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Abstract: Downscaling microwave remotely sensed soil moisture (SM) is an effective way to obtain
spatial continuous SM with fine resolution for hydrological and agricultural applications on a regional
scale. Downscaling factors and functions are two basic components of SM downscaling where the
former is particularly important in the era of big data. Based on machine learning method, this
study evaluated Land Surface Temperature (LST), Land surface Evaporative Efficiency (LEE), and
geographical factors from Moderate Resolution Imaging Spectroradiometer (MODIS) products for
downscaling SMAP (Soil Moisture Active and Passive) SM products. This study spans from 2015
to the end of 2018 and locates in the central United States. Original SMAP SM and in-situ SM at
sparse networks and core validation sites were used as reference. Experiment results indicated
that (1) LEE presented comparative performance with LST as downscaling factors; (2) adding
geographical factors can significantly improve the performance of SM downscaling; (3) integrating
LST, LEE, and geographical factors got the best performance; (4) using Z-score normalization or
hyperbolic-tangent normalization methods did not change the above conclusions, neither did using
support vector regression nor feed forward neural network methods. This study demonstrates the
possibility of LEE as an alternative of LST for downscaling SM when there is no available LST due to
cloud contamination. It also provides experimental evidence for adding geographical factors in the
downscaling process.
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1. Introduction

Water in the soil, especially the capillary one, is the chief water that is available to
plants. Correspondingly, plants rely on water to facilitate photosynthesis, transfer nutri-
ents, stimulate germination, and complete transpiration. Therefore, soil moisture (SM)
is a critical factor that affects crop growth and food production [1]. Moreover, it is an
essential land state variable that controls several water-cycle fluxes such as evapotran-
spiration (ET), penetration, and runoff. Obtaining spatial continuous SM data with fine
spatiotemporal resolution has always been the demand in agricultural production [1],
drought monitoring [2–4], water resource management [5], and climate change [6].

Remote sensing is an advanced measurement technology which has become a signifi-
cant way to obtain spatially distributed SM from a regional to global scale [7–9]. Although
various remote sensing methods have been explored to retrieve SM, such as the methods
based on visible, near infrared, and thermal infrared bands, the microwave band-based
methods (especially the L-band) have been recognized as the most promising techniques
for global-scale monitoring [10]. That is because L-band microwave can penetrate clouds,
sparse vegetation, and even the skin surface of soil which presents great potential for
retrieving soil moisture over a much higher range of vegetation conditions [11]. However,
the SM retrieved by microwave band-based methods generally has coarse spatial resolution
at about a few tens of kilometers, which is not qualified to meet practical requirement
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for many hydrological and agricultural applications on a regional scale [12,13]. Thus,
downscaling microwave satellite SM with multi-source remote sensing data has become a
very meaningful research field [14].

Generally, there are two basic components in the algorithms of downscaling mi-
crowave satellite SM. They are downscaling factors and downscaling functions. The
downscaling factors provide the spatial variability of high-resolution SM within the coarse-
resolution SM. The downscaling functions determine the way of adding the spatial variabil-
ity to the coarse-resolution SM [15]. Currently, three categories of downscaling functions
exist in the study community i.e., physical model, parameterized model, and statistical
regression model. Disaggregation based on Physical And Theoretical scale Change (DIS-
PATCH) is a representative of the physical model [16,17]. Such a physical model generally
runs on the quantitative relationship between SM and Soil Evaporative Efficiency (SEE).
However, some parameters of the SM-SEE relationship are hard to be determined [17,18].
Besides, the real relationship between SM and SEE is very complex and the modeling
techniques are still evolving [19]. Through making some necessary assumptions, parame-
terized models were proposed to achieve a tradeoff between efficiency and accuracy. For
example, the relative ratio methods (UCLA) use a linear relationship to connect soil wetness
index (SW) with soil moisture. In simple terms, the ratio of high-resolution SM to high-
resolution SW is equal to the ratio of coarse-resolution SM to coarse-resolution SW [20].
Additionally, the change detection algorithm and its subsequent versions assume the SM
and co-polarized backscatter are linearly related [21]. Based on this assumption, high-
resolution SM can be expressed as the sum of coarse-resolution SM and spatial anomaly
of high-resolution SM [11]. Recently, a new downscaling model DSCALE_mod16 was
proposed. In this model, parameterized cosine expression of the relationship between
SM and Land surface Evaporative Efficiency (LEE) was employed [22]. Although the
parameterized models have been widely used, the key assumptions may have greater
uncertainties for certain cases. For instance, the linear relationship assumption between SM
and co-polarized backscatter may lose efficiency for high surface roughness and vegetation
coverage [23]. Entering the era of big data and Artificial Intelligence (AI), the complex
relationship between SM and various downscaling factors may be established by the sta-
tistical regression model [24]. Actually, the development of statistical regression has been
accompanied by advances in computer science. Initially, polynomial fitting such as binary
quadratic equation was used for downscaling SM [13,15,25]. Recently, being a subcategory
of AI, various machine learning (ML) algorithms were proposed for downscaling SM such
as General Regression Neural Network, Artificial Neural Network (ANN), Random Forest
(RF), and Support Vector Regression (SVR) [26–29]. Through the above researches, the
flexibility and capability of ML to deal with massive remote sensing data and nonlinear
problems in downscaling SM have been proved [26]. This context highlights the importance
of selecting proper downscaling factors in order to train the ML algorithms.

