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Abstract: Although the deep semantic segmentation network (DSSN) has been widely used in re-
mote sensing (RS) image semantic segmentation, it still does not fully mind the spatial relationship 
cues between objects when extracting deep visual features through convolutional filters and pooling 
layers. In fact, the spatial distribution between objects from different classes has a strong correlation 
characteristic. For example, buildings tend to be close to roads. In view of the strong appearance 
extraction ability of DSSN and the powerful topological relationship modeling capability of the 
graph convolutional neural network (GCN), a DSSN-GCN framework, which combines the ad-
vantages of DSSN and GCN, is proposed in this paper for RS image semantic segmentation. To lift 
the appearance extraction ability, this paper proposes a new DSSN called the attention residual U-
shaped network (AttResUNet), which leverages residual blocks to encode feature maps and the at-
tention module to refine the features. As far as GCN, the graph is built, where graph nodes are 
denoted by the superpixels and the graph weight is calculated by considering the spectral infor-
mation and spatial information of the nodes. The AttResUNet is trained to extract the high-level 
features to initialize the graph nodes. Then the GCN combines features and spatial relationships 
between nodes to conduct classification. It is worth noting that the usage of spatial relationship 
knowledge boosts the performance and robustness of the classification module. In addition, bene-
fiting from modeling GCN on the superpixel level, the boundaries of objects are restored to a certain 
extent and there are less pixel-level noises in the final classification result. Extensive experiments 
on two publicly open datasets show that DSSN-GCN model outperforms the competitive baseline 
(i.e., the DSSN model) and the DSSN-GCN when adopting AttResUNet achieves the best perfor-
mance, which demonstrates the advance of our method. 

Keywords: deep semantic segmentation network (DSSN); graph convolutional neural network 
(GCN); remote sensing (RS); semantic segmentation; spatial relationship 
 

1. Introduction 
As the fundamental task of geographic information interpretation, remote sensing 

(RS) image semantic segmentation is the basis for other RS research and applications, such 
as natural resource protection, land cover mapping and land use change detection [1,2]. 
Although it has received considerable attention in the past decade, semantic segmentation 
of high-resolution RS image is still full of challenges [3–6], because of the complexity of 
structure in RS images, which leads to interclass similarity and intraclass variability [7–
9]. 

With recent developments in deep learning [10–14], deep semantic segmentation net-
work (DSSN) has made remarkable improvements for RS image semantic segmentation 
[15] compared to traditional methods, such as random forest (RF), decision trees (DT) and 
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support vector machines (SVMs) [16]. For the first time in end-to-end semantic segmenta-
tion, Long et al. [17] proposed the fully convolutional network (FCN) for by adding the 
deconvolution layers [18] to the convolutional neural network (CNN). As the representa-
tive of the encoder–decoder architecture, U-Net [19] used skip connections to take ad-
vantage of multiscale information. The reason why U-Net achieved promising perfor-
mance was that it strengthened the feature maps by combining low-level detail infor-
mation and high-level semantic information through the skip connections. Moreover, Se-
gNet [20] recorded the index of max pooling in the encoder to perform nonlinear upsam-
pling in the decoder. After that, many other DSSNs [21–25] had been proposed, including 
the DeepLab V3+ network, which adopted the atrous separable convolution for image se-
mantic segmentation and achieved the state of art result. In DSSN, the extracted deep fea-
tures are applied to specify the category of each pixel, which proves the importance of the 
features for semantic segmentation. To obtain powerful features needs to further improve 
the expressive ability of the network. Like human visual system, the attention mechanism 
helps to boost meaningful features while suppressing weak ones [26]. In the channel do-
main, features are selected in channel dimension according to the importance. Hu et al. 
[27] proposed the squeeze-and-excitation block (SE), which adaptively recalibrates chan-
nel-wise feature responses by explicitly modeling interdependencies between channels. 
The spatial domain attention introduces spatial context by assigning different weights to 
pixels with different positions. Attention U-net [28] used attention gates module to control 
the importance of features at different spatial locations. The semantic segmentation net-
work with spatial and channel attention (SCAttNet ) [29] was proposed for RS image se-
mantic segmentation, which adopted the convolutional block attention module (CBAM) 
[30] consisting of spatial attention followed by channel attention. However, this cascading 
mechanism could cause aliasing of spatial information and channel information. There-
fore, the concurrent spatial and channel ‘squeeze & excitation’ attention module (scSE) 
[26] was proposed for medical image segmentation to have concurrent spatial and channel 
SE blocks [27] that recalibrate the feature maps separately along channel and space, which 
sped up the transfer of information. 

In the field of RS, a lot of works on DSSN-based RS image semantic segmentation 
emerged in recent years. Many researchers applied FCN to the semantic segmentation of 
RS images [31–34]. Kampffmeyer et al. [35] proposed a novel DSSN, which was used for 
urban land cover mapping. Wang et al. [36] used an ensemble multiscale residual deep 
learning method based on U-Net architecture to extract buildings. Audebert et al. [37] 
trained a variants network of SegNet and used multicore convolutional layers to quickly 
aggregate predictions on multiple scales. Zhang et al. [38] proposed the dual multiscale 
manifold ranking (DMSMR) network to further improve the performance of segmenta-
tion. Pan et al. [39] performed semantic labeling of high-resolution aerial imagery with 
the fine segmentation network. In order to use multisensor data, such as DSM, both the 
RGB image and the multimodal data are combined to provide more information for DSSN 
[40]. Marmanis et al. [33] proposed a Siamese network to handle the images and the DSM 
data, and combined edge detection and semantic segmentation in the improved version 
[41]. He et al. [42] introduces edge information into DSSN to revise the segmentation re-
sults. Moreover, prior knowledge is used for RS image semantic segmentation. Alirezaie 
et al. [43] applied U-Net to achieve fast and accurate pixel-level classification followed 
with a knowledge-based post-processing. However, when extracting the deep features 
through convolutional and pooling layers, DSSN ignores the spatial relationship between 
objects, which plays a key role in the classification from the biological vision perspective 
[44]. This problem will be more serious in processing high-resolution RS images, which 
contain rich objects and spatial relationships. 

Due to the irregular distribution of ground objects and connections between objects 
only in mutual relations, the objects and their relationships form a graph, where graph 
nodes represent objects and the connecting edges between the graph nodes denote the 
spatial relationship between the objects [45], such as neighboring, intersecting, separating, 
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etc. Although DSSNs have achieved great success in processing Euclidean data, the per-
formance of these methods is still unsatisfactory as to graph data, which is in non-Euclid-
ean space. As an application of deep learning to graph data, graph convolutional neural 
network (GCN) has obvious advantages in extracting features from irregular graph data 
by graph convolution. The core idea of graph convolution is to use edge connections to 
aggregate node information for generating new representations of nodes, so GCN has a 
strong ability to model the dependency relationship between graph nodes. These ad-
vantages have promoted the breakthrough of researches related to graph analysis [46]. 
Kipf et al. [47] proposed an effective layered propagation graph model, which directly 
operated on graph data by convolution in spectral space. NN4G [48] realized graph con-
volution based on spatial domain by directly accumulating the information of neighbor 
nodes. Regarding that GCN was limited to shallow layers, Li et al. [49] successfully con-
structed Deep-GCN by borrowing tricks from CNN, including residual connection and 
dilated convolution, and adapted them to the architecture of GCN to alleviate gradient 
vanishing. Graph attention network (GAT) [50] used the attention mechanism to deter-
mine the weight of each neighbor node to the central node when aggregating the neighbor 
information. Compared to GAT, GCN pays more attention to spatial relations, rather than 
similarity represented by weights. To make full use of local position of each pixel, Yi et al. 
[51] proposed a pixel-based GCN model initialized by a fully convolutional network 
(FCN) for semantic segmentation of natural image. Although every pixel possesses the 
local position, it cannot really represent the ground objects and the strength of the spatial 
relationship is ignored. In order to mine both the object information and topological rela-
tionships among multiple objects, Li et al. [52] presented a CNN-GCN framework to ad-
dress multilabel aerial image scene classification. The abstract features from CNN are con-
ducive to scene classification [2], while the pixel-level semantic segmentation requires de-
tails to specify the category of each pixel. 

