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Abstract: Thin clouds seriously affect the availability of optical remote sensing images, especially in 

visible bands. Short-wave infrared (SWIR) bands are less influenced by thin clouds, but usually have 

lower spatial resolution than visible (Vis) bands in high spatial resolution remote sensing images 

(e.g., in Sentinel-2A/B, CBERS04, ZY-1 02D and HJ-1B satellites). Most cloud removal methods do 

not take advantage of the spectral information available in SWIR bands, which are less affected by 

clouds, to restore the background information tainted by thin clouds in Vis bands. In this paper, we 

propose CR-MSS, a novel deep learning-based thin cloud removal method that takes the SWIR and 

vegetation red edge (VRE) bands as inputs in addition to visible/near infrared (Vis/NIR) bands, in 

order to improve cloud removal in Sentinel-2 visible bands. Contrary to some traditional and deep 

learning-based cloud removal methods, which use manually designed rescaling algorithm to handle 

bands at different resolutions, CR-MSS uses convolutional layers to automatically process bands at 

different resolution. CR-MSS has two input/output branches that are designed to process Vis/NIR 

and VRE/SWIR, respectively. Firstly, Vis/NIR cloudy bands are down-sampled by a convolutional 

layer to low spatial resolution features, which are then concatenated with the corresponding fea-

tures extracted from VRE/SWIR bands. Secondly, the concatenated features are put into a fusion 

tunnel to down-sample and fuse the spectral information from Vis/NIR and VRE/SWIR bands. 

Third, a decomposition tunnel is designed to up-sample and decompose the fused features. Finally, 

a transpose convolutional layer is used to up-sample the feature maps to the resolution of input 

Vis/NIR bands. CR-MSS was trained on 28 real Sentinel-2A image pairs over the globe, and tested 

separately on eight real cloud image pairs and eight simulated cloud image pairs. The average SSIM 

values (Structural Similarity Index Measurement) for CR-MSS results on Vis/NIR bands over all 

testing images were 0.69, 0.71, 0.77, and 0.81, respectively, which was on average 1.74% higher than 

the best baseline method. The visual results on real Sentinel-2 images demonstrate that CR-MSS can 

produce more realistic cloud and cloud shadow removal results than baseline methods. 

Keywords: thin cloud removal; Sentinel-2A imagery; multi-spectral feature fusion; multi-spatial; 

deep learning 

 

1. Introduction 

1.1. Motivation 

With the development of optical satellite sensor technology, multispectral and hy-

perspectral remote sensing images with high spatial resolution (HR) have been much eas-

ier to acquire than ever before. Because the spectral characteristics of various landscapes 

are different, multi- and hyper-spectral images are widely used in land use and land cover 
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classification [1,2], vegetation monitoring [3], and water resources monitoring [4,5]. How-

ever, the global annual mean cloud cover is approximately 66% [6], and optical remote 

sensing images are easily contaminated by clouds, which greatly reduces the number of 

pixels effectively available for land cover studies [7,8]. 

Clouds can be roughly divided into two categories: thick clouds and thin clouds. 

Thick clouds block most of the electromagnetic signal reflected from the land surface, 

which makes it impossible to restore the background information using only thick cloud 

pixels [9]. However, thin clouds can let some electromagnetic signal transmit it, which 

make it possible to restore the signal with only thin cloud pixels. Therefore, the influence 

of thin clouds on optical remote sensing images is not only related to their thickness [10], 

but also to the electromagnetic signal’s wavelength. For example, the visible/near infrared 

(Vis/NIR) bands are much more influenced by thin clouds than short wave infrared 

(SWIR) bands, which means that SWIR bands preserve more spectral information than 

visible bands. However, in high spatial resolution remote sensing images, SWIR bands 

usually have lower spatial resolution than Vis/NIR bands. 

Figure 1 shows four examples under the cloud contamination condition (odd rows) 

and the corresponding cloud-free images (even rows). Column 1 shows the true color 

composited images (T); columns 2–11 are bands 2/3/4/5/6/7/8/8A/11/12. All bands are 

zoomed to the same size. We can see that the influences of thin clouds on these bands are 

different. The transmittances of thin cloud in vegetation red edge (VRE, bands 5/6/7) and 

short-wave infrared (SWIR, bands 8A/11/12) bands are higher than in Vis bands (2/3/4), 

causing thin clouds to have a greater effect on Vis bands than on bands VRE/SWIR. 

Thanks to this, some missing information in Vis bands can be restored from VRE/SWIR 

bands. 

 

Figure 1. Four different scenes. Rows (a,c,e,g) are cloud contaminated images; rows (b,d,f,h) are corresponding cloud-free 

images. All bands are resized to the same size for better presentation. 
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In this paper, we propose a deep learning-based network to handle thin cloud re-

moval in Sentinel-2A images. The network is mainly designed to fuse spectral information 

of SWIR bands and Vis/NIR bands to better remove thin clouds in Vis/NIR bands. We also 

take the vegetation red edge (VRE) bands into consideration, because these bands are also 

less influenced by thin clouds than visible bands. The experiment is conducted both on 

real and simulated paired cloud and cloud-free dataset covering the globe. 

1.2. Related Works 

The removal of thick clouds usually requires multitemporal images from the same 

location [11–13]. In Tseng et al. [14], cloud pixels were directly replaced with clear pixels. 

Zhang and Wen [15] proposed a discriminative robust principal component analysis 

(DRPCA) algorithm to recover the background information under thick clouds. Sparse 

reconstruction was used for cloud removal with time series remote sensing images in 

Cerra et al. [16]. Image patches clone was adopted to restore background under cloud 

regions in Lin and Tsai [17]. Chen et al. [18] proposed a spatially and temporally weighted 

regression model to reconstruct ground pixels occulted by clouds. A nonnegative matrix 

factorization and error correction algorithm (S-NMF-EC) was proposed in Li and Wang 

[19] to fuse auxiliary HR and low resolution (LR) cloud-free images to obtain cloud-free 

HR images. Although thick clouds can be removed by these methods, multitemporal data 

is required to reconstruct the signal blocked by thick clouds. 

The transmittance of clouds increases as thickness of thin clouds decreases [10]. Once 

the clouds are thin enough, the background signal can transmit through thin clouds and 

be received by optical satellite sensors, which makes it possible to reconstruct the back-

ground signal. Thus, thin clouds removal usually relies on a single cloudy image. Since 

the response to clouds varies with the wavelength, the features of multispectral bands are 

very beneficial for the correction of cloud contaminated images. Based on statistics col-

lected on many remote sensing images, the haze optimized transformation (HOT) as-

sumed that ground reflectance in blue and red bands is linearly correlated under clear 

conditions [20]. An iterative HOT (IHOT) method was proposed in Chen et al. [21] to de-

tect and remove thin clouds in Landsat imagery. Cloudy and corresponding clear images 

were used in IHOT to solve the spectral confusion between clouds and bright surfaces. Xu 

et al. [22] proposed a signal transmission and spectral mixture analysis (ST-SMA) algo-

rithm in which the cloud removal model considered the transmission and absorption of 

clouds. The spectral-based methods can make use of spectral information to remove thin 

clouds, but they do not take the spatial correlation of neighborhood pixels into consider-

ation. Some other methods for thin cloud removal rely on filtering the cloud component 

in frequency domain. 