In classical optical/thermal and microwave fusion methods, Land Surface Tempera-
ture (LST) and Normalized Difference Vegetation Index (NDVI) were employed as down-
scaling factors with the understanding of the LST and Fractional Vegetation Coverage
or vegetation index feature space (LST/FVC space) [15]. However, the LST/FVC space
may lose efficiency in energy limited evapotranspiration regime [13]. Therefore, as the
representativeness of energy portion, the surface net incoming radiation (Rn) or surface
albedo is added as downscaling factors [13]. Furthermore, LST derived soil moisture
indicators (SMIs) are also utilized as downscaling factors such as Vegetation Tempera-
ture Condition Index (VTCI) or Temperature Vegetation Dryness Index (TVDI) [30,31]. It
has been recognized that the LST and LST-derived SMIs are vital to the optical/thermal
and microwave fusion methods for disaggregating microwave satellite SM. However, the
LST-related downscaling factors suffer the “cloud contamination,” “decomposing uncer-
tainty,” and “decoupling effect” problems, which often make no available LST data for
downscaling [22,26]. Recently, a new downscaling factor, i.e., Land surface Evaporative
Efficiency (LEE), has been introduced [22]. The LEE is defined as the ratio of actual ET or
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latent heat flux (LE) to potential ET (PET) or potential LE (PLE) which were both obtained
from the MODIS (Moderate Resolution Imaging Spectroradiometer) ET product (MOD16).
Since LST is not involved in the calculation of LEE, this new downscaling factor can thus
circumvent the above-mentioned three problems in LST or LST-related downscaling factors.
However, the performance of LEE as a downscaling factor has not been compared with
the LST critically. Can the LEE be taken as an alternative when there is no available LST
for downscaling SM? In addition, geographical factors, such as latitude, longitude, and
altitude have already been utilized in downscaling microwave SM [27,32,33]. However,
to our best knowledge, there are very few studies to demonstrate the necessity of adding
these geographical factors for downscaling SM.

In this context, this study aims to evaluate the LST, LEE, and geographical factors as
downscaling factors of microwave satellite SM based on ML methods. Specifically, the LEE
will be critically compared with the LST to demonstrate its rationality as an alternative
downscaling factor of LST. Moreover, the geographical factors will be evaluated through
adding or not adding them in the downscaling process. In view of that, ANN and SVR
have been successfully applied to downscale SMOS (Soil Moisture and Ocean Salinity) SM
with MODIS [26] and are easily implemented. The two ML methods were adopted in this
study. More details of the evaluation are described in the next section.

2. Methods

For simplicity, the following expression was used to show the downscaling function
of SM:

θ = f (α1, α2, α3 · · ·) (1)

where θ, is the remotely sensed SM, α1, α2, and α3 are various downscaling factors, f is the
downscaling function with particular parameters that constructed quantitative relationship
between SM and its various influences. Generally, the downscaling function is determined
by the original SM and various downscaling factors at coarse-resolution. Subsequently,
the created downscaling function is applied with high-resolution downscaling factors to
obtain high-resolution or downscaled SM.