In order to address these problems, we propose a DSSN-GCN framework focusing 
on spatial relationship modeling, which is a generic way for RS image semantic segmen-
tation by combining DSSN and GCN. The DSSN is trained to extract high-level features 
to semantically initialize the graph nodes. As the deep features extracted by DSSN are not 
sufficient for semantic segmentation, we adopt GCN to make full use of detailed infor-
mation such as the spatial relationship modeled by a region adjacency graph, where re-
gions obtained by the unsupervised superpixel segmentation algorithm implemented on 
images denote the graph nodes and the spatial relationships between nodes represent 
graph edges. Considering that the contributions of different nodes in the neighborhood to 
the central node are different, the strength of spatial relationship is determined by the 
spectral similarity and the spatial location. Then the GCN uses the features and the spatial 
relationships to classify the graph nodes. Moreover, in order to extract better features and 
improve the accuracy of semantic segmentation, the attention residual U-Net (At-
tResUNet) is proposed in this paper, which integrates residual blocks and attention mod-
ule in the U-shaped architecture with skip connections [19]. In AttResUNet, the residual 
blocks [53] help to extract features effectively from deep networks, and the attention 
mechanism [26] with spatial attention and channel attention is adopted to refines the fea-
ture maps automatically. Extensive experiments on the UC Merced Land-Use Dataset (the 
UCM dataset) [54] and the land cover classification dataset on DeepGlobe Challenge  (the 
DeepGlobe dataset) [55] show that our proposed approach outperforms the competitive 
baseline (i.e., the DSSN model), which demonstrates that the spatial relationship 
knowledge can boost the performance and robustness of the classifier. In addition, the 
results of segmentation show the object-level modeling helps to reduce pixel-level noises 
and restore the boundaries of objects [56,57]. The main contributions of this paper are 
twofold: 

(1) A DSSN-GCN framework is proposed to combine DSSN and GCN for RS image 
semantic segmentation, where the strength of spatial relationship is quantified by consid-
ering spectral and spatial information of ground objects. The spatial relationship 
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introduced by GCN boosts the performance and robustness of the classification module. 
In addition, we convert the pixel-level semantic segmentation into the superpixel-level 
node classification by graph modeling, which helps to reduce pixel-level noises and re-
store the boundaries of ground objects. 

(2) We propose a new DSSN (AttResUNet), which has U-shaped architecture using 
residual blocks to encode feature maps and attention module to refine the features. Ex-
periments on two publicly open datasets show that the DSSN-GCN when adopting At-
tResUNet achieves the best performance, which demonstrates the advance of our method. 

The remainder of this paper is organized as follows. The proposed method is de-
scribed in Section 2, including introduction of the proposed AttResUNet, feature extrac-
tion based on DSSN, graph construction and node classification via GCN. Section 3 pre-
sents the experiments and results. Finally, Sections 4 and 5 provide the discussion and the 
conclusion respectively. 

2. Materials and Methods 
In this section, the workflow of the DSSN-GCN framework is described at first. Then, 

the proposed AttResUNet will be introduced in detail and it is shown how to extract fea-
tures based on DSSN. The construction of graph model will be presented in the next. Fi-
nally, node classification via GCN is presented. 

The workflow of the proposed DSSN-GCN framework is visually shown in Figure 1. 
In the graph module, in order to make full use of the object-level spatial relationship and 
reduce the impact of pixel-level random noise, objects (or superpixels) segmented by the 
superpixel segmentation algorithm represent graph nodes. Topological spatial relation-
ships between the objects denote the connecting edges of the graph. In DSSN module, 
considering the powerful ability of feature extraction of DSSN, the DSSN is trained to 
extract the deep features to semantically initialize the intrinsic content of the graph nodes. 
In the GCN module, the GCN, which is good at modeling the irregular dependency rela-
tionship, converts the semantic segmentation task into the graph node classification task. 
With the help of the topological spatial relationships between objects and the deep fea-
tures with strong generalization, the GCN models the relationships between graph nodes 
and classifies all nodes.  
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Figure 1. The workflow of the proposed deep semantic segmentation network (DSSN)-graph convolutional neural net-
work (GCN) framework, including the DSSN module, the graph module and the GCN module. The whole process goes 
from top to bottom. First, the DSSN module extracts the deep features for the semantic initialization of the graph nodes. 
Then the graph module constructs the graph with ground objects and their spatial relationships. Finally, the GCN module 
combines the features and the spatial relationships in the graph to perform classification. 

2.1. The Proposed DSSN: AttResUNet 
The proposed DSSN is shown in Figure 2. It consists of three parts: the U-shaped 

architecture with skip connections, the encoder based on residual blocks and the attention 
module, which is composed of spatial attention and channel attention in parallel. The at-
tention module is placed after each block of AttResUNet to refine the extracted features.  
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Figure 2. The architecture of AttResUNet. The proposed DSSN (a) has U-shaped architecture using residual blocks (b) to 
encode feature maps and attention module (c) to refine the features. 

In order to get a good result of semantic segmentation, it is very important to take 
low-level details into consideration, while retaining high-level semantic information. Es-
pecially for RS image, it contains richer detail information than natural images. The U-
shaped architecture with skip connections strengthens the feature maps by combining 
low-level detail information from the encoder and high-level semantic information from 
the decoder, which allows DSSN to use these two kinds of information in segmentation. 
In general, the deeper network would get the better features. However, it could hamper 
the training because of gradient vanishing. He et al. [53] solved this problem by residual 
neural network (ResNet) that consists of a series of stacked residual blocks, as shown in 
Figure 2b, which allowed high-level gradients to be directly backpropagated through 
short connections to facilitate training to learn better features. The following formulas de-
scribe the residual block in detail. 

𝒚𝒚𝑙𝑙 = ℎ(𝒙𝒙𝒍𝒍) + ℱ(𝒙𝒙𝑙𝑙 ,𝑊𝑊𝑙𝑙) (1) 
𝒙𝒙𝑙𝑙+1 = 𝑓𝑓(𝒚𝒚𝑙𝑙) (2) 

where 𝒙𝒙𝒍𝒍  and 𝒙𝒙𝑙𝑙+1  respectively represent the input and output of the 𝑙𝑙 -th residual 
block. Each residual block generally contains a multilayer structure. ℱ(∙) is the residual 
function, which generates the residual by using layer weights 𝑊𝑊𝑙𝑙, the identity mapping 
function ℎ(∙) is usually used as  𝒙𝒙 = ℎ(𝒙𝒙) and 𝑓𝑓(∙) is the rectified linear unit (ReLU) ac-
tivation function. 

