rt(z)− rb(z). (10)

We determine whether the test pixel is the target sample by setting a threshold. In the following
section, the process of determining the decision threshold η is discussed. If D(z) is above the threshold
η, the testing pixel z belongs to target; otherwise, background.

Obviously, the proposed method has few parameters, which has good adaptive ability to
different images. Thus, it is expected that the proposed HTD-Net offers better adaptability than
the state-of-the-art representation-based algorithms, such as SR-RD [9,11] and CR-TD [12].

3. Analysis on Proposed Method

In this section, we analyze the advantages of the proposed HTD-Net with some state-of-the-art
representation-based target detection methods and the closely-related anomaly detection method [34]
using the CNN model.

3.1. Comparison with Representation-Based Detectors

In [9], a sparsity-constrained algorithm, i.e., SR-TD, was applied to detect targets of interest in
hyperspectral images. Based on the sparse linear combination relationship between the test sample
and the training sample, a sparse vector was constructed to help determine the category of the test
sample. Based on the compressive sensing theory [35], the problem of minimizing the ell0-norm can
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be transformed into a standard linear regression problem. Because it does not use of background
samples, the result of target detection may be vulnerable to background interference.

Taking this problem into account, the proposed method uses both target and background samples
for the testing process. In [12], combining sparse representation and cooperative representation
in HSI, a target detection algorithm was proposed. Representation of test pixels is done through
competitive confrontation. This method can well suppress background and highlight targets. However,
this method using a combined model needs to manually adjust parameters, such as regularization
parameter and window-size of selecting backgrounds, for different data to achieve an optimal
result. Our proposed method, belonging to a global detector, has few parameters which has good
adaptive ability to different images. Thus, the proposed HTD-Net offers better adaptability than the
representation-based algorithms.

3.2. Comparison with CNN-Based Anomaly Detection

Recently, an anomaly detection framework with transferred CNN was proposed [34]. This method
utilizes a reference data to generate pixel-pairs for training CNN. Considering the fact that no prior
information is available in many practical cases, a dual window around the testing pixel was used
to construct pixel-pairs for detection. It is worth mentioning that the test data and reference data
for anomaly detection are preferably collected by the same sensor. This factor may limit practical
applications of the detector.

During training, the proposed HTD-Net utilizes prior information (only a few target samples)
rather than a reference data. Using known target signatures can improve the probability of detection
in a low probability of false alarm. During testing, to generate a more accurate representation of the
difference between pixel-pairs, we use background training data simultaneously selected by LP based
on available target signatures. The two results of CNN output are combined to yield an adaptive
similarity score for detection. Compared to the aforementioned anomaly detection, without using a
sliding window means fewer parameters to be adjusted.

4. Experimental Results

In this section, we verify the detection performance of the proposed HTD-Net, and compare it with
existing target detection algorithms, such as the target detector based on sparse representation (SR-TD),
the target detector based on collaborative representation (CR-TD), and the traditional ACE [7]. In target
detection tasks, receiver-operating-characteristic (ROC) cite Hanley1983A curve is an effective method
to evaluate the detection effect quantitatively. The performance of these detectors was evaluated by
quantifying the area under the ROC curve (AUC).

4.1. Hyperspectral Data

The first dataset is from the Moffett Field, California, at the southern end of the San Francisco Bay,
which was collected by AVIRIS sensors. As illustrated in Figure 6, the scene consists of 512× 512 pixels,
has 224 bands, spans a wavelength interval of 0.4- to 2.5-µm, and has a spatial resolution of about
20 m [36]. Here, the total number of target pixels in the scene is 59. Five target samples are selected
as known.

The second dataset is from the World Trade Center (WTC) area in New York City, which was
collected by AVIRIS sensors five days after WTC collapsed by terrorist attacks [37]. As shown in
Figure 7, the scene consists of 200× 200 pixels, has 224 bands. There are 91 targets in burned areas,
and 8 of them are used as known target samples.