There are many methods based on physical model and filtering for cloud/haze re-

moval. In the homomorphic filtering (HF) method [23], Fourier transform was used to 

separate thin cloud and background components, then a linear filter was adopted to re-

move the cloud component. Shen et al. [24] proposed an adaptive HF (AHF) method im-

proving HF by treating each spectral band differently and using cloud masks to keep 

cloud-free areas unchanged. A max–min radiation correction was applied to the result of 

fast Fourier transform (FFT) and low-pass filter on each band in Liu and Wang [25] to 

eliminate the influence of transmission and enhance contrast. The methods based on ho-

momorphic filtering can remove cloud components, but low frequency components in the 

background signal are also removed. Based on the analysis of human visual system, Ret-

inex [26] was proposed to solve the illumination imbalance in images. It was improved in 

Jonson and Rahman [27], who adopted Gaussian filtering to estimate the incident light. 

Multi-scale Gaussian filtering in Retinex (MSR) has been proved to be efficient in handling 

color rendition and dynamic range compression [28]. In order to adjust the color distortion 

caused by the enhanced contrast in local areas of the image, a color recovery factor was 

added to MSR (MSRCR) in Jonson and Rahman [29]. MSRCR has been adopted as official 

image processing tool by NASA and widely used for image dehazing. Although Retinex-
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based methods can restore some information in images, the incident light estimated by 

Gaussian filtering is far from the real incident light. 

Deep learning (DL) methods have developed rapidly in recent years due to the great 

improvement of computing performance and increased availability of labelled data. Con-

volutional neural network (CNN) is the most effective and widely used in image pro-

cessing and computer vision fields. CNN has been applied to image classification [30], 

semantic segmentation [31], image generation [32], and image restoration [33]. Most of 

these tasks were further improved by adopting Resnet [34] and U-Net [35] architectures. 

The residual architecture was originally designed to solve the problem of information loss 

in the training of deep CNN by adding input to output and has been widely used for 

image segmentation recently. The U-Net architecture introduced skip connection that con-

nects down-sampling and symmetrical up-sampling layers to make full use of the features 

at low and high levels. Differently from Resnet, skip connections in U-Net concatenate the 

feature maps of convolution and corresponding deconvolution at feature channel, which 

is more effective than Resnet in using multi-layer features. Many DL-based methods have 

been proposed to improve the capacity of automatic data processing and solve the tech-

nical problems in the remote sensing field. CNN is widely used for remote sensing image 

processing [36,37], such as land use and land cover classification [38,39], hyperspectral 

image classification [40–42], remotely sensed scene classification [43,44], object detection 

[45,46], and image synthesis [47]. 

Due to the good performance of CNN in image inpainting, many CNN-based meth-

ods have been successfully applied to thick cloud removal in remote sensing images. Li et 

al. [48] designed a convolutional–mapping–deconvolutional (CMD) network in which op-

tical and SAR images in the same region were transferred into target cloud-free images. 

Then the cloud pixels in cloudy images were replaced by corresponding cloud-free pixels 

from the target cloud-free images. In Meraner et al. [49], a DSen2-CR was proposed to fuse 

SAR image and optical images to remove thick cloud in Sentinel-2 images. DSen2-CR con-

catenated SAR image and Sentinel-2 image at spectral channel as input and learned the 

residual between a cloud image and the corresponding cloud-free image. Generative ad-

versarial networks (GANs) were also adopted for thick cloud removal by fusing optical 

and SAR images in Gao et al. [50]. GANs were also used for thin/thick cloud removal with 

paired cloudy and cloud-free optical remote sensing images from the same region [51]. 

Such thick cloud removal methods can achieve good results but require corresponding 

auxiliary data such as synthetic aperture radar (SAR) images, which are not influenced by 

cloud coverage. In addition, cloud detection [52–55] and image registration [56] are the 

necessary steps and important influencing factors for these methods. 

Differently from image inpainting, image dehazing aims to remove haze and restore 

the background information in a single image. The atmospheric degradation model has 

been widely used in image dehazing. Multi-scale parallel convolution has been proven 

very useful for producing a transmission map, which is then put into the atmospheric 

degradation model to get a dehazed image [57]. In Zhang and Patel [58], a densely-con-

nected encoder–decoder and U-Net were used to estimate the transmission map and at-

mospheric light, respectively. The estimated atmospheric light improved the quality of 

dehazed image a lot. Although these methods can remove haze in images, the atmospheric 

degradation model is an empirical model, which cannot accurately simulate the interac-

tion between light and the atmosphere. Therefore, many methods have been recently pro-

posed to directly restore a clear image from a hazy image. In Ren et al. [59], the haze image 

was driven into three transformed images to handle the influences of atmosphere light, 

scattering, and attenuation. The model used multi-scale reconstruction losses to learn 

more details. In Chen et al. [60], the smooth dilated convolution was used to solve the grid 

artifacts. Differently from previous work, the method designed a gate fusion sub-network 

to learn the weights of different level features, which were then used for the weight sum 

of these features. Learning the mapping from hazy image to clear image is very effective, 

but such methods need paired hazy and clear images, which are challenging to obtain. 
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Thin clouds in remote sensing images are similar to haze in natural images. Thin 

clouds let part of the background signal transmit, which makes it possible to restore back-

ground information using only cloud-contaminated pixels. Qin et al. [61] designed a 

multi-scale CNN to remove thin clouds in multispectral images. Instead of merging all 

bands into one network, individual networks were designed for each band. Then the out-

puts of each individual network were fused by a multi-scale feature fusion layer. A resid-

ual symmetrical concatenation network (RSC-Net) was proposed in Li et al. [62], which 

took advantage of residual error between cloudy and corresponding cloud-free images to 

train the cloud removal model. Down-sampling and up-sampling operations that are 

thought to damage the information in the cloud-free regions were not used in RSC-Net. 

Cycle-GAN [63] has proven very effective for unpaired image-to-image translation. In-

spired by Cycle-GAN, a cloud removal GAN (Cloud-GAN) that transfers a thin cloud 

image into a cloud-free image was proposed in Singh and Komodakis [64]. Sun et al. [65] 

proposed a cloud-aware generative network (CAGN) in which convolutional long short-

term memory (LSTM) and auto-encoder were combined to detect and remove clouds. The 

attention mechanism [66] was introduced into CAGN to process cloudy regions differ-

ently according to the thickness of clouds. In Li et al. [67], a modified physical model was 

combined with GANs to remove thin cloud with unpaired images. While producing the 

clear image, the method also learned the transmission, absorption, and reflection maps 

from the cloud image. Although these methods have good performances, they only han-

dle bands at a same spatial resolution. This discourages their application to satellite sen-

sors that have multi-spatial resolution bands, especially sensors that have low spatial res-

olution short wave infrared bands. 