In RS images, there are abundant ground objects and the extremely complex spatial 
distribution. It is important to automatically select regions of interest according to the task. 
In order to select and refine the features, the attention module with channel attention and 
spatial attention in [26] is applied to AttResUNet. Like the human visual system, the at-
tention module can enhance meaningful features and suppress useless features, which is 
achieved by adjusting the weights of corresponding features. In the attention module 
shown in Figure 2c, spatial attention and channel attention are parallel. Features 
(C × H × W) from convolution layers are used as input. The spatial attention performs a 
1 × 1 × 1 convolution and a sigmoid activation on the input feature to learn the spatial 
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attention map (1 × H × W), which represents the importance of different spatial posi-
tions, then multiply the input with the spatial attention map to strengthen the expression 
of spatial semantic information. In the channel attention, the global average pooling is 
performed on the input feature at first. Then, there are two 1 × 1 × 1 convolution and a 
sigmoid activation to calculate the channel attention mask (C × 1 × 1). Finally, channel-
wise multiplication is applied between the input feature and the mask to weight each 
channel according to its usefulness. At the end of the attention module, the outputs from 
spatial attention and channel attention are added together to fuse the channel information 
and the spatial information for semantic segmentation. 

2.2. Feature Extraction Based on DSSN 
In general, DSSN consists of an encoder and a decoder. The encoder extracts feature 

by convolutional layers and pooling layers. The decoder restores the feature maps to orig-
inal image size with upsampling. After decoding, the results of segmentation are gener-
ated from input data. 

𝑝𝑝𝑐𝑐 = 𝜑𝜑 ⋅ 𝜙𝜙(𝑿𝑿0,𝜃𝜃), 𝑐𝑐 = 1,2, … ,𝑛𝑛 (3) 
𝒀𝒀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝𝑐𝑐) (4) 

where both input data 𝑿𝑿0 ∈ ℝ𝑤𝑤×ℎ×𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑙𝑙 and output data 𝒀𝒀 ∈ ℝ𝑤𝑤×ℎ have a width of 𝑤𝑤 
and height of ℎ. 𝜙𝜙 is the encoder and 𝜑𝜑 is the decoder. 

The probability of results belonging to class 𝑐𝑐 is 𝑝𝑝𝑐𝑐, and the total number of classes 
is n. In the back propagation, the neural network reduces the training loss by continuously 
adjusting the learnable parameters 𝜃𝜃 to optimize the results. The cross-entropy loss func-
tion ℒ is often used for the semantic segmentation task, as the following: 

ℒ = −���𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐 𝑙𝑙𝑙𝑙𝑎𝑎 (𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐 )
𝑎𝑎

𝑐𝑐=1

ℎ

𝑖𝑖=1

𝑤𝑤

𝑖𝑖=1

 (5) 

for pixel (𝑖𝑖, 𝑗𝑗), prediction from the forward propagation of network is 𝑌𝑌𝑖𝑖𝑖𝑖 ∈ 𝒀𝒀, if 
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑐𝑐, then 𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐 = 1, otherwise, 𝑦𝑦𝑖𝑖𝑖𝑖𝑐𝑐 = 0. 

After the supervised training, the DSSN has learned how to extract features that are 
effective to semantic segmentation. Obviously, features can be extracted from the encoder 
or decoder. Although the feature from the encoder is highly abstract, its size is small and 
details such as the spatial relationship are lost after convolution and pooling. The highly 
abstract feature is helpful to a one-hot task such as image classification, but is not suitable 
for semantic segmentation. On the contrary, the decoder recovers the original size of fea-
tures and restores some details by upsampling. Therefore, we chose the features extracted 
by the decoder to initialize the graph. 

2.3. Graph Construction 
The objects and the relationships constitute an unstructured graph. The graph is rep-

resented by a tuple 𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝ℎ = (𝑽𝑽,𝑬𝑬), where 𝑽𝑽 is the set of graph nodes and 𝑬𝑬 is the set of 
edges representing the connection between nodes. If 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝑬𝑬, node 𝑣𝑣𝑖𝑖 connects to node 
𝑣𝑣𝑖𝑖 with edge 𝑒𝑒𝑖𝑖𝑖𝑖. In the RS image, 𝑽𝑽 is a set of ground objects and 𝐸𝐸 represents the re-
lationships between the objects. In order to construct the graph, as depicted in Figure 3, 
superpixels segmented by the unsupervised segmentation algorithm are used as graph 
nodes. Each superpixel is composed of a set of adjacent pixels with consistent character-
istics. In addition, the first-order adjacency relationship (with common edge) between su-
perpixels is regarded as graph edge to take the topological spatial relationship into con-
sideration. 

𝑽𝑽 = {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑘𝑘|𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑆𝑆(𝑿𝑿0), 1 ≤ 𝑖𝑖 < 𝐾𝐾} (6) 
where 𝑿𝑿0 is the input image and 𝑆𝑆𝑖𝑖 denotes the 𝑖𝑖 − 𝑆𝑆ℎ superpixel. 𝐾𝐾 is the total num-
ber of superpixels or nodes. 

In the region of superpixel corresponding to node 𝑣𝑣𝑖𝑖, the average value of each chan-
nel of the deep features extracted by DSSN is taken as the node feature vector 𝒙𝒙𝑖𝑖𝐺𝐺 ∈ 𝑿𝑿𝐺𝐺. 



Remote Sens. 2021, 13, 119 8 of 24 
 

 

The feature vector of the graph is 𝑿𝑿𝐺𝐺 = [𝒙𝒙1𝐺𝐺 ,𝒙𝒙2𝐺𝐺 , … ,𝒙𝒙𝐾𝐾𝐺𝐺 ]𝑇𝑇 ∈ ℝ𝐾𝐾×𝐷𝐷, where 𝐷𝐷 is the dimen-
sion of the feature vector of the graph node. 

For each node, we need to figure out which category it belongs to. It is easy to know 
the class of each pixel from the label image. In general, a homogeneous region, such as a 
superpixel, can be represented by its main characteristics, so it makes sense to specify the 
majority class as category for the region. Specifically, we counted the class of all pixels in 
each node and assigned the category that contains the maximum number of pixels with 
the same class as the label of the node. 

 
Figure 3. A toy example about the graph construction process. After the unsupervised superpixel segmentation, the re-
mote sensing (RS) image (a) consisted of superpixels (b), which are regarded as graph nodes (c). Additionally, the first-
order adjacency relationship (with common edge) between superpixels denotes graph edge (c). 

The spatial adjacency relationships between the graph nodes are denoted by the ad-
jacency matrix 𝑨𝑨 ∈ ℝ𝑁𝑁×𝑁𝑁 . Considering that the contributions of different nodes in the 
neighborhood to the central node are different, the strength of spatial relationship be-
tween them is determined by the spectral similarity and the spatial location. If node 𝑣𝑣𝑖𝑖 is 
adjacent to node 𝑣𝑣𝑖𝑖, the connecting edge between them has a weight 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 𝑨𝑨. To quanti-
tatively express the strength of spatial relationship between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖, we set that the 𝑎𝑎𝑖𝑖𝑖𝑖 
is larger if the greater the spectral similarity between the two nodes. 