As mentioned earlier, we focus on evaluating the downscaling factors. Therefore, the
easily implemented SVR method were utilized as the downscaling function. Moreover, the
downscaling function remained constant in the experiments of evaluating downscaling
factors. SVR has the same principle as SVM (Support Vector Machine), but the former is
for regression problems and the latter is for classification problems. The SVM tries to find
a hyperplane to separate linearly inseparable samples. Then the new point is classified
according to its position to the hyperplane. In contrast, the hyperplane is used to predict
the continuous output in SVR. In this study, the SVR was implemented with the help of
IDL Machine Learning Framework where all parameters of SVR were set to default values.
For example, the kernel of SVR was set to a radial kernel. The penalty parameter was set to
a default value of 100.0.

Seven groups of experiment were conducted whose downscaling factors are listed in
Table 1, according to the research purpose. It can be found that the downscaling factors
have varied numerical range. They should be normalized to the uniform data range in the
downscaling process. Here, the Z-score normalization was utilized:

α∗ =
α − µ

σ
(2)

where α and α∗ are original and normalized downscaling factor; µ and σ are the mean and
standard deviation of the α.
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Table 1. Seven groups of experiment conducted in this study where Albedo_WSA and Albedo_BSA
are white and black sky albedo, respectively. Lat and Lon are abbreviations of latitude and longitude.

Test Name Included Variables

Test1 FVC, LST, Albedo_WSA, Albedo_BSA
Test2 FVC, LST, Albedo_WSA, Albedo_BSA, Lat, Lon
Test3 FVC, LST, Albedo_WSA, Albedo_BSA, Lat, Lon, LEE
Test4 LEE, Albedo_WSA, Albedo_BSA
Test5 LEE, Albedo_WSA, Albedo_BSA, Lat, Lon
Test6 FVC, LEE, Albedo_WSA, Albedo_BSA
Test7 FVC, LEE, Albedo_WSA, Albedo_BSA, Lat, Lon

Through the seven groups of experiments, we can obtain seven downscaled SM
datasets. We will compare the downscaled SM with original SM by dynamic range and
mass conservation analysis. Moreover, the downscaled SM will be evaluated by com-
parisons with in situ SM observations at Core Validation Sites (CVS) and on sparse SM
observing networks. Quantitative evaluation metrics such as unbiased root-mean-square
error (ubRMSE), root-mean-square error (RMSE), and correlation coefficient (R) were used
to measure the performance of the downscaled SM:

ubRMSE =

√
E
[
((θo − E[θo])− (θr − E[θr]))

2
]

(3)

RMSE =

√
E
[
(θo − θr)

2
]

(4)

R =
∑ (θo − E[θo])(θr − E[θr])√

∑ (θo − E[θo])
2∑(θr − E[θr])

2
(5)

where E[.] is the averaging operator, θo and θr represent the SM object and reference of
evaluation.

In the section of Discussion, Feedforward Neural Network (FNN) regressor and a
hyperbolic-tangent normalization method would be used. The FNN belongs to a category
of ANN where information only travels forward through the input nodes, hidden layers,
and output nodes. The FNN was also implemented with the help of IDL Machine Learning
Framework where the number of layers is three i.e., there is one hidden layer. The arc
tangent function was taken as the activation function. In addition, adaptive moment esti-
mation optimizer was used as the optimization algorithms in training the neural network.
With regard to the hyperbolic-tangent normalization, it is an old mathematical function
which could spread out or increase the resolution around the mean and squish the outliers
to the edges of [−1, +1]. It can be expressed as:

α∗ =
sinh(α)
cosh(α)

=
eα − e−α

eα + e−α
(6)

where sinh(α) and cosh(α) are the hyperbolic sine and cosine functions; eα is the exponen-
tial function; α and α∗ are also original and normalized downscaling factor.

3. Materials
3.1. Microwave Satellite SM Products

In this study, the microwave satellite SM products from Soil Moisture Active Passive
(SMAP) mission were utilized. The SMAP incorporates an L-band radar and an L-band
radiometer which shares a single feedhorn and parabolic mesh reflector. It is running in
a near-polar sun-synchronous obit with an eight-day repeat cycle and equator crossing
at 6 a.m. and 6 p.m. local time. There are four levels of product generated by the SMAP,
Level 1~Level 4, among them the Level 3 products from radiometer were selected, i.e.,
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SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture (SPL3SMP). Moreover,
the SM at 6 a.m. was selected rather than that at 6 p.m. because air, vegetation, and near-
surface soil are nearly in thermal equilibrium at this time which is conducive to retrieve SM.
The SMAP SM products used in this study lasted more than three years from the beginning
of 2015 to the end of 2018. In addition, the daily SM products were averaged into 8-day
composite SM products in view of that the downscaling factors used in this study have
an 8-day interval. More details about the downscaling factors are listed in the following
section.