The third dataset is from the Hyperspectral Digital Imagery Collection Experiment (Hydice
Forest). As shown in Figure 8, the scene consists of 64× 64 pixels, has 210 bands(169 bands left after
removing water-absorption bands.), spans a wavelength interval of 0.4- to 2.5-µm, and has a spatial
resolution of about 1.56 m. 19 target pixels are corresponding to 15 target panels, and 5 of them are
used as known target samples.
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(a) (b)

Figure 6. The Moffett Field scene with 59 target pixels (a) Pseudo-color Image (b) ground-truth map.

(a) (b)

Figure 7. The World Trade Center (WTC) scene with 91 anomalous pixels (a) Pseudo-color Image (b)
ground-truth map.

(a) (b)

Figure 8. The Hydice Forest scene with 19 target pixels (a) Pseudo-color Image. (b) ground-truth map.

The fourth dataset is from the HyMap airborne hyperspectral imaging sensor [38], which covers
an area in Cooke City, MT. The scene consists of 280× 800 pixels, has 126 bands, spans a wavelength
interval of 0.4- to 2.5-µm, and has a spatial resolution of about 3 m. There are 7 types of targets,
of which 4 are fabric panel targets and 3 are vehicle targets. In our experiment, the image is cropped to
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a sub-image of size 100× 300 , and 4 types of fabric panel targets are detected, including 118 target
samples, as shown in Figure 9. Four of them are used as known target samples.

(a)

(b)

Figure 9. The HyMap scene with 118 target pixels (a) Pseudo-color Image. (b) ground-truth map.

4.2. Parameter Setting for Deep Network

In order to obtain a well-trained CNN, there are several essential parameters, such as learning
rate, batch size, and a minimum of dequeue, which need to be well tuned. The learning rate determines
the convergence speed of the network. The batch size controls the number of input data per step.
The minimum of dequeue defines how big a buffer we will randomly sample from, where a larger value
means better shuffling but slower speed and more space memory needed. Furthermore, we also discuss
the relationship between the numbers of generated target samples and selected background samples.

According to our empirical study, the batch size is set as 256 to take the most use of parallel
computing ability of GPU for both linear and logistic models. The choice of a minimum of dequeue
depends on the computing capacity. The value is set by the following criterion: minimum o f dequeue =
capacity− 3× batch size, where the capacity is 50,000 in our experiments. For the learning rate, the
learning procedure is too fast to have a convergence when it is too large, while the model needs many
iterations to converge when the learning rate is low. Therefore, a suitable compromise method is to
first set the learning rate to a relatively large value (such as 0.01), and adjust the reduction according to
the fluctuation of the learning curve. After the training data is enlarged, part of the data is used as a
validation set to estimate the optimal parameters.

The impact of imbalanced training data on hyperspectral image classification performance has
been studied in [39]. It indicates that if the training data is unbalanced, it will negatively affect the
performance of the CNN, but the balanced data under the same conditions will be better [40]. Therefore,
to balance the training data, the number of similarity samples is twice as many as dissimilarity samples,
then the number of samples representing similarity and non-similarity is guaranteed to be the same.
In this paper, we generate 1000 target samples and find 500 background samples. The number of
similarity pixel-pairs is as high as 499,500 (i.e., C2

1000 = (1000!) \ (2!(1000− 2)!)), and the number of
dissimilarity pixel-pairs is 500,000 (i.e., 1000× 500).

4.3. Comparison between Linear and Logistic Strategies

In this section, a comparison for the two strategies is investigated, i.e., linear and logistic
regression, which are denoted as the linear model and logistic model, respectively. Table 1 lists
the AUC performance(%) of the two models for the four data, where Target Samples denotes the case
using targets only, Background Samples denotes the case using backgrounds only, and Combined
Samples denotes the case combing the two results. It is interesting to notice that the AUC(%) values
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from the linear model are larger than those from the logistic model. ROC curves of the two models are
illustrated to further evaluate the performance in Figures 10–13. Compared with the logistic model,
the linear model offers a higher probability of detection for the four experimental data. From these
results, the linear model is superior to the logistic model, which verifies the assumption in the previous
section. Therefore, the linear regression is adopted as the learning model in the proposed HTD-Net.

Table 1. Area under the curve (AUC) performance (%) comparison of the two regression models for
the four experimental data.