�
𝑎𝑎𝑖𝑖𝑖𝑖 = 0,            if 𝑣𝑣𝑖𝑖 is not adjacent to 𝑣𝑣𝑖𝑖  

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑎𝑎 𝑝𝑝 �−
∥ 𝑙𝑙𝑎𝑎𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑎𝑎𝑙𝑙𝑖𝑖 ∥

𝜎𝜎𝑤𝑤2
� , if 𝑣𝑣𝑖𝑖 is adjacent to 𝑣𝑣𝑖𝑖  

 (7) 

where 𝑙𝑙𝑎𝑎𝑙𝑙 denotes the average color value of the node in the LAB color space of the Com-
mission International Eclairage (CIELAB) and 𝜎𝜎𝑤𝑤2  controls the range of weight. 

2.4. Node Classification via GCN 
We adopted GCN, denoted as 𝑎𝑎(𝑿𝑿,𝑨𝑨), to get the classification 𝒁𝒁 of the graph nodes. 

Same as CNN, GCN extracts features on graph structure data by convolution, which is 
called graph convolution. As shown in Figure 4, graph convolution consists of three steps. 
In the first step, each node sends its characteristic information to neighboring nodes. This 
step is to extract the characteristic information of the node. Every node collects the char-
acteristic information from neighboring nodes and fuses the local structure and the char-
acteristic information in the second step. In the third step, gather the previous information 
and then performs a nonlinear transformation to increase the expressive ability of the 
model. 
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Figure 4. Visual example of the three steps in the graph convolution of GCN: information broad-
casting, information collection and information aggregation. For example, node 𝑣𝑣1 broadcasts its 
feature to its neighboring nodes 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4 and 𝑣𝑣5 at first. Second, node 𝑣𝑣2 collects features from 
node 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4 and 𝑣𝑣5. Third, aggregate information by gathering and activating nonlinearly the 
fusion features. 

Graph convolution aggregates the information of node from its neighbor nodes to 
generate a new representation. Therefore, using graph convolution on ground objects is 
useful for aggregating spatial information, which means that it is necessary to take matrix 
𝑨𝑨 representing the relationships between nodes into consideration when calculating the 
features 𝑯𝑯 of each layer of GCN. 

𝒁𝒁 = 𝑎𝑎(𝑯𝑯,𝑨𝑨) (8) 

𝑯𝑯(𝑙𝑙+1) = 𝜎𝜎� 𝑳𝑳𝐺𝐺𝑯𝑯(𝑙𝑙)𝑾𝑾(𝑙𝑙)�,𝑳𝑳𝐺𝐺 = 𝑫𝑫�− 12𝑨𝑨�𝑫𝑫�− 12 (9) 
where 𝐻𝐻(𝑙𝑙) is the feature of layer 𝑙𝑙 of GCN, for the input layer 𝑯𝑯(0) = 𝑿𝑿𝑮𝑮. 𝜎𝜎, 𝑾𝑾 and 𝑳𝑳𝐺𝐺 
are the nonlinear activation function, the learnable parameter matrix and the Laplacian 
matrix respectively. 𝑨𝑨� = 𝑨𝑨 + 𝑰𝑰, where 𝑰𝑰 is the identity matrix. 𝑫𝑫�  is the degree matrix of 
𝑨𝑨�. 

In the training process, GCN adjusts 𝑾𝑾 by continuously reducing loss, thereby op-
timizing the output, as shown: 

ℒ = �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎(𝑿𝑿𝑖𝑖𝐺𝐺 ,𝑨𝑨),𝑇𝑇𝑖𝑖)
𝑎𝑎

𝑖𝑖=1

 (10) 

where 𝑇𝑇𝑖𝑖 is the ground truth of training sample 𝑖𝑖 and the number of samples is 𝑛𝑛. ℒ is 
the loss function, such as the cross entropy loss function. 

When finishing training, the GCN combines features 𝑿𝑿𝐺𝐺 and adjacent matrix 𝑨𝑨 to 
classify the graph nodes. As the nodes are from superpixels, each node corresponds to a 
region on the image. The class of all pixels in the region is the same as the category of the 
corresponding node, thereby the entire semantic segmentation of the image is completed. 

In general, the process of our DSSN-GCN framework is composed of three steps 
above including feature extraction based on DSSN, graph construction and node classifi-
cation via GCN, which is in brief captured in Algorithm 1. 
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Algorithm 1. Combining DSSN and GCN for Semantic Segmentation of Remote Sensing 
Imagery 
Input: the remote sensing image dataset 𝑫𝑫𝑇𝑇; the number of superpixels 𝑘𝑘. 
1. Train DSSN with samples from 𝑫𝑫𝑇𝑇. 
2. Use the DSSN to extract high-level features 𝑿𝑿𝑓𝑓 = {𝑎𝑎1, 𝑎𝑎2,∙∙∙, 𝑎𝑎𝐷𝐷}. 
3. Construct the graph nodes 𝑽𝑽. Regions segmented by the unsupervised segmenta-
tion algorithm are used as graph nodes 𝑽𝑽 = {𝑣𝑣1,𝑣𝑣2,∙∙∙, 𝑣𝑣𝑘𝑘}. Use features 𝑿𝑿𝑓𝑓 to semanti-
cally initialize the intrinsic content of the graph nodes, represented as 𝑿𝑿𝐺𝐺 =
[𝒙𝒙1𝐺𝐺 ,𝒙𝒙2𝐺𝐺 , … ,𝒙𝒙𝐾𝐾𝐺𝐺 ]𝑇𝑇 ∈ ℝ𝐾𝐾×𝐷𝐷. 
4. Construct the graph edges 𝑬𝑬. Take the first-order adjacency relationships (with 
common edge) between the graph nodes as the graph edges and calculate the strength of 
the edges. 
5. After the training of the GCN, adopt the GCN to perform classification on the 
graph nodes. 
6. Get the maps of semantic segmentation. Assign the category of each node to the 
pixels located in the node. 
Output: the maps of semantic segmentation. 

3. Experiments 
In this section, the data description and details of experimental settings were intro-

duced at first. The experimental results and analysis were given after that. 

3.1. Datasets and Evaluation Metrics 
To test our method, experiments were performed on the UCM dataset [54] and the 

DeepGlobe dataset [56]. 
As visually illustrated in Figure 5, the UCM dataset that contains 2100 aerial images 

with 0.3 m spatial resolution and 256 × 256-pixel size was labeled into 17 categories for 
semantic segmentation on DLRSD dataset [54]. In order to reduce the similarity between 
the classes [43], we merged the 17 classes into 8 classes, which are vegetation (trees and 
grass), ground (bare soil, sand and chaparral), pavement (pavement and dock), building 
(building, mobile home and tank), water (water and sea), airplane (airplane), car (car) and 
ship (ship), and removes images containing a field or tennis court. Each category is a com-
bination of the original categories in the parentheses. These filtered images are randomly 
divided into the training set, validation set and test set, each with 1513, 189 and 190 im-
ages, with the proportions of 80%, 10% and 10% respectively. The class distribution for 
UCM dataset can be seen in Table 1. The four categories of vegetation, pavement, ground 
and building account for the first, the second, the third and the fourth place respectively. 
The proportion of top four categories was more than 85% and the proportion of airplane 
was the least (less than 0.5%). 