Although many deep learning-based methods have been proposed for cloud removal 

in high spatial resolution remote sensing images and achieved the state-of-the-art perfor-

mance, most of them only handle the Vis/NIR bands at high spatial resolution and either 

ignore short wave infrared bands at low spatial resolution that are much less influenced 

by thin cloud than Vis/NIR bands [64], or rescale low resolution bands to high resolution 

and then process them with Vis/NIR bands together [49]. Rescaling low resolution bands 

into high resolution by a manually designed rescaling algorithm can help solve the prob-

lem of different spatial resolutions. However, the parameters of the manually designed 

rescaling algorithm are not optimal, and spectral/spatial information may be lost during 

the manually designed rescaling process. Convolutional neural networks, which can learn 

optimal sampling parameters during model training, have been widely used for 

up/down-sampling features automatically [32,35,68]. Therefore, in order to better pre-

serve/extract the spectral information in low resolution bands, we adopted convolutional 

layers to handle multi-spectral bands at different spatial resolutions. 

There are several high spatial resolution satellites such as Sentinel-2A/B, CBERS-04, 

ZY-1 02D, and HJ-1B that include low spatial resolution SWIR bands, which makes it de-

sirable to take SWIR bands into consideration when removing thin cloud in Vis/NIR 

bands. In this paper, we aim to remove thin cloud in Sentinel-2A images, which include 

four vegetation red edge bands that are also less influenced by thin cloud than visible 

bands, and propose an end-to-end method based on deep-learning for thin cloud and 

cloud shadow removal by taking vegetation red edge (VRE) and SWIR bands in Sentinel-

2A images into consideration. The main contributions are as follows: 

1. We propose an end-to-end network architecture for cloud and cloud shadow re-

moval that is tailored for Sentinel-2A images with the fusion of visible, NIR, VRE, 

and SWIR bands. The spectral features in VRE/SWIR bands are fully used to recover 

the cloud contaminated background information in Vis/NIR bands. Convolutional 

layers were adopted to replace manually designed rescaling algorithm to better pre-

serve and extract spectral information in low resolution VRE/SWIR bands. 

2. The experimental data are from different regions of the world. The types of land 

cover are rich and the acquisition dates of the experimental data cover a long time 
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period (from 2015 to 2019) and all seasons. Experiments on both real and simulated 

testing datasets are conducted to analyze the performance of the proposed CR-MSS 

in different aspects. 

3. Three DL-based methods and two traditional methods are compared with CR-MSS. 

The performance of CR-MSS with/without VRE and SWIR bands as input and output 

is analyzed. The results show that CR-MSS is very efficient and robust for thin cloud 

and cloud shadow removal, and it performs the better when taking VRE and SWIR 

bands into consideration. 

The rest of this paper is organized as follows. Section 2 presents the experimental 

data and study area. Section 3 introduces the proposed CR-MSS method. The experi-

mental results are shown in Section 4, and the discussion is also undertaken in this Section. 

We conclude in Section 5. 

2. Materials and Methods 

2.1. Sentinel-2A Multispectral Data 

To validate the performance of CR-MSS, Sentinel-2A imagery is selected as the ex-

perimental data. Sentinel-2A is a high-resolution multi-spectral imaging satellite that car-

ries a multi-spectral imager (MSI) covering 13 spectral bands in the visible, near infrared, 

and shortwave infrared (Table 1). The wavelengths of Sentinel-2A image range from 0.443 

µm to 2.190 µm and contain four bands in the vegetation red-edge, which is effective for 

monitoring vegetation health information. Band 1 is used to detect the Coastal aerosol, 

and bands 9/10 are used to monitor the water vapour/Cirrus, respectively. These bands 

are used for detecting and correcting the atmospheric effects rather than observing the 

land surface [49], which means that the atmosphere information in these bands are the 

most used for practical applications. In Meraner et al. [49], the cloud removal results were 

worst on 60 m bands even with SAR image as auxiliary input, and atmosphere conditions 

differ a lot in one day in the same area, let alone in 10 days. Therefore, the introduction of 

these 60 m bands is not necessary and would not be beneficial to cloud removal in other 

bands. Therefore, bands 1/9/10 were discarded in our experiments; only bands 2/3/4/8 

(Vis/NIR) with size= 10980 × 10980 pixels and 5/6/7/8A/11/12 (VRE/SWIR) with size =

5490 × 5490 pixels in Sentinel-2A Level-1C product were selected in our experiments. 

Table 1. Sentinel-2A sensor bands. Bands used in our study are marked in bold. 

Band 

No. 
Band Name 

Central Wavelength 

(μm) 

Bandwidth 

(nm) 

Spatial Resolution 

(m) 

     

Band 1 Coastal aerosol 0.443 27 60 

Band 2 Blue 0.490 98 10 

Band 3 Green 0.560 45 10 

Band 4 Red 0.665 38 10 

Band 5 
Vegetation Red 

Edge 
0.705 19 20 

Band 6 
Vegetation Red 

Edge 
0.740 18 20 

Band 7 
Vegetation Red 

Edge 
0.783 28 20 

Band 8 NIR 0.842 145 10 

Band 

8A 

Vegetation Red 

Edge 
0.865 33 20 

Band 9 Water Vapor 0.945 26 60 

Band 10 SWIR-Cirrus 1.375 75 60 

Band 11 SWIR 1.610 143 20 
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Band 12 SWIR 2.190 242 20 

 

2.2. Selection of Training and Testing Data 

In the cited related non-deep learning-based works, the methods are usually empiri-

cally based and directly tested on experimental data, e.g., seven Landsat TM images cov-

ering 12 different land cover types in Canada were used to test the performance of HOT 

[20] on cloud removal. In IHOT [21], the method was tested on four pairs of cloudy and 

cloud-free Landsat, eight images from cropland, urban, snow, and desert land covers. 

Shen et al. [24] employed five Landsat ETM+ and two GaoFen-1 cloudy images as testing 

data in AHF. However, in the cited related deep learning-based works, training data is 

necessary, e.g., eight pairs and two pairs of Landsat, eight images, were selected for train-

ing and testing, respectively, in RSC-Net [62]. Singh and Komodakis [64] chose 20 cloudy 

and 13 cloud-free images to train Cloud-GAN and tested the performance on five syn-

thetic scenes. In Li et al. [67], 16 training sites and four testing sites were chosen in the East 

coast of United States. The ratio between training and testing images most of these deep 

learning-based cloud removal methods was 80/20%. 

In these related works, the spatial coverage of the study areas only ranges from cities 

to countries, the datasets are relatively small, and the time period between cloud and cor-

responding cloud-free images are usually longer than half a month, which means land 

cover may change greatly. The datasets in non-deep learning-based methods are mainly 

used for testing, and thus cannot be employed to train deep learning-based methods. Alt-

hough the experimental data in cited deep learning-based methods includes training and 

testing data, those datasets were relatively small and were not stratified by land cover 

types; therefore, those study areas lack diversity. 

In this study, cloudy and corresponding cloud-free images from Sentinel-2A satellite 

are used to train and test all methods. In order to better evaluate the effectiveness of CR-

MSS over large scale regions and different land cover types, the training and testing areas 

are evenly distributed worldwide and according to three main land covers: urban, vege-

tation, and bare land. Figure 2 shows the 36 locations from all over the world selected as 

study areas. For training, we chose 28 areas all over the globe including 10 urban areas, 

10 vegetation areas, and eight bare land areas. Eight areas were chosen all over the globe 

for testing, including three urban areas, three vegetation areas, and two bare land areas. 