Data Model Target Samples Background Samples Combined Samples

Moffett Filed Logistic 98.12 64.39 99.72
Linear 99.8 72.24 99.91

WTC Logistic 84.77 67.63 84.19
Linear 85.59 91.57 99.31

Hydice Forest Logistic 93.80 70.74 97.47
Linear 98.50 86.72 99.49

HyMap Logistic 72.64 70.60 80.47
Linear 95.34 90.27 96.03

10 -5 10 -4 10 -3 10 -2 10 -1 10 0

Probability of false alarm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty
 o

f 
d

e
te

c
ti
o

n

logi modelstic

linear model

Figure 10. Receiver-operating-characteristic (ROC) comparison of the two regression models for the
Moffett Filed data.
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Figure 11. ROC comparison of the two regression models for the WTC data.
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Figure 12. ROC comparison of the two regression models for the Hydice Forest data.
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Figure 13. ROC comparison of the two regression models for the HyMap data.

4.4. Comparison Performance with Traditional Methods

For a fair comparison, we need to adjust the parameters for SR-TD, CR-TD, and ACE to achieve
their optimal state, e.g., the size of the double window and regularization parameters. The size of the
double window determines the number of background samples selected by SR-TD and CR-TD, and the
regularization parameters control the balance between the residual terms and the weight criteria.
Figures 14–17 shows the ROC curves of the four detectors, all adjusted to the optimal parameter state,
which verifies the superiority of our proposed HTD-Net.

In most situations, the proposed HTD-Net is superior to other detectors. For instance,
the HTD-Net offers a better probability of detection (i.e., Pd) when the false alarm rate (i.e., Pf )
locates in a relatively small range (such as 10−3 to 10−4), which is considered as practical application
value in Figure 16.

The AUC performance(%) comparison is also listed in Table 2. From the results, the AUC value
of the proposed HTD-Net is always the largest. Take the HyMap data for example, the AUC value
is 96.03%, with an improvement of approximately 5% when compared to the SR-TD and CR-TD.
In addition, Pd of the HTD-Net achieves 1.00 even for small Pf . Figures 18–20 further show that
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the detection maps when Pf is a small value (e.g., 0.0001 or 0.002) and Pd reaches the maximum.
The proposed HTD-Net still reaches the highest Pd value and the best overall performance. When we
fix Pf to a desired value, a suitable threshold η can be determined.

Table 2. AUC performance (%) comparison of the four detectors.

Data Detectors

ACE CR-TD SR-TD HTD-Net

Moffett Filed 97.98 98.25 98.04 99.91
WTC 98.69 95.17 98.65 99.31

Hydice Forest 99.32 98.68 98.82 99.49
HyMap 90.29 91.29 87.20 96.03
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Figure 14. ROC performance of the proposed method for the Moffett Filed data.
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Figure 15. ROC performance of the proposed method for the WTC data.
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Figure 16. ROC performance of the proposed method for the Hydice Forest data.
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Figure 17. ROC performance of the proposed method for the HyMap data.

The statistical significance of the performance difference between different detectors is compared
in Table 3 . We use Wilcoxon statistics to calculate a series of values. At a 95% confidence level,
If Z > 1.96, it means statistically significant. Similarly, At a 99% confidence level, If Z > 2.58, it means
statistically significant. When the significance level (i.e., the p value) is less than 0.05, the difference
between the two detectors proves to be significant. Obviously, in addition to the Hydice Forest
data, the proposed HTD-Net has better statistical significance at 95% (and/or 99%) confidence level.
In addition, the proposed HTD-Net is inclined to produce better performance when the size of the
detecting image is large.
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(a) ACE (b) SR-TD

(c) CR-TD (d) HTD-Net

Figure 18. Detection maps for the Moffett Filed image, Pf is set to 0.0001. (a) adaptive coherence
estimator (ACE): Pd = 0.1525. (b) sparse representation-based target detector (SR-TD): Pd =

0.6949. (c) collaborative representation-based target detection (CR-TD): Pd = 0.7627. (d) HTD-Net:
Pd = 0.8475.