Remote Sens. 2021, 13, 119 11 of 24 
 

 

 
Figure 5. Raw images and ground truth masks of the UCM dataset. 

Table 1. The class distribution for the UCM dataset (%). 

UCM Vegetation Pavement Ground Building Water Car Ship Airplane 
all 28.59 27.38 17.63 13.65 7.87 2.88 1.62 0.36 

train 29.23 27.17 17.37 13.58 7.84 2.84 1.61 0.35 
validation 25.65 30.62 16.71 13.38 8.61 2.63 1.80 0.60 

test 26.43 25.77 20.66 14.51 7.39 3.47 1.55 0.21 

The DeepGlobe dataset [55], as shown in Figure 6 provides 1146 submeter high-res-
olution images with a size of 2448 × 2448. Seven categories are manually labeled, namely 
urban, agriculture, rangeland, forest, water, barren and unknown. As shown in Table 2, 
there is a large imbalance in the dataset that the area of agriculture is more than 50% and 
the share of urban and forest are 10.93% and 9.98% respectively. Moreover, the proportion 
of unknown is close to 0% meaning few pixels of unknown in the ground truth masks. 
The entire dataset was divided into the training set, validation set and test set, containing 
803, 171 and 172 images respectively. Images with a size of 256 × 256 are uniformly 
cropped from every raw image. These cropped images were randomly divided into the 
training set, validation set and test set, each with 10,272, 1280 and 1296 images, with the 
proportions of 80%, 10% and 10% respectively. 

Table 2. The class distribution for the DeepGlobe dataset (%). 

DeepGlobe Agriculture Urban Forest Rangeland Barren Water Unknown 
all 57.88 10.80 11.11 8.41 8.43 3.33 0.05 

train 58.42 10.93 9.98 8.51 8.80 3.31 0.06 
validation 56.16 7.50 19.27 7.78 5.04 4.23 0.01 

test 55.29 13.05 11.99 8.26 8.82 2.59 0.01 
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Figure 6. Raw images and ground truth masks of the DeepGlobe dataset. 

In this paper, the overall accuracy (OA), the intersection over union (IoU) and the 
frequency weighted intersection over union (FWIoU) are adopted as the evaluation met-
rics [58]. 

𝑂𝑂𝑂𝑂 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇) (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)⁄  (11) 

𝐼𝐼𝑙𝑙𝐼𝐼𝑖𝑖 =  
𝑇𝑇𝑇𝑇𝑖𝑖

𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝑇𝑇𝑖𝑖 + 𝐹𝐹𝑇𝑇𝑖𝑖
 , 𝑖𝑖 = 1,2, … ,𝑛𝑛 (12) 

𝐹𝐹𝑊𝑊𝐼𝐼𝑙𝑙𝐼𝐼 =  �(𝐼𝐼𝑙𝑙𝐼𝐼𝑖𝑖 ∙
𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝑇𝑇𝑖𝑖

𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝑇𝑇𝑖𝑖+𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝑇𝑇𝑖𝑖
)

𝑎𝑎

1

 (13) 

where 𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇 and 𝐹𝐹𝑇𝑇 are the number of true positive points, true negative points, 
false positive points and false negative points respectively. 𝑛𝑛 is the number of classes. 

3.2. Implementation Details 
In this paper, we used three representative backbones and a proposed network as 

DSSN for feature extraction: U-Net [19], SegNet [20], DeepLab V3+ [25] and the proposed 
AttResUNet. On this basis, four neural networks are proposed: DSSN-GCN V1 with U-
Net, DSSN-GCN V2 with SegNet, DSSN-GCN V3 with DeepLab V3+ and DSSN-GCN V4 
with AttResUNet. For U-Net and SegNet, they are widely used as the baseline model for 
RS image semantic segmentation. The DeepLab V3+ network is a new method, which has 
achieved the state-of-the-art semantic segmentation results on the natural image. The net-
work structure of AttResUNet is shown in Table 3. We adopted the residual block1-4 from 
ResNet-101 [53] pretrained on ImageNet dataset as the encoder. The decoder uses 3 × 3 
convolutions and 4×4 transposed convolutions to recover the original input size. For the 
training of DSSN, the stochastic gradient descent method (SGD) and the cross entropy 
were adopted as the optimizer and the loss function respectively. 

The simple linear iterative cluster (SLIC) [59] was used to segment images to get the 
ground objects (or superpixels). Features of each object were from the mean values of the 
feature maps of the upsampling layer within the corresponding region of the object. We 
adopted the feature maps from layers of the DSSN networks above: feature map for 
DSSN-GCN V1, DSSN-GCN V2, DSSN-GCN V3 and DSSN-GCN V4 were all obtained 
from the last layer of its DSSN. To initialize the graph, the features of the objects were 
used as the features of the graph nodes in GCN [47]. The SGD optimizer and the cross-
entropy loss function were used for the training of the GCN. With these settings, extensive 
experiments including sensitivity analysis were performed to choose the best critical pa-
rameters and examine the effectiveness of the proposed DSSN-GCN model. All the exper-
iments were conducted on the Pytorch framework with NVIDIA 1080Ti GPU. 
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Table 3. The network structure of AttResUNet. 

 Layers Ouput Size 
Input input H×W×3 

InputConv 
conv 7 × 7, stride 2 H/2 × W/2 × 64 
attention module H/2 × W/2 × 64 

maxpool 3 × 3, stride 2 H/4 × W/4 × 64 

Encoder1 
ResBlock1 H/4 × W/4 × 256 

attention module H/4 × W/4 × 256 

Encoder2 
ResBlock2 H/8 × W/8 × 512 

attention module H/8 × W/8 × 512 

Encoder3 
ResBlock3 H/16 × W/16 × 1024 

attention module H/16 × W/16 × 1024 

Encoder4 
ResBlock4 H/32 × W/32 × 2048 

attention module H/32 × W/32 × 2048 

Bridge 
conv 3 × 3, stride 1 H/32 × W/32 × 192 
attention module H/32 × W/32 × 192 

Decoder1 

deconv 4 × 4, stride 2 H/16 × W/16 × 128 
concatenation H/16 × W/16 × (1024 + 128) 

conv 3 × 3, stride 1 H/16 × W/16 × 128 
attention module H/16 × W/16 × 128 

Decoder2 

deconv 4 × 4, stride 2 H/8 × W/8 × 96 
concatenation H/8 × W/8 × (512 + 96) 

conv 3 × 3, stride 1 H/8 × W/8 × 96 
attention module H/8 × W/8 × 96 

Decoder3 

deconv 4 × 4, stride 2 H/4 × W/4 × 64 
concatenation H/4 × W/4 × (256 + 64) 

conv 3 × 3, stride 1 H/4 × W/4 × 64 
attention module H/4 × W/4 × 64 

Decoder4 
deconv 4 × 4, stride 2 H/2 × W/2 × 48 

conv 3 × 3, stride 1 H/2 × W/2 × 48 
attention module H/2 × W/2 × 48 

Decoder5 

deconv 4 × 4, stride 2 H × W × 32 
conv 3 × 3, stride 1 H × W × 32 
conv 1 × 1, stride 1 H × W × C 
attention module H × W × C 

Output output H × W 

3.3. Sensitivity Analysis of Critical Parameters 
Hyperparameters in our proposed method mainly included the number of superpix-

els 𝑘𝑘, the similarity factor 𝜎𝜎𝑤𝑤2  and the number of GCN layers 𝑙𝑙. 𝑘𝑘 determines the num-
ber of ground objects (or superpixels) in the graph. 𝜎𝜎𝑤𝑤2  controls the range of value of ad-
jacent matrix in the graph. 𝑙𝑙 is the number of layers of GCN, which represents the depth 
of the network. 