Therefore, there is one testing area for three to four training areas, depending on the land 

cover. From Figure 2, it also can be seen that each testing site is surrounded by three to 

four training sites. The total ratio between training and testing images in our experiment 

is 77.8%/22.2%, i.e., slightly more testing data in proportion than the related deep-learning 

works. The details of 36 pairs cloud and corresponding cloud-free images are shown in 

Table 2. 
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Figure 2. Distributions of training and testing data. Training areas are marked in white; testing areas are marked in black. 

The number in each area is corresponding to each number in Table 2. The landcover background is derived from ESA-

CCI-LC [69]. 

Table 2. Details of Sentinel-2 training and testing image pairs. 

 Pair Condition Product ID 
Country/Land 

Cover 
Date 

Training 

1 Cloud-free 
S2A_MSIL1C_20160403T030602_N0201_R075_T50TMK_201

60403T031209 

China 

Urban 
2016.04.03 

 Cloudy 
S2A_MSIL1C_20160413T031632_N0201_R075_T50TMK_201

60413T031626 
Urban 2016.04.13 

2 

Cloud-free 
S2A_MSIL1C_20181111T053041_N0207_R105_T43RGM_201

81111T083104 
Indian 2018.11.11 

Cloudy 
S2A_MSIL1C_20181121T053121_N0207_R105_T43RGM_201

81121T091419 
Urban 2018.11.21 

3 

Cloud-free 
S2A_MSIL1C_20160925T104022_N0204_R008_T32ULB_201

60925T104115 
Germany 2016.09.25 

Cloudy 
S2A_MSIL1C_20160915T104022_N0204_R008_T32ULB_201

60915T104018 
Urban 2016.09.15 

4 

Cloud-free 
S2A_MSIL1C_20160528T153912_N0202_R011_T18TWL_201

60528T154746 
United States 2016.05.28 

Cloudy 
S2A_MSIL1C_20160518T155142_N0202_R011_T18TWL_201

60518T155138 
Urban 2016.05.18 

5 

Cloud-free 
S2A_MSIL1C_20181208T170701_N0207_R069_T14QMG_20

181208T202913 
Mexico 2018.12.08 

Cloudy 
S2A_MSIL1C_20181218T170711_N0207_R069_T14QMG_20

181218T203015 
Urban 2018.12.18 

6 

Cloud-free 
S2A_MSIL1C_20180809T190911_N0206_R056_T10UFB_201

80810T002400 
Canada 2018.08.10 

Cloudy 
S2A_MSIL1C_20180819T190911_N0206_R056_T10UFB_201

80820T002955 
Vegetation 2018.08.20 

7 Cloud-free 
S2A_MSIL1C_20190306T132231_N0207_R038_T22KHV_201

90306T164115 

Brazil 

Vegetation 
2019.03.06 

Training areaTraining area Testing area

27

1

2

3

11

4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

3

4

5

6

7

1

8

2

Forest Cropland Shrubland Grass Wetland Urban Barren Water Snow/Ice
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Cloudy 
S2A_MSIL1C_20190224T132231_N0207_R038_T22KHV_201

90224T164104 
2019.02.24 

8 

Cloud-free 
S2A_MSIL1C_20181012T084901_N0206_R107_T37VCC_201

81012T110218 
Russia 2018.10.12 

Cloudy 
S2A_MSIL1C_20181022T085011_N0206_R107_T37VCC_201

81022T110901 
Urban 2018.10.22 

9 

Cloud-free 
S2A_MSIL1C_20190619T023251_N0207_R103_T50JKP_2019

0619T071925 
Australia 2019.06.19 

Cloudy 
S2A_MSIL1C_20190629T023251_N0207_R103_T50JKP_2019

0629T053618 
Vegetation 2019.06.29 

10 

Cloud-free 
S2A_MSIL1C_20190901T032541_N0208_R018_T47NPF_201

90901T070148 
Malaysia 2019.09.01 

Cloudy 
S2A_MSIL1C_20190911T032541_N0208_R018_T47NPF_201

90911T084555 
Urban 2019.09.11 

11 

Cloud-free 
S2A_MSIL1C_20160419T083012_N0201_R021_T36RUU_201

60419T083954 
Egypt 2016.04.19 

Cloudy 
S2A_MSIL1C_20160409T083012_N0201_R021_T36RUU_201

60409T084024 
Bare land 2016.04.09 

12 

Cloud-free 
S2A_MSIL1C_20190218T143751_N0207_R096_T19HCC_201

90218T175945 
Chile 2019.02.18 

Cloudy 
S2A_MSIL1C_20190208T143751_N0207_R096_T19HCC_201

90208T180253 
Vegetation 2019.02.08 

13 

Cloud-free 
S2A_MSIL1C_20180609T061631_N0206_R034_T42TWL_201

80609T081837 
Uzbekistan 2018.06.09 

Cloudy 
S2A_MSIL1C_20180530T061631_N0206_R034_T42TWL_201

80530T082050 
Bare land 2018.05.30 

14 

Cloud-free 
S2A_MSIL1C_20191111T025941_N0208_R032_T49QGF_201

91111T055938 
China 2019.11.11 

Cloudy 
S2A_MSIL1C_20191101T025841_N0208_R032_T49QGF_201

91101T054434 
Urban 2019.11.01 

15 

Cloud-free 
S2A_MSIL1C_20190818T103031_N0208_R108_T31SEA_2019

0818T124651 
Algeria 2019.08.18 

Cloudy 
S2A_MSIL1C_20190808T103031_N0208_R108_T31SEA_2019

0808T124427 
Vegetation 2019.08.08 

16 

Cloud-free 
S2A_MSIL1C_20191202T105421_N0208_R051_T29PPP_2019

1202T112025 
Mali 2019.12.02 

Cloudy 
S2A_MSIL1C_20191212T105441_N0208_R051_T29PPP_2019

1212T111831 
Bare land 2019.12.12 

17 

Cloud-free 
S2A_MSIL1C_20190919T074611_N0208_R135_T35JPL_2019

0919T105208 
South Africa 2019.09.19 

Cloudy 
S2A_MSIL1C_20190929T074711_N0208_R135_T35JPL_2019

0929T100745 
Bare land 2019.09.29 

18 

Cloud-free 
S2A_MSIL1C_20190725T142801_N0208_R053_T20LMR_201

90725T175149 
Brazil 2019.07.25 

Cloudy 
S2A_MSIL1C_20190804T142801_N0208_R053_T20LMR_201

90804T175038 
Vegetation 2019.08.04 

19 

Cloud-free 
S2A_MSIL1C_20191101T043931_N0208_R033_T46TDK_201

91101T074915 
China 2019.11.01 

Cloudy 
S2A_MSIL1C_20191022T043831_N0208_R033_T46TDK_201

91022T063301 
Bare land 2019.10.22 
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20 