3.2. MODIS Products

All the downscaling factors were obtained from the MODIS products as listed in
Table 2. Five tiles of these products are needed to cover the whole study area including
h09v05, h10v04, h10v05, h11v04, and h11v05. The time range of these products is consistent
with that of the SMAP SM products. Note that these MODIS products have different
spatiotemporal resolution. We unified them to the same 500 m spatial resolution and
8-day temporal resolution. For example, daily Albedo and LST were averaged into 8-day
composite as done to daily SMAP SM products. The FVC was calculated using leaf area
index (LAI) using the following expression [34]:

FVC = 1 − e−LAI/(2×cos ϑ) (7)

where ϑ is solar zenith angle obtained from the MOD09A1 product. As to the LST, daytime
LST from MOD11A1 was selected. The spatial resolution of it is 1 km. We conducted
a nearest sampling to the 1 km LST to obtain 500m LST in consistent with the other
downscaling factors. Both the black-sky albedo and white-sky albedo from the MCD43A3
product were employed as downscaling factors. LEE was calculated as the ratio of LE to
PLE which are obtained from the MOD16A2 whose algorithm is based on the Penman–
Monteith equation. LST is not involved in the calculation of LE or PLE [35]. Therefore, LST
and LEE are mutual independent factors in the comparison.

Table 2. Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Variables that used in this study.

Data MODIS Product Unit Temporal Resolution Spatial Resolution

Albedo MCD43A3 N/A daily 500 m
Land Surface Temperature (LST) MOD11A1 Kelvin daily 1 km

LE MOD16A2 J/m2/day 8-day 500 m
PLE MOD16A2 J/m2/day 8-day 500 m

Leaf area index (LAI) MOD15A2H m2/m2 8-day 500 m
ϑ MOD09A1 degree 8-day 500 m

3.3. In Situ SM Observation

In order to further evaluate the downscaled SM, we collected the SM observed at three
Core Validation Stations (CVS) i.e., South Fork in Iowa, and Fort Cobb and Little Washita
in Oklahoma. We also collected the SM observations at the three sparse networks i.e.,
Cosmic-ray Soil Moisture Observing System (COSMOS), U.S. Department of Agriculture
Soil Climate Analysis Network (SCAN), and U.S. Climate Reference Network (USCRN).

Figure 1 presents the spatial distribution of the in-situ SM observation stations and
the study area. It is located in the central United States. The landform of the study area
is characterized by a broad expanse of flat land. It has semi-arid continental climate. The
dominant land covers include prairie, steppe, and grassland.
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Figure 1. Spatial distribution of the in-situ soil moisture (SM) observation stations and the study area.

The SM observations at sparse networks were obtained from the International Soil
Moisture Network (ISMN, https://ismn.geo.tuwien.ac.at/en/). The SM at CVS were
obtained from SMAP/In Situ Core Validation Site Land Surface Parameters Match-Up
Data, Version 1 [36]. SCAN and USCRN networks provide SM at various depths of
measurements. The SM observations at the depth of 0.05m were retained for analysis in
order to match the measurement depth of remotely sensed SM by SMAP [37]. The in-situ
SM observations are hourly data recorded in Coordinated Universal Time (UTC) time. In
order to match the remotely sensed SM, the in-situ SM observations within the local solar
time range from 5:00 a.m. to 7:00 a.m. were averaged to match the SMAP SM at 6:00 a.m.

4. Results

In this section, various downscaled SM data with different downscaling factors were
compared with original SM, with in-situ SM at CVS, and with in-situ SM at sparse stations.
Therefore, the following results are three-fold.

4.1. Evaluation with Original SM

Figure 2 illustrates the spatial distribution of original SM (Figure 2a) and various
downscaled SM where (b)~(h) represent the results from Test1 to Test7, taking the data
of 27 July 2016 as an example. In the study area, the west area is relatively dry while
the northeast and southeast areas are relatively wet, as identified by the original SM.
This spatial pattern is retained during the downscaling process, although a difference
exists among various downscaled SM data. In order to evaluate the spatial difference
between original and downscaled SM quantitatively, we aggregated the downscaled SM
into the same spatial resolution as the original SM. Subsequently, the difference between
the aggregated SM and original SM was investigated.