As the representation of the ground object on the image, the superpixel, which retains 
the boundary of the ground object, is composed of a set of pixels with similar characteris-
tics such as color, brightness, texture, etc. Therefore, converting the pixel-by-pixel classi-
fication to the object-based node classification can not only reduce the time consumption 
of classification, but also reduce noises and restore the boundary of the ground objects to 
a certain degree. The number of superpixels in an image determines the size of each su-
perpixel. The smaller 𝑘𝑘, the larger the area corresponding to one superpixel. If the super-
pixel is too small, the characteristic information will be insufficient, on the contrary, de-
tails would be lost. In (a) and (b) of Figure 7, it shows that the best 𝑘𝑘 for the UCM dataset 
and the DeepGlobe dataset were both 700 respectively. 
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Figure 7. Sensitivity analysis of the number of superpixels 𝑘𝑘 tested on the validation dataset. (a) and (b) present the 
change trend of OA and FWIoU with 𝑘𝑘, respectively. 

The adjacency matrix in the graph depicts the spatial relationship between nodes. 
The matrix values reflect the strength of the relationship and its distribution is controlled 
by the similarity factor 𝜎𝜎𝑤𝑤2 . (a) and (b) of Figure 8 illustrate the accuracy of segmentation 
in different 𝜎𝜎𝑤𝑤. With the increase of the similarity factor, both OA and FWIoU rose at first 
and then decreased. When 𝜎𝜎𝑤𝑤2 = 2 on the UCM dataset and 𝜎𝜎𝑤𝑤2 = 3 on the DeepGlobe 
dataset, the best performance was obtained. 

 
Figure 8. Sensitivity analysis of the similarity factor 𝜎𝜎𝑤𝑤2  tested on the validation dataset. (a) and (b) present the change 
trend of OA and FWIoU with 𝜎𝜎𝑤𝑤2 , respectively. 

The number of layers was positively correlated with the complexity of the neural 
network. In general, the deeper the model structure, the better the fitting effect. However, 
due to the gradient vanishing, GCN was usually limited to shallow layers (𝑙𝑙 = 2– 4) [50]. 
In view of this problem, we tested our DSSN-GCN model with 1–5 layers of GCN. In 
Figure 9a,b, as the layers of GCN increased, OA and FWIoU both increased up to the max-
imum. The accuracy of segmentation reached the best value when 𝑙𝑙 = 2 on the UCM da-
taset and when 𝑙𝑙 = 4 on the DeepGlobe dataset. Additionally, it is worth noting that OA 
and FWIoU were both poor when GCN had only one layer, because the layer of GCN was 
too shallow to learn better feature expression. 
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Figure 9. Sensitivity analysis of the number of GCN layers 𝑙𝑙 tested on the validation dataset. (a) and (b) present the 
change trend of OA and FWIoU with 𝑙𝑙, respectively. 

3.4. Comparison With the State-of-the-Art Method 
In order to evaluate the performance of our proposed DSSN-GCN model, experi-

ments were conducted on the UCM dataset and the DeepGlobe dataset. In the experi-
ments, we tested four DSSN-GCN networks, which were DSSN-GCN V1 based on U-Net, 
DSSN-GCN V2 based on SegNet, DSSN-GCN V3 based on DeepLab v3+ and DSSN-GCN 
V4 based on the proposed AttResUNet, respectively. 

3.4.1. Results on the UCM Dataset 
The overall accuracy of semantic segmentation on the UCM dataset is shown in the 

last column of Tables 4 and 5. The OA/ FWIoU increased by 1.99%/2.94% for DSSN-GCN 
V1 compared to the U-Net, the OA/FWIoU rose by 0.89%/1.23% for DSSN-GCN V2 com-
pared to the SegNet, the OA/FWIoU increased by 0.68%/0.84% for DSSN-GCN V3 com-
pared to the DeepLab V3+ and DSSN-GCN V4 improved the OA/FWIoU by 0.69%/1%. 
Each DSSN-GCN outperformed its DSSN, which proved the effectiveness of the integra-
tion of DSSN and GCN in DSSN-GCN framework. Moreover, Tables 4 and 5 shows that 
the proposed AttResUNet was better than all reference methods and DSSN-GCN V4 
achieved the best semantic segmentation results, which demonstrated the advance of our 
AttResUNet. 

Tables 4 and 5 reported respectively the OA and the IoU of semantic segmentation 
of each category on the UCM dataset. Due to the class imbalance, the main categories 
including vegetation, ground, pavement and building were more than 85% (Table 1) in 
the dataset. Considering the top four categories, it can be seen that DSSN-GCN V1 im-
proved the OA/IoU of vegetation, ground and building by 3.01%/1.13%, 7.63%/2.89% and 
6.75%/6.07% respectively compared with the U-Net, DSSN-GCN V2 rose the OA/IoU of 
vegetation, pavement and building by 2.09%/0.85%, 0.87%/1.16% and 4.04%/2.22% respec-
tively on the basis of the SegNet and DSSN-GCN V3 achieved an improvement in the 
OA/IoU of vegetation, ground and pavement by 2.17%/0.99%, 1.02%/0.47% and 
4.48%/1.1% respectively compared to DeepLab v3+, and DSSN-GCN V4 improved the 
OA/IoU of the main categories by 0.9%/1.05%, 1.44%/1.31%, 1.64%/0.76% and 0.04%/2.22% 
respectively. As shown in Table 5, the IoUs of the top five classes (top four categories and 
water) of our proposed DSSN-GCN models (including V1, V2, V3 and V4) were higher 
than that of backbones (including U-Net, SegNet, DeepLab V3+ and AttResUNet) by 1–
6%. However, the IoUs of airplane exceeded that of DSSN-GCN models. Though the air-
plane made up a quite low share (0.36%) of the UCM dataset, the IoU of airplane still 
contributed 1/8 (eight categories in the UCM dataset) to the MIoU. Therefore, it is 
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reasonable to adopt the FWIoU metric to evaluate semantic segmentation methods under 
the circumstance of the class imbalance. 

Table 4. The overall accuracy (OA) (%) of semantic segmentation on the UCM dataset. 

Model Vegetation Ground Pavement Building Water Car Ship Airplane Overall 
(OA) 

U-Net 81.21 73.13 90.03 65.10 89.58 72.61 87.52 0 79.72 
DSSN-GCN v1 84.22 80.76 85.69 71.85 89.16 69.79 80.25 0 81.71 

SegNet 81.35 77.34 83.31 75.97 87.94 70.74 85.45 10.00 80.28 
DSSN-GCN v2 83.44 76.52 84.18 80.01 88.16 63.99 82.02 0 81.17 
DeepLab v3+ 80.13 77.85 80.97 86.05 87.07 75.63 93.73 57.27 81.25 

DSSN-GCN v3 82.30 78.87 85.45 80.78 86.18 68.35 91.02 0 81.94 
AttResUNet 85.77 75.62 86.44 86.76 92.30 82.04 87.60 58.43 84.31 

DSSN-GCN V4 86.67 77.06 88.08 86.80 93.57 75.72 81.29 33.78 85.00 

Table 5. The intersection over union (IoU) (%) of semantic segmentation on the UCM dataset. 