Cloud-free 
S2A_MSIL1C_20160509T065022_N0202_R020_T41UNV_201

60509T065018 
Kazakhstan 2016.05.09 

Cloudy 
S2A_MSIL1C_20160519T064632_N0202_R020_T41UNV_201

60519T064833 
Bare land 2016.05.19 

21 

Cloud-free 
S2A_MSIL1C_20191019T012631_N0208_R131_T53LKF_2019

1019T030531 
Australia 2019.10.19 

Cloudy 
S2A_MSIL1C_20191029T012721_N0208_R131_T53LKF_2019

1029T040003 
Vegetation 2019.10.29 

22 

Cloud-free 
S2A_MSIL1C_20190503T071621_N0207_R006_T38PMB_201

90503T092340 
Yemen 2019.05.03 

Cloudy 
S2A_MSIL1C_20190423T071621_N0207_R006_T38PMB_201

90423T093049 
Bare land 2019.04.23 

23 

Cloud-free 
S2A_MSIL1C_20190724T011701_N0208_R031_T56VLM_201

90724T031136 
Russia 2019.07.24 

Cloudy 
S2A_MSIL1C_20190714T011701_N0208_R031_T56VLM_201

90714T031656 
Vegetation 2019.07.14 

24 

Cloud-free 
S2A_MSIL1C_20181020T012651_N0206_R074_T54TXN_201

81020T032526 
Japan 2018.10.20 

Cloudy 
S2A_MSIL1C_20181010T012651_N0206_R074_T54TXN_201

81010T055606 
Urban 2018.10.10 

25 

Cloud-free 
S2A_MSIL1C_20170224T162331_N0204_R040_T16REV_201

70224T162512 
United States 2017.02.24 

Cloudy 
S2A_MSIL1C_20170214T162351_N0204_R040_T16REV_201

70214T163022 
Urban 2017.02.14 

26 

Cloud-free 
S2A_MSIL1C_20190613T032541_N0207_R018_T49UFT_201

90613T062257 
Russia 2019.06.13 

Cloudy 
S2A_MSIL1C_20190623T032541_N0207_R018_T49UFT_201

90623T061953 
Vegetation 2019.06.23 

27 

Cloud-free 
S2A_MSIL1C_20190208T011721_N0207_R088_T53KLP_201

90208T024521 
Australia 2019.02.08 

Cloudy 
S2A_MSIL1C_20190129T011721_N0207_R088_T53KLP_201

90129T024501 
Bare land 2019.01.29 

28 

Cloud-free 
S2A_MSIL1C_20190530T184921_N0207_R113_T12VVN_201

90530T222535 
Canada 2019.05.30 

Cloudy 
S2A_MSIL1C_20190520T184921_N0207_R113_T12VVN_201

90520T222900 
Vegetation 2019.05.20 

Testing 

1 

Cloud-free 
S2A_MSIL1C_20150826T084006_N0204_R064_T37UCQ_201

50826T084003 
Ukraine 2015.08.26 

Cloudy 
S2A_MSIL1C_20150905T083736_N0204_R064_T37UCQ_201

50905T084002 
Urban 2015.09.05 

2 

Cloud-free 
S2A_MSIL1C_20191101T000241_N0208_R030_T56HLH_201

91101T012241 
Australia 2019.11.10 

Cloudy 
S2A_MSIL1C_20191111T000241_N0208_R030_T56HLH_201

91111T012137 
Urban 2019.11.11 

3 

Cloud-free 
S2A_MSIL1C_20190711T174911_N0208_R141_T13TEE_2019

0711T212846 
United States 2019.07.11 

Cloudy 
S2A_MSIL1C_20190701T174911_N0207_R141_T13TEE_2019

0701T212910 
Bare land 2019.07.01 

4 Cloud-free 
S2A_MSIL1C_20190201T093221_N0207_R136_T32PRR_201

90201T113425 
Nigeria 2019.02.01 
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Cloudy 
S2A_MSIL1C_20190211T093121_N0207_R136_T32PRR_201

90211T103706 
Bare land 2019.02.11 

5 

Cloud-free 
S2A_MSIL1C_20190314T021601_N0207_R003_T52SCF_2019

0314T055026 
South Korea 2019.03.14 

Cloudy 
S2A_MSIL1C_20190304T021601_N0207_R003_T52SCF_2019

0304T042035 
Urban 2019.03.04 

6 

Cloud-free 
S2A_MSIL1C_20180804T045701_N0206_R119_T46VDH_201

80804T065907 
Russia 2018.08.04 

Cloudy 
S2A_MSIL1C_20180725T045701_N0206_R119_T46VDH_201

80725T065359 
Vegetation 2018.07.25 

7 

Cloud-free 
S2A_MSIL1C_20190707T213531_N0207_R086_T05VPJ_2019

0707T231819 
United States 2019.07.07 

Cloudy 
S2A_MSIL1C_20190627T213531_N0207_R086_T05VPJ_2019

0628T010801 
Vegetation 2019.06.28 

8 

Cloud-free 
S2A_MSIL1C_20190605T125311_N0207_R052_T24MXV_201

90605T160555 
Brazil 2019.06.05 

Cloudy 
S2A_MSIL1C_20190615T125311_N0207_R052_T24MXV_201

90615T142536 
Vegetation 2019.06.15 

We set the time lag of the acquisition dates of cloudy and corresponding cloud-free 

images to 10 days, which is the revisit time of Sentinel-2A satellite, to minimize the differ-

ence between cloudy and cloud-free images as much as possible. The manual collection 

of one single pair of cloudy and corresponding cloud-free images with the shortest time 

lag of data acquisition took about 30 min, because many Sentinel-2A images are covered 

with clouds, and it was challenging to find a corresponding cloud-free image. To assess 

the performance of CR-MSS for cloud removal in different seasons, the acquisition dates 

of training and testing data were from 2015 to 2019, in which all seasons are covered. 

Twenty-eight training image pairs and eight testing image pairs were collected from the 

Copernicus Open Access Hub website, under the conditions: 1) widely distributed, 2) cov-

ering all seasons, and 3) shortest time lag for data collection. The performance of all meth-

ods can be fully evaluated with the all these training and testing data, which have the 

shortest time lag and different land cover types and covers all seasons. The dataset is 

shared on https://github.com/Neooolee/WHUS2-CR. 

2.3. Method 

In the proposed CR-MSS method, the paired cloudy and cloud-free multispectral im-

ages are used in end-to-end training. Inspired by U-Net architecture, CR-MSS is designed 

to make better use of the features at different levels. CR-MSS has two input/output 

branches that are used to handle Vis/NIR bands and VRE/SWIR, respectively. The features 

of multispectral images are first fused after processed by input branches and then com-

pressed before output branches. The network architecture of CR-MSS is introduced in this 

section. 

We group Vis/NIR bands and VRE/SWIR into two separate multispectral images, 

that are then inputted to two input branches in CR-MSS. Pooling is the most common 

operation for down-sampling the feature maps in deep learning, as the cost of losing 

neighborhood information by this operation. Instead, we use convolutional layers with 

stride = 2 instead of the pooling layers to down-sample the feature maps in CR-MSS. Con-

volutional layer can preserve neighborhood information as much as possible by optimiz-

ing the parameters. The deconvolution layer with stride = 2 is adopted to up-sample the 

feature maps. The kernel sizes of convolutional and deconvolution layers in CR-MSS are 

set to 3 × 3 and 4 × 4, respectively. The details of the convolutional and deconvolution 

layers are as follows: 
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1. The convolution layer contains multiple convolution kernels and is used to extract 

features from input data. Each element that constitutes the convolution kernel 

corresponds to a weight coefficient and a bias. Each neuron in the convolution 

layer is connected with multiple neurons in the adjacent region from the previous 

layer, and the size of the region depends on the size of the convolution kernel. 