Figure 3 presents the statistics of the difference between original SM and aggregated
SM during the whole study period from 2015 to 2018. The indicators RMSE and R were
utilized. The greater R and smaller RMSE indicate better performance of the downscaled
SM as compared with the original SM. Therefore, we can arrange the various downscaled
SM according to the mean of numerous RMSE and R over the whole study period. For
RMSE, Test3(0.032) < Test2(0.033) = Test5(0.033) < Test7(0.034) < Test6(0.050) = Test1(0.050)
< Test4(0.053). For R, Test3(0.927) > Test2(0.926) > Test5(0.919) > Test7(0.918) > Test1(0.821) >
Test6(0.811) > Test4(0.786). The results indicate that Test3 has the best performance, which
integrates all of the downscaling factors. Test2, Test5, and Test7 belong to the second tier,
which all integrate the geographical indicators. The remaining Test1, Test4, and Test6 are in
the third tier, where the geographical indicators are not taken into account. Within the third

https://ismn.geo.tuwien.ac.at/en/
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tier, Test1 and Test6 present very similar performance with the same RMSE and close R. We
can also find this phenomenon within the second tier, showing that Test2 and Test5 or Test7
have very similar performance. It should be noted that the only difference between Test1
and Test6 is the difference between LST and LEE. From this mass conservation analysis, we
found that adding geographical factors could improve the performance of downscaling
SM significantly. We also found that LST and LEE are comparative as downscaling factors.
Certainly, more comparisons are required especially the comparison against in-situ SM.
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are the indicators of RMSE and R, respectively.

4.2. Evaluation with In Situ SM at CVS

Table 3 shows the comparison of downscaled SM against in-situ SM at three CVS
stations: Little Washita (LW), Fort Cobb (FC), and South Fork (SF). RMSE, ubRMSE, and
R were used as quantitative indicators. From the indicator of R, we found Test3 got the
greatest value at the three CVS stations as compared with the other experiments. The R
at FC for Test3 is the highest with 0.637. Test2, Test5, and Test7 are still in the second tier.
Again, Test1, Test4, and Test6 are retained in the third tier. Specifically, the R at FC for Test2,
Test5, and Test7 are all greater than 0.5. Correspondingly, the R for Test1, Test4, and Test6 are
around 0.4. This phenomenon can also be found from the indicators of RMSE and ubRMSE
for the stations of FC and SF. There is a little disturbance for station of LW where the first
tier (Test3) and the second tier (Test2, Test5, and Test7) are so close that sometimes Test2 is
better than Test3. Such disturbance does not change the hierarchical relationship among
these experiments. Moreover, the experiments within each hierarchy possess comparative
performances, which means that LEE is comparative to LST as downscaling factors. For
example, the R values at FC are 0.432 for Test1 and 0.435 for Test6. That values at SF are
0.174 for Test1, 0.197 for Test4, and 0.234 for Test6. We also note that the R value of Test1
is greater than that of Test4 and Test6 at LW, which means that LST is better than LEE at
some time.

4.3. Evaluation with In Situ SM at Sparse Stations

Figure 4 employed box plots to present the comparisons of various downscaled SM
with in-situ SM at sparse networks. The above-mentioned hierarchical relationship still
exists in the comparisons against these in-situ SM at sparse stations. Taking the results
at SCAN for example, we could clearly distinguish the third tier (Test1, Test4, and Test6)
from the other experiments. However, the hierarchical relationship is marked at the sparse
networks of USCRN and SCAN better than that at the sparse network of COSMOS. This
may be because COSMOS probes measure SM at the depths of decimeters [38]. In contrast,
the SM observations of SCAN and USCRN at the depth of 0.05 m were employed in this
study and this depth has well consistency with the depth of SMAP SM.



Remote Sens. 2021, 13, 133 9 of 16

Table 3. Comparison of various downscaled SM data against in-situ SM at Core Validation Sites
(CVS) where LW, FC, and SF are Little Washita, Fort Cobb, and South Fork, respectively.