Model Vegetation Ground Pavement Building Water Car Ship Airplane Overall 
(FWIoU) 

U-Net 70.20 61.14 68.71 56.73 79.65 62.02 68.45 0 66.23 
DSSN-GCN v1 71.33 64.03 73.08 62.80 81.32 59.65 68.29 0 69.17 

SegNet 68.47 65.14 69.16 60.31 80.60 59.82 63.95 9.62 67.18 
DSSN-GCN v2 69.32 66.17 70.77 62.53 81.84 58.45 66.05 0 68.41 
DeepLab v3+ 68.34 65.17 71.77 65.54 81.93 61.54 58.14 37.62 68.71 

DSSN-GCN v3 69.33 65.64 72.87 67.21 82.25 61.25 59.67 0 69.55 
AttResUNet 72.42 65.72 77.11 71.02 86.01 70.67 76.09 49.53 72.99 

DSSN-GCN V4 73.47 67.03 77.87 73.24 87.36 68.18 72.87 33.07 73.99 

To compare results of all models above, we visualized the results of the proposed 
DSSN-GCN models and other referenced methods. In Figure 10, we could see the results 
of U-Net, DSSN-GCN V1, SegNet, DSSN-GCN V2, DeepLab V3+, DSSN-GCN V3, the pro-
posed AttResUNet and AttResUNet-GCN (DSSN-GCN V4) from (c) to (j). It presents that 
segmentation of our DSSN-GCN model was more accurate and consistent compared to its 
backbone network, shown in (d) to (c), (f) to (e), (h) to (g) and (j) to (i), which explained 
the effectiveness of the proposed DSSN-GCN model to improve the results of semantic 
segmentation. AttResUNet-GCN with the best FWIoU (73.99%) achieved the best results 
and results of AttResUNet were better than that of other backbones, which demonstrated 
the advance of the proposed AttResUNet. In addition, the results of DSSN-GCN models 
were less noisy and possessed more accurate boundaries, especially in building, car and 
pavement. 
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Figure 10. The visible semantic segmentation of the UCM dataset. (a) and (b) are raw images and ground truth respec-
tively. (c) and (d) are the results of U-Net and the results of DSSN-GCN V1, respectively. The results of SegNet and the 
results of DSSN-GCN V2 are shown on (e) and (f), respectively. (g) and (h) present the results of DeepLab V3+ and the 
results of DSSN-GCN V3, respectively. The results of the proposed AttResUNet and AttResUNet-GCN (DSSN-GCN V4) 
are displayed on (i) and (j), respectively. 

3.4.2. Results on the DeepGlobe Dataset 
The last column of Tables 6 and 7 shows the overall accuracy of semantic segmenta-

tion on the DeepGlobe dataset. It shows the advance of our proposed DSSN that At-
tResUNet achieved the best performance compared to other DSSNs. The OA/FWIoU in-
creased by 2.09%/2.53% for DSSN-GCN V1 compared to the U-Net. DSSN-GCN V2 rose 
the OA/FWIoU by 0.54%/0.22% compared with the SegNet. DSSN-GCN V3 achieved im-
provement in the OA/FWIoU by 0.61%/0.73% on the basis of DeepLab V3+. Compared 
with AttResUNet, DSSN-GCN V4 improved the OA/IoU by 0.11%/0.17%. The OA/FWIoU 
of DSSN-GCN model were better than that of its backbone and the best OA/FWIoU were 
85.81%/76.30% from DSSN-GCN V4, which demonstrated the effectiveness of the DSSN-
GCN model.  

The OA and the IoU of semantic segmentation of each category on the DeepGlobe 
dataset are presented in Tables 6 and 7, respectively. There was a large class imbalance in 
the dataset that main categories including agriculture (58%), urban (11%) and forest (11%) 
were more than 80% (Table 2). Considering the top three categories, it could be seen that 
DSSN-GCNs had advantages in OA compared to the corresponding DSSNs. Furthermore, 
the IoUs of top four categories of DSSN-GCN were almost better than its backbone. In 
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addition, DSSN-GCN V1 increased in IoU of all categories, especially 13.76%/7.11% im-
provement in the OA/IoU of urban. However, in the next to last column of Tables 6 and 
7, all the OA/IoU of unknown were 0. This is because that the proportion of unknown in 
the dataset (counting for 0.05%) was too low to be learned and recognized by the classifier.  

Table 6. The OA (%) of semantic segmentation on the DeepGlobe dataset. 

Model Urban Agriculture Rangeland Forest Water Barren Unknown Overall (OA) 
U-Net 71.67 87.03 47.06 90.65 73.74 63.96 0 79.77 

DSSN-GCN v1 85.43 88.87 50.53 87.91 75.38 55.64 0 81.86 
SegNet 82.68 90.00 52.33 84.65 73.16 57.37 0 81.97 

DSSN-GCN v2 83.79 91.95 46.30 85.42 74.52 53.76 0 82.51 
DeepLab v3+ 88.67 89.21 55.39 90.09 77.48 70.18 0 84.46 

DSSN-GCN v3 86.63 92.03 55.66 86.81 76.12 66.98 0 85.07 
AttResUNet 84.56 91.37 56.35 89.64 81.71 75.16 0 85.70 

DSSN-GCN V4 84.60 91.16 56.61 89.95 82.09 76.90 0 85.81 

Table 7. The IoU (%) of semantic segmentation on the DeepGlobe dataset. 

Model Urban Agriculture Rangeland Forest Water Barren Unknown Overall 
(FWIoU) 

U-Net 65.61 80.65 28.02 69.39 59.08 41.67 0 68.99 
DSSN-GCN v1 72.72 81.91 29.49 74.16 59.41 43.94 0 71.52 

SegNet 72.57 81.76 29.89 75.53 61.64 44.66 0 71.74 
DSSN-GCN v2 73.34 82.15 28.74 75.94 62.69 43.86 0 71.96 
DeepLab v3+ 74.53 83.23 37.66 79.52 60.89 52.82 0 74.62 

DSSN-GCN v3 75.58 84.17 37.92 79.40 61.67 53.28 0 75.35 
AttResUNet 75.32 84.71 38.69 79.18 69.53 58.34 0 76.30 

DSSN-GCN V4 75.60 84.77 39.09 79.29 69.48 58.95 0 76.47 

The visible semantic segmentation of the DeepGlobe dataset was presented to quali-
tatively verify the conclusions of the paragraph above. It can be seen in Figure 11 that the 
results from (c) to (j) were the segmentation maps of the results of U-Net, DSSN-GCN V1, 
SegNet, DSSN-GCN V2, DeepLab V3+, DSSN-GCN V3, the proposed AttResUNet and 
AttResUNet-GCN (DSSN-GCN V4). It shows that our DSSN-GCN models achieved more 
accurate and consistent segmentation compared to its backbone network, shown in (d) to 
(c), (f) to (e), (h) to (g) and (j) to (i), which demonstrated that the proposed DSSN-GCN 
model was effective to improve the results of semantic segmentation. Moreover, the pro-
posed AttResUNet achieved better results than other backbones and AttResUNet-GCN 
with the best OA and FWIoU on this dataset got the best result.  
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Figure 11. The visible semantic segmentation of the DeepGlobe dataset. (a) and (b) are raw images and ground truth 
respectively. (c) and (d) are the results of U-Net and the results of DSSN-GCN V1, respectively. The results of SegNet and 
the results of DSSN-GCN V2 are shown on (e) and (f), respectively. (g) and (h) present the results of DeepLab V3+ and the 
results of DSSN-GCN V3, respectively. The results of the proposed AttResUNet and AttResUNet-GCN (DSSN-GCN V4) 
are displayed on (i) and (j), respectively. 