2. The deconvolution layer is used to up-sample the input data, by interpolating be-

tween the elements of the input matrix, and then, constructing the same connec-

tion and operation as a normal convolutional layer, except that it starts from the 

opposite direction. 

As shown in Figure 3, there are two input branches in CR-MSS: Vis/NIR input branch 

(Vis/NIR-In) and VRE/SWIR input branch (VRE/SWIR-In). A fusion tunnel performs fea-

ture fusion, while the compression tunnel performs feature compression. Vis/NIR-In is for 

processing Vis/NIR bands; VRE/SWIR-In is for VRE/SWIR bands. To extract low-level fea-

tures of the input images and preserve the original information from input images, the 

stride in the first convolutional layer in each input branch is set to 1 to keep the size of 

inputs unchanged. Since Vis/NIR has higher spatial resolution than VRE/SWIR, Vis/NIR-

In has one more convolution layer than VRE/SWIR-In, with stride = 2. This extra convolu-

tional layer in Vis/NIR-In is used to down-sample the input feature maps to the same size 

as the output of VRE/SWIR-In. 

 

Figure 3. The architecture of CR-MSS. The number under/on each block is the number of feature maps of it. The feature 

maps in each dotted box are concatenated at feature channels. 

As we know, there is a strong correlation among the spectral responses of the same 

target in different bands. Since SWIR bands are the least affected by clouds among all 

bands, and VRE bands are less affected than Visible bands, the spectral features of 

VRE/SWIR bands can be used to restore the missing information in Visible bands. There-

fore, the output feature maps of VRE/SWIR-In are concatenated with the output feature 

maps of Vis/NIR-In at feature (spectral) channel. Then the concatenated feature maps are 

put into the fusion tunnel to fuse the features from all experimental bands. There are four 

convolutional layers in the fusion tunnel. The stride of each convolutional layer is set to 2 

to down-sample the feature maps and extract high-level features. It can be seen that the 

number of concatenated feature maps is 192 (128+64); after being processed by the first 

convolutional layer in the fusion tunnel, the number of feature maps is extended to 256. 

In this way, the features in Vis/NIR/VRE/SWIR bands are fused and expanded. The next 

three convolutional layers in the fusion tunnel are used to fuse and extract more features 

for the restoration of background information. 

VRE/SWIR-L1_loss

Visible/NIR-L1_loss

VRE/SWIR-Out

VRE/SWIR-Reference 

Visible/NIR-Reference

Skip connection

Skip connection

Convolutional layer with kernel size=3 and stride=1

Convolutional layer with kernel size=3 and stride=2

Deconvolutional layer with kernel size=4 and stride=2

Visible/NIR-In Visible/NIR-Out

VRE/SWIR-In

64 128
256 512

512
512

512

64
128

256512

64

Fusion Tunnel Compression Tunnel
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There are four deconvolution layers with stride = 2 in the compression tunnel that 

are used to up-sample the feature maps and compress features. The output feature maps 

of the last convolutional layer in the fusion tunnel are put into the first deconvolutional 

layer in compression tunnel directly. To make full use of features at different levels and 

generate high quality cloud-free images, the output of each convolutional layer before the 

middle convolutional layer is copied and concatenated with the output of each symmetric 

deconvolution layer. These concatenations can solve the problem of information loss of 

the original images in the process of down-sample operations and help the network con-

verge faster. 

Because there are two input branches to handle Vis/NIR bands and VRE/SWIR bands 

in CR-MSS, respectively, the CR-MSS also has two output branches to handle Vis/NIR and 

VRE/SWIR bands. The output branches and the input branches are symmetric in CR-MSS. 

The output branch that handles Vis/NIR bands (Vis/NIR-Out) has one more deconvolu-

tion layer than the branch that handles VRE/SWIR bands (VRE/SWIR-Out). This decon-

volution layer in Vis/NIR-Out is used to up-sample the feature maps to the same size as 

the input of Vis/NIR-In. In order to get the same number of channels as in input images, 

we add a convolutional layer with stride = 1 and output channels (bands) = 4 and 6 in 

Vis/NIR-Out and VRE/SWIR-Out branches, respectively. In this way, Vis/NIR-Out out-

puts a multispectral image with Vis/NIR bands; VRE/SWIR-Out outputs a multispectral 

image with VRE/SWIR bands. 

We adopt L1 loss as the loss function of CR-MSS. For each band in input images, we 

measure the difference between the output cloud-free and corresponding ground-truth or 

reference cloud-free band to optimize CR-MSS. The average loss over all bands is taken 

as the final loss. The parameters of CR-MSS are updated with the loss function �� as fol-

lows: 

�� =
1

�
� |�(�)� − ��|

�

���
 (1) 

where z is the input image, �� the ith band in reference images, �(�)� the ith band in 

generated cloud-free images, and k the total number of spectral bands of z. CR-MSS will 

learn the difference between �(�) and x, then optimize the parameters to generate more 

clear images. After CR-MSS is well-trained, it can restore thin cloud images into cloud-

free images. 

2.4. Data Pre-processing and Experiment Setting 

Three DL-based methods and two traditional methods for cloud removal are com-

pared with CR-MSS in our experiments: RSC-Net [62], U-Net [35], Cloud-GAN [64], AHF 

[24], and MSRCP [70]. Because CR-MSS is designed for cloud removal in a single image, 

multi-temporal cloud removal methods are not included in this comparison. RSC-Net and 

U-Net are end-to-end methods that require paired cloudy and corresponding cloud-free 

images. Cloud-GAN is a semi-supervised method that requires unpaired cloudy and 

cloud-free images. AHF is an adaptive homomorphic filtering method for cloud removal 

and requires cloud masks. MSRCP is based on MRSCR and with cuda parallel acceleration 

for image enhancement such as image dehazing. 

In order to train the CNN-based methods, we cropped all experimental images into 

small patches without overlapping by slide windows of different sizes. Since the spatial 

resolution of Vis/NIR bands and VRE/SWIR bands is 10 and 20 m, respectively, we set the 

corresponding slide window sizes to 256 × 256 and 128 × 128 pixels. The area extents of 

each 256 × 256 patch at 10 m resolution matches that of each corresponding 128 × 128 

patch at 20 m resolution. In this way, 17,182 pairs of cloudy and corresponding cloud-free 

multispectral images are produced. Additionally, 13,389 pairs of training samples are gen-

erated from 28 pairs of training images, and 3782 pairs of testing samples are generated 

from eight pairs of testing images. The training dataset was augmented by flipping 
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training samples horizontally and vertically, and rotating them at 90°, 180°, and 270° an-

gles. In this way, 80,334 pairs of cloudy and cloud-free training patches were obtained. 

The traditional methods can process the whole image at once to perform cloud removal. 

Because the AHF method requires cloud masks, we adopt the official Sentinel-2 cloud 

masks tool Sen2Cor [71] for Sentinel-2 to produce the cloud masks in our experiment. 