RMSE (cm3/cm3) ubRMSE (cm3/cm3) R

FC LW SF FC LW SF FC LW SF

Test1 0.083 0.061 0.101 0.079 0.054 0.100 0.432 0.631 0.174
Test4 0.073 0.079 0.086 0.069 0.068 0.086 0.397 0.379 0.197
Test6 0.077 0.073 0.090 0.070 0.068 0.089 0.435 0.373 0.234
Test2 0.065 0.039 0.084 0.060 0.039 0.079 0.614 0.733 0.311
Test5 0.068 0.042 0.070 0.061 0.041 0.069 0.556 0.710 0.418
Test7 0.064 0.043 0.072 0.056 0.042 0.071 0.580 0.708 0.409
Test3 0.063 0.041 0.067 0.057 0.041 0.063 0.637 0.753 0.468
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Figure 4. Box plots of the comparisons between various downscaled SM data and in-situ SM at sparse networks. (a–c) are R
values for the three sparse networks USCRN, SCAN, and COSMOS, respectively. (d–f) are RMSE (cm3/cm3) for the three
sparse networks. (g–i) are ubRMSE (cm3/cm3) for the three sparse networks.

In order to show the comparisons more specifically, we present the comparisons at
the station of ARM_1 in COSMOS, the station of GoodwinGreekTimber in SCAN, and the
station of Stillwater-5-WNW in USCRN. The specific results are listed in Table 4. According
to the R indicator in Table 4, Test3 got the highest value for COSMOS station (0.745), SCAN
station (0.831), and USCRN station (0.713). As belonging to the second tier, Test2, Test5, and
Test7 are greater than 0.6 for COSMOS. Moreover, they are also in the second tier for SCAN
and USCRN. The Test1, Test4, and Test6 are in the third tier since their R values are less
than 0.6 for COSMOS. They also got a third position for SCAN and USCRN. Again, LEE
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and LST are comparative as downscaling factors. Sometimes LEE is better and sometimes
LST is better.

Table 4. Comparison of various downscaled SM data against in-situ SM at the station of ARM_1 in Cosmic-ray Soil Moisture
Observing System (COSMOS), the station of GoodwinGreekTimber in U.S. Department of Agriculture Soil Climate Analysis
Network (SCAN), and the station of Stillwater-5-WNW in U.S. Climate Reference Network (USCRN).

RMSE (cm3/cm3) ubRMSE (cm3/cm3) R

COSMOS SCAN USCRN COSMOS SCAN USCRN COSMOS SCAN USCRN

Test1 0.086 0.120 0.061 0.078 0.088 0.060 0.598 0.563 0.656
Test4 0.082 0.120 0.073 0.075 0.086 0.068 0.490 0.629 0.457
Test6 0.084 0.106 0.071 0.078 0.075 0.070 0.556 0.701 0.535
Test2 0.068 0.102 0.042 0.053 0.058 0.042 0.725 0.816 0.706
Test5 0.073 0.114 0.042 0.059 0.068 0.040 0.672 0.774 0.728
Test7 0.073 0.111 0.048 0.059 0.058 0.048 0.678 0.825 0.680
Test3 0.071 0.110 0.042 0.055 0.058 0.042 0.745 0.831 0.713

In summary, we evaluated the downscaling factors through comparing the down-
scaled SM with original SM and the in-situ SM at CVS and sparse networks. The compari-
son results indicated a hierarchical relationship among the experiments. The Test3, which
integrated the traditional FVC and LST, the LEE, and the geographical factors, has the best
performance. The Test2, Test5, and Test7 which all integrated the geographical factors are
in the second tier. The Test1, Test4, and Test6 which did not integrate the geographical
factors are in the third tier. Moreover, the experiments within each hierarchy possess
comparative performances. The results demonstrate that geographical factors can improve
the downscaling performance significantly and LEE can be taken as an alternative of LST
for downscaling microwave SM.

5. Discussion

The above-mentioned results were obtained with the Z-score normalization method
and SVR machine-learning method. Does the other normalization method and machine-
learning method can overthrow the study conclusions? With this question, we made the
following analysis. Firstly, we compared the Z-score normalization with a hyperbolic-
tangent normalization. Secondly, we compared the results with the SVR method and that
with the FNN method. The evaluation results are listed as follows.