4. Discussion 
In this paper, we analyzed the sensitivity of critical parameters including the number 

of superpixels 𝑘𝑘, the similarity factor 𝜎𝜎𝑤𝑤2  and the number of GCN layers 𝑙𝑙, which have 
an important influence on the proposed DSSN-GCN model. In the model, 𝑘𝑘 determines 
the size and number of graph nodes, the value range of the strength of the spatial rela-
tionship was controlled by 𝜎𝜎𝑤𝑤2 , and 𝑙𝑙 reflects the expression ability of GCN. In order to 
build the graph in GCN, we constructed graph nodes through the superpixel segmenta-
tion and transformed pixel-level segmentation into node classification. The number of su-
perpixels should be selected carefully. Since if the superpixel is too small, the characteri-
zation information will be insufficient, on the contrary, details would be lost. According 
to the experimental results, the best 𝑘𝑘  of our model for the UCM dataset and the 
DeepGlobe dataset were both 700. However, it is urgent to improve the speed and the 
accuracy of the methods for node construction. In the graph, the relationships between 
nodes were also of importance, which constitute the path of information transmission in 
GCN. When constructing the connection edges between nodes, we comprehensively con-
sidered the spatial relationship (the first-order adjacency relationship) and the spectral 
information (values in the CIE LAB color space) to quantify the strength of spatial 
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relationships, and adopt the similarity factor 𝜎𝜎𝑤𝑤2  to control the value range of these edges. 
By doing that, the strength of spatial relationship between different nodes is of difference. 
Moreover, the number of layers is the key parameter of the neural network. Due to the 
problem of gradient vanishing, GCNs are limited to shallow layers. Although there are 
some works to construct deep GCNs [50], the classification accuracy still needs further 
improvement. In view of this problem, we tested the proposed DSSN-GCN model with 
1–5 layer GCN and got the best performance on the UCM dataset for 𝑙𝑙 = 2 and on the 
DeepGlobe dataset for 𝑙𝑙 = 4. 

In order to verify the effectiveness of our model, we designed four DSSN-GCN mod-
els based on different backbones including the proposed AttResUNet, the classic U-Net 
model, SegNet and DeepLab V3+, which is the state-of-the-art model in natural image 
semantic segmentation. The DSSN-GCN models (V1, V2, V3 and V4) and the contrast 
methods were applied to the experiments. We chose the metrics of OA and FWIoU to 
measure the results of semantic segmentation. Additionally, the FWIoU metric was 
adopted because it was widely used in semantic segmentation and more reasonable than 
MIoU under the circumstance of the class imbalance. The segmentation results on two 
datasets in Tables 4–7 present that the DSSN-GCN model outperformed its backbone and 
DSSN-GCN V4 achieved the best performance both on the two datasets, which proved 
the effectiveness of our DSSN-GCN model. Meanwhile, it shows the importance of the 
spatial relationship for high-precision semantic segmentation and the relationship mod-
eling ability of GCN. Moreover, there is a large improvement of the proposed AttResUNet 
compared to other advanced DSSNs, which shows the advance of our AttResUNet. The 
OA/IoU of AttResUNet for the small objects, such as car, ship and airplane in the UCM 
dataset, are increased significantly compared to U-Net. However, the performance of 
DSSN-GCN V4 on small objects such as car, ship and airplane is inferior to the proposed 
AttResUNet. This is because with the help of the residual blocks-based encoder and the 
attention model, AttResUNet can extract deep features with stronger expression and se-
lect regions of interest automatically, which is helpful for the segmentation of small ob-
jects. In addition, there were few samples for the training of GCN and some detailed in-
formation will be lost in object-level modeling of DSSN-GCN, which would bring a neg-
ative impact on the recognition of small objects. From Tables 1 and 2, the samples of air-
plane count for only 0.36% on the UCM dataset, which was the same as the unknown 
(0.05%) on the DeepGlobe dataset. These samples were too few to train DSSN to learn 
expression of the airplane, which caused all the OA and the IoU of the airplane to be quite 
low in Tables 4 and 5 and even all the OA and the IoU of the unknown to be 0% in Tables 
6 and 7. This phenomenon reflected that DSSN model was not good at extracting features 
of the minority classes and recognizing them when there were few samples of the minority 
classes for training. Additionally, this problem of DSSN further led to the bad perfor-
mance of DSSN-GCN on the minority categories.  

As shown in Figures 10 and 11, the segmentation results of the DSSN-GCN model 
were significantly better than its backbone both on two datasets. In addition, there were 
less noise in the results of DSSN-GCN because the object-based classification reduced 
noises. Moreover, since the superpixel was composed of a series of adjacent pixels with 
consistent characteristics, which retains the boundary of the object, the results of bounda-
ries of DSSN-GCN were more closely aligned with the real contours of the ground objects. 
As shown in the red circles of Figure 12, results of DSSN-GCN in (d) and (f) were better 
than that of (c) and (e), respectively, even the boundary in (d) and (f) fit the real boundary 
more closely than the ground truth (b), especially in buildings. 
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Figure 12. The results of segmentation. (a) Raw image, (b) ground truth, (c) results of U-Net, (d) results of DSSN-GCN V1, 
(e) results of the proposed AttResUNet and (f) results of AttResUNet-GCN (DSSN-GCN V4). 

5. Conclusions 
In order to introduce the spatial relationship information into RS image semantic seg-

mentation, this paper proposed the DSSN-GCN framework for semantic segmentation of 
the RS image via combining DSSN and GCN. To lift the appearance extraction ability, we 
also proposed a new DSSN (AttResUNet), which had U-shaped architecture using resid-
ual blocks to encode feature maps and an attention module to refine the features. In the 
framework, a graph was built, where graph nodes were denoted by the superpixels. Ad-
ditionally, the graph weight denoting the strength of spatial relationship was calculated 
by considering the spectral information and spatial information of the nodes. Then GCN 
combines graph node features extracted by DSSN and the graph weight to classify all the 
nodes, which converts the semantic segmentation into the node classification. On the basis 
of the DSSN-GCN framework, we designed four networks, namely DSSN-GCN V1, V2, 
V3 and V4. Extensive experiments performed on the UCM dataset and the DeepGlobe 
dataset show the effectiveness of the DSSN-GCN framework and the advance of the pro-
posed AttResUNet. In addition, the superpixel-level modeling through GCN helped to 
reduce pixel-level noises and restored the boundaries of ground objects. 

This paper presents that the spatial relationship information introduced by GCN en-
hanced the performance and robustness of classifier. The information of spatial relation-
ship is essential for high-precision and interpretable semantic segmentation. How to ef-
fectively use spatial relationship information and other prior knowledge and learn 
knowledge automatically to interpret RS images intelligently requires further research in 
the future. 
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