Because the spectral reflectance values of objects in images will change in 10 days, 

the cloud-free images in testing data cannot be used to quantitatively evaluate the perfor-

mance of all methods on spectral information preservation. There are many methods us-

ing simulated cloud images to evaluate their performances [12,50,72,73]. Therefore, in or-

der to quantitatively evaluate the performances of all methods on spectral information 

preservation, we simulated cloudy images with Adobe Photoshop following [65], from 

cloud-free images of the testing dataset. First, we added a transparent layer for each band 

with different transparency rate, then we applied the Photoshop command Filter -> Ren-

der -> Cloud on each transparent layer to produce a cloud layer. Finally, each transparent 

and band pair were fused together to obtain a cloud band. All methods were applied on 

the simulated cloud images, in order to remove clouds and quantitatively evaluate the 

performances of all methods on spectral information preservation. 

In the training stage, all deep learning-based methods were trained on real cloud and 

cloud-free image pairs in training dataset listed in Table 2. In the testing stage, all baseline 

methods and CR-MSS were tested on real cloud and cloud-free image pairs for PSNR and 

SSIM values, and on simulated cloud and cloud-free image pairs for NRMSE value, to 

better control for spectral reflectance changes, as explained in the previous paragraph. 

Figures 4–13 show the cloud removal results of all methods on real cloud and cloud-free 

images. 

 

Figure 4. Visual comparison results on urban sample (Ukraine) under thin clouds from first real testing image pair in 

Table 2. T, B2, B3, B4, and B8 are true color composited image, bands 2, 3, 4, and 8, respectively. Columns 1–8 are cloudy 

and corresponding cloud-free images, results of CR-MSS, RSC-Net-10, U-Net-10 and Cloud-GAN, AHF, and MSRCP. 

T

B2

B3

B4

B8

Cloud-free image CR-MSS RSC-Net-10 U-Net-10 Cloud-GANCloudy image MSRCPAHF
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Figure 5. Visual comparison results on vegetation sample (Australia) under thin clouds from second real testing image 

pair in Table 2. T, B2, B3, B4, and B8 are true color composited image, bands 2, 3, 4, and 8, respectively. Columns 1–8 are 

cloudy and corresponding cloud-free images, results of CR-MSS, RSC-Net-10, U-Net-10 and Cloud-GAN, AHF, and 

MSRCP. 

 

Figure 6. Visual comparison results on bare land sample (United States) under thin clouds from third real testing image 

pair in Table 2. T, B2, B3, B4, and B8 are true color composited image, bands 2, 3, 4, and 8, respectively. Columns 1–8 are 

cloudy and corresponding cloud-free images, results of CR-MSS, RSC-Net-10, U-Net-10 and Cloud-GAN, AHF, and 

MSRCP. 

T

B2

B3

B4

B8

Cloud-free image CR-MSS RSC-Net-10 U-Net-10 Cloud-GANCloudy image MSRCPAHF

Cloud-free image CR-MSS RSC-Net-10 U-Net-10 Cloud-GANCloudy image MSRCPAHF

T

B2

B3

B4

B8
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Figure 7. Visual comparison results on bare land sample (Nigeria) under thin clouds from 4th real Table 2. T, B2, B3, B4, 

and B8 are true color composited image, bands 2, 3, 4, and 8, respectively. Columns 1–8 are cloudy and corresponding 

cloud-free images, results of CR-MSS, RSC-Net-10, U-Net-10 and Cloud-GAN, AHF, and MSRCP. 

 

Figure 8. Visual comparison on four samples. (T5), (T6), (T7) and (T8) are true color composites from fifth, sixth, seventh, 

and eighth real testing image pairs in Table 2. Columns 1–8 are cloudy and corresponding cloud-free images, results of 

CR-MSS, RSC-Net-10, U-Net-10 and Cloud-GAN, AHF, and MSRCP. 

Cloud-free image CR-MSS RSC-Net-10 U-Net-10 Cloud-GANCloudy image MSRCPAHF

T

B2

B3

B4

B8

T8)

T7)

T6)

T5)

Cloud-free image CR-MSS RSC-Net-10 U-Net-10 Cloud-GANCloudy image MSRCPAHF
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Figure 9. Visual comparison results on mountain sample (South Korea) under thin clouds from fifth real testing image 

pair in Table 2. By row: (a) cloudy image, (b) corresponding cloud-free image, (c) results of CR-MSS, (d) CR-MSS-10-4, 

and (e) CR-MSS-4-4. 

 

Figure 10. Visual comparison results on grass sample (Russia) under thin clouds from sixth real testing image pair in Table 

2. By row: (a) cloudy image, (b) corresponding cloud-free image, (c) results of CR-MSS, (d) CR-MSS-10-4, and (e) CR-MSS-

4-4. 

T Band 2 Band 3 Band 4 Band 8

Band 5 Band 6 Band 7 Band 8A Band 11 Band 12

a)

b)

c)

d)

e)

T Band 2 Band 3 Band 4 Band 8

Band 5 Band 6 Band 7 Band 8A Band 11 Band 12

a)

b)

c)

d)

e)
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Figure 11. Visual comparison results on forest sample (United States) under thin clouds from seventh real testing image 

pair in Table 2. By row: (a) cloudy image, (b) corresponding cloud-free image, (c) results of CR-MSS, (d) CR-MSS-10-4, 

and (e) CR-MSS-4-4. 

 

Figure 12. Visual comparison results on farmland sample (Brazil) under thin clouds and cloud shadows from eighth real 

testing image pair in Table 2. By row: (a) cloudy image, (b) corresponding cloud-free image, (c) results of CR-MSS, (d) CR-

MSS-10-4, and (e) CR-MSS-4-4. 

T Band 2 Band 3 Band 4 Band 8

Band 5 Band 6 Band 7 Band 8A Band 11 Band 12

a)

b)

c)

d)

e)

T Band 2 Band 3 Band 4 Band 8

Band 5 Band 6 Band 7 Band 8A Band 11 Band 12

a)

b)

c)

d)

e)
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Figure 13. Visual comparison on four samples. (T1), (T2), (T3), and (T4) are true colour composites from first, second, third, 

and fourth real testing image pairs in Table 2. Columns 1–5 are cloudy and corresponding cloud-free images, results of 

CR-MSS, RSC-Net-10, U-Net-10, and Cloud-GAN. 

The inputs of AHF, MRSCR, and Cloud-GAN are Vis/NIR bands. Since CR-MSS is 

designed to handle Vis/NIR and VRE/SWIR bands together, the input of CR-MSS is 

Vis/NIR/VRE/SWIR bands. Because RSC-Net and U-Net are end-to-end deep learning-

based methods similar to CR-MSS, in order to compare RSC-Net and U-Net with CR-MSS 

fairly, VRE/SWIR bands were first rescaled to 10 m resolution by bi-linear interpolation, 

then concatenated with Vis/NIR bands to train RSC-Net-10 and U-Net-10. In addition, to 

analyze the influence of the VRE/SWIR bands on CR-MSS performance for thin cloud re-

moval, we conducted ablation experiments, i.e., with or without VRE/SWIR bands as in-

puts/outputs or not. 