(a) ACE (b) SR-TD

(c) CR-TD (d) HTD-Net

Figure 19. Detection maps for the WTC image, Pf is set to 0.003. (a) ACE: Pd = 0.9231. (b) SR-TD:
Pd = 0.7473. (c) CR-TD: Pd = 0.6923. (d) HTD-Net: Pd = 0.9341.
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(a) ACE (b) SR-TD

(c) CR-TD (d) HTD-Net

Figure 20. Detection maps for the Hydice Forest image, Pf is set to 0.002. (a) ACE: Pd = 0.2105.
(b) SR-TD: Pd = 0.6842. (c) CR-TD: Pd = 0.6316. (d) HTD-Net: Pd = 0.7368.

Table 3. Statistical significance of the difference between different detectors.

HTD-Net AUC (%) Standard Z p Significant? Significant?
vs. Difference Error Statistic Value (95% Confidence) (99% Confidence)

Moffett Filed
ACE 1.93 0.0026 7.415 <0.0001 Yes Yes

CR-TD 1.66 0.0022 7.533 <0.0001 Yes Yes
SR-TD 1.87 0.0025 7.471 <0.0001 Yes Yes

WTC
ACE 0.62 0.0016 3.873 <0.0001 Yes Yes

CR-TD 4.14 0.0049 8.345 <0.0001 Yes Yes
SR-TD 0.66 0.0017 3.908 0.0001 Yes Yes

Hydice Forest
ACE 0.17 0.0023 0.745 0.745 No No

CR-TD 0.81 0.0036 2.260 0.0238 Yes No
SR-TD 0.67 0.0032 2.081 0.0375 Yes No

HyMap
ACE 5.74 0.0089 6.410 <0.0001 Yes Yes

CR-TD 4.74 0.0082 5.760 <0.0001 Yes Yes
SR-TD 8.83 0.0110 8.023 <0.0001 Yes Yes

Finally, the computational complexity of the above detection methods is discussed.
All experiments are performed on an Intel(R) Core(TM) i7-3770 CPU machine with 16GB of RAM based
on Python language and Tensorflow library. The execution time of different detectors (in seconds)
is compared in Table 4. The results of Table 4 show that the proposed HTD-Net is time-consuming.
There are two reasons for this result. First, compared with the traditional method, the method of using
deep networks to learn data will inevitably consume more time. Deep learning takes advantage of
large data samples, which requires more computing resources to extract features for better data fitting
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and higher detection performance. This inevitably brings about increased computational complexity.
The proposed method effectively improves the detection performance at the sacrifice of computing
cost. In addition, the amount of data generated by UAE is large, which greatly expands the sample size.
The rich input effectively improves the training accuracy, but it also greatly increases training costs.

Table 4. Comparison of the execution time of different detectors (in seconds).

Data Detectors

ACE CR-TD SR-TD HTD-Net

Moffett Filed 4.68 10.38 15.53 83.33
WTC 0.71 1.83 2.49 58.35

Hydice Forest 0.05 0.17 0.21 2.23
HyMap 0.31 1.02 1.29 28.17

5. Conclusions

In this paper, a CNN-based algorithm using only few target signatures has been proposed for
hyperspectral target detection, denoted as HTD-Net. To ensure sufficient samples to train the CNN,
a modified AE was developed to generate more potential target signatures, based on which background
samples were selected with the LP strategy to generate an accurate representation of background. Then,
the training pixel-pairs were constructed by target and background samples, as the inputs to a designed
SD-CNN architecture. In the testing procedure, for each pixel to be labeled, pixel-pairs constructed with
target and background samples were classified by the well-trained network. The average similarity
scores from the two branches of the network were then directly combined to yield the final output.
Experimental results show that the proposed HTD-Net significantly outperformed the traditional
ACE, and the state-of-the-art SR-TD , and CR-TD. Although a certain amount of computational cost is
sacrificed, the sufficient amount of data ensures the effectiveness of the training network and reduces
the training overfitting phenomenon caused by data scarcity to a certain extent. The proposed HTD-Net
is suitable for situations where data is difficult to obtain and marked samples are scarce. Considering
that real-time detection in practice is more concerned with detection time and network training can be
designed as an offline process, the trained network may be applicable to detect targets in real-time from
similar image scenes, which will be investigated in our future work. In addition, parallel algorithms
will be designed with high-performance computing facilities to improve efficiency, and lightweight
network models will be tested in the trade-off between detection accuracy and computational cost.
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