5.1. Effects of Different Normalization Methods

Figure 5 illustrates the comparison between Z-score normalization and hyperbolic-
tangent normalization at the three CVS stations FC, LW, and SF. R and ubRMSE are utilized
as evaluation indicators. The hierarchy relationship was divided by an ancillary dotted line
in this figure. Firstly, the hierarchical relationship among the experiments was maintained
when we used whether Z-score normalization or hyperbolic-tangent normalization. Sec-
ondly, the experiments within each hierarchy possess comparative performances indicated
by both the Z-score normalization and the hyperbolic-tangent normalization. However, we
found that the experiment with hyperbolic-tangent normalization showed better perfor-
mances than that with Z-score normalization in most cases. Consequently, it is recognized
that our conclusion does not change no matter Z-score or hyperbolic-tangent normalization
was used.
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5.2. Effects of Different Machine-Learning Methods

Figure 6 illustrates the comparison between SVR and FNN methods at the CVS stations
of FC, LW, and SF. The normalization method used in Figure 6 was consolidated to Z-score.
We also use R and ubRMSE as evaluation indicators. Moreover, we compared original SM
with aggregated SM for different machine-learning methods and normalization methods.
Results are illustrated in Figure 7 where (a) and (b) are RMSE and R values for SVR
with hyperbolic-tangent normalization; (c) and (d) are RMSE and R values for FNN with
Z-score normalization, respectively. Once again, the comparisons demonstrate that (1)
the hierarchical relationship among the experiments was maintained for whether SVR
method or FNN method and either for Z-score and hyperbolic-tangent normalization; (2)
the experiments within each hierarchy possess comparative performances.
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5.3. Implications of the Results

In the era of big data, integrating the plentiful data of optical/thermal remote sensing
with microwave remote sensing has a wide range of application to obtain high-resolution
SM data (better than 1 km). The downscaling factors are very significant within the down-
scaling process since they determine the spatial variations within a coarse-resolution SM
pixel. LST was indispensable in most downscaling algorithms since LST is as an effective
indicator of SM variation. However, LST often cannot be obtained from thermal remote
sensing because the influence of the weather conditions. Sun, Cai, Liu, and Yang [12]
provided a solution to this problem by introducing gridded meteorological data based
on the complementary relationship hypothesis. Although the solution was demonstrated
valid for downscaling SMAP SM of 36 km into 4 km, the spatial resolution of gridded
meteorological data is still too coarse as compared with LST of 1 km in MODIS products.
The main contribution of this study is demonstrating the possibility of using LEE from
MODIS-MOD16 dataset as an alternative when there is no available LST data for down-
scaling. The LEE from MODIS-MOD16 has the highest spatial resolution of 500 m which
can be compared with the LST of 1 km. This contribution is particularly useful with the
releasing of gap-filled MOD16 data, i.e., the MOD16A3GF, which implies that it can be
used for all-weather SM downscaling.

However, it should be noted that LST is a very valuable piece of information. In this
study, we found that integrating LST and LEE can get better performance than utilizing
one of them independently. Consequently, this study does not mean that LEE can be used
to replace LST for SM downscaling. In contrast, we encourage to integrate LEE and LST
to obtain spatial continuous downscaling factors in order to match the spatial continuous
microwave data.

In addition, this study demonstrates that it is valid and necessary to add geograph-
ical factors within the downscaling process. Currently, geographical factors have been
employed in statistical regression downscaling method. However, they are rarely used
in physical model or parameterized model of downscaling microwave SM. The future
physical model, parameterized model, or their combinations with ML methods should
incorporate the geographical factors.

Moreover, there are some studies attempting to fill the gap of LST due to cloud con-
tamination through using spatiotemporal neighbor LST information [39] or other supple-
mentary factors [40]. Therefore, in the future, integrating spatial-continuous LST, LEE, and
geographical factors would greatly promote the performance of downscaling microwave
satellite SM.
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6. Conclusions

This study evaluated several typical downscaling factors of microwave satellite SM.
Seven groups of experiments with different combinations of downscaling factors were
constructed and evaluated based on a machine learning method SVR and Z-score nor-
malization method. Original SM from SMAP satellite and in situ SM at sparse networks
and CVS stations were used as reference. Results indicated that there exist hierarchy
relationships among the seven experimental groups. The group that integrated LST, LEE,
and the geographical factors has the best performance. The groups that integrated geo-
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graphical factors is better than that without geographical factors. In addition, LEE presents
comparative performance to LST as downscaling factors. The above results do not change
when another machine learning method FNN or hyperbolic-tangent normalization method
was utilized. This study contributes experimental evidences to that LEE can be taken as an
alternative of LST for downscaling microwave SM and geographical factors can improve
the downscaling performance significantly. The future work is expected to integrate the
LEE, LST, and geographical factors for obtaining high-resolution SM from the fusion of
SMAP and MODIS.
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