The hyper-parameters are set the same for all deep learning-based methods. The 

batch size is set to 1, and iterations for training are set to 600000. Adam-optimizer [74] is 

adopted to optimize the parameters of all networks, and the hyper parameters of Adam-

optimizer are fixed as: �� = 0.9, �� = 0.999, and the initial learning rate = 0.0002, with 

exponential decay at decay rate = 0.96. The training and testing experiments are both con-

ducted with the TensorFlow running on Windows 7 operating system on a 16 Intel (R) 

Xeon CPU E5-2620 v4 @ 2.10 GHz and an NVIDIA GeForce GTX 1080Ti with 11 GB 

memory. 

We take peak signal to noise ratio (PSNR), structural similarity index measurement 

(SSIM), and normalized root mean square error (NRMSE) as the quantitative evaluation 

measures. The PSNR and SSIM values of one single testing sample and average of all test-

ing samples in each band are calculated to better compare the performances of all meth-

ods. As in Meraner et at. [49], the average NRMSE values in each band over all simulated 

testing samples were calculated to analyze the spectral preservation in each band. 

T4)

Cloud-free image CR-MSS CR-MSS-10-4 CR-MSS-4-4Cloudy image

T3)

T2)

T1)
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3. Results 

3.1. Comparison of Different Methods 

To better present the cloud removal results of different areas worldwide, we selected 

one sample pair from each testing area. The experimental results of all cloud removal 

methods on these selected samples are presented in Figures 4–8. Figures 4–7 show the 

cloud removal results on each band of four samples from the first, second, third, and 

fourth testing pairs, respectively. The inputs/outputs were original Vis/NIR/VRE/SWIR 

bands for CR-MSS, original Vis/NIR, and rescaled VRE/SWIR bands for RSC-Net-10 and 

U-Net-10, and Vis/NIR bands for other baseline methods. Figures 4–7 show results of CR-

MSS and baseline methods with Vis/NIR bands. 

We can see that the results of CR-MSS are visually better than all compared methods 

on all bands in these Figs. For example, in Figure 5, the impact of cloud is very severe on 

background signal. CR-MSS removes most clouds in Vis/NIR bands. While results of RSC-

Net-10 and U-Net-10 contain much noise in cloudy regions, Cloud-GAN translates the 

input cloudy image into another cloud contaminated image, the style of which is com-

pletely different from the input cloudy image and makes the result even worse. This is 

caused by the influence of cycle-consistent of Cloud-GAN. In the training of Cloud-GAN, 

it first translates a cloudy image into a cloud-free image. Then, the translated cloud-free 

image is translated back into the input cloudy image, which makes the textures of the 

cloud-free image and input cloudy image consistent. This results in some cloud infor-

mation being retained in the translated cloud-free image. Results of both AHF and MSRCP 

on Figures 5–7 are not good visually, because the cloud component cannot be completely 

filtered out by Homomorphic filtering in AHF, and the model in MSRCP does not take 

the reflection of cloud into consideration. However on Figure 7, AHF have a better visual 

result than MSRCP because the thin clouds are fairly uniform and can be removed by low-

pass filtering. 

Figure 8 shows the true color composited results of four samples in fifth, sixth, sev-

enth, and eighth testing pairs. Visually, the results of CR-MSS seem more realistic than 

baseline methods, and MSRCP looked the worst among all methods, while Cloud-GAN 

performs the worst among all deep learning-based methods. It is worth noticing that the 

(T8) in Figure 8 contains thick clouds and cloud shadows, and CR-MSS removes cloud 

shadows and most of the clouds, but results of all baseline methods still include many 

clouds. 

Tables 3 and 4 show the corresponding PSNR and SSIM values of samples in Figures 

4-7 and Figure 8, respectively. It can be seen that CR-MSS obtains the best performance on 

PSNR and SSIM values in most cases. It is worth noticing that AHF performs best on SSIM 

values on Figure 6 at bands 4/8 and T8 in Figure 8 at band 8. Although the visual results 

of AHF on Figure 6 and T8 in Figure 9 are worse than CR-MSS, AHF usea cloud masks to 

preserve the cloud-free regions, which improves the SSIM values on average. 

Table 3. Corresponding PSNR and SSIM values of samples in Figures 4–7 (all real testing image pairs from 1 to 4, Table 

2). Best results are marked in bold. 

Image Index Method B2 B3 B4 B8 B5 B6 B7 B8A B11 B12 

             

T1 (Figure 4) 

PSNR 

CR-MSS 14.19 16.99 19.38 23.17 22.57 22.94 24.48 25.39 23.68 24.15 

RSC-Net-10 16.32 18.60 19.76 23.63 20.96 24.33 24.57 24.47 24.50 24.90 

U-Net-10 14.21 16.68 19.68 22.34 21.61 21.96 23.99 24.95 23.62 23.23 

Cloud-GAN 14.62 16.04 16.51 15.70 / / / / / / 

AHF 13.50 14.26 16.35 20.68 / / / / / / 

MRSCP 12.23 12.67 14.42 15.87 / / / / / / 

SSIM 
CR-MSS 0.67 0.74 0.81 0.86 0.86 0.90 0.91 0.92 0.88 0.89 

RSC-Net-10 0.72 0.76 0.82 0.87 0.85 0.90 0.92 0.92 0.9 0.91 
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U-Net-10 0.65 0.7 0.79 0.84 0.83 0.89 0.91 0.91 0.85 0.87 

Cloud-GAN 0.50 0.51 0.52 0.45 / / / / / / 

AHF 0.46 0.54 0.67 0.79 / / / / / / 

MRSCP 0.50 0.57 0.69 0.78 / / / / / / 

T2 (Figure 5) 

PSNR 

CR-MSS 16.57 14.46 17.39 25.35 17.59 27.27 25.41 24.22 23.08 22.91 

RSC-Net-10 12.21 10.01 12.75 19.04 9.93 16.56 18.53 19.88 16.81 15.95 

U-Net-10 17.78 14.97 18.34 25.25 17.11 25.12 26.57 27.74 19.93 23.19 

Cloud-GAN 6.93 5.92 4.55 16.10 / / / / / / 

AHF 4.63 5.92 7.15 17.41 / / / / / / 

MRSCP 4.92 6.31 8.07 21.48 / / / / / / 

SSIM 

CR-MSS 0.58 0.54 0.63 0.78 0.80 0.87 0.87 0.88 0.87 0.86 

RSC-Net-10 0.45 0.41 0.52 0.72 0.64 0.82 0.83 0.84 0.83 0.80 

U-Net-10 0.60 0.54 0.63 0.74 0.77 0.86 0.87 0.88 0.84 0.85 

Cloud-GAN 0.23 0.23 0.21 0.41 / / / / / / 

AHF 0.21 0.28 0.35 0.78 / / / / / / 

MRSCP 0.24 0.31 0.37 0.72 / / / / / / 

T3 (Figure 6) 

PSNR 

CR-MSS 18.69 17.98 21.28 19.49 20.67 20.85 19.19 20.01 21.59 19.00 

RSC-Net-10 16.39 15.06 16.87 18.59 15.12 19.65 18.11 18.91 20.02 19.49 

U-Net-10 21.49 19.04 19.86 15.10 19.41 15.95 14.26 16.35 18.18 19.00 

Cloud-GAN 14.29 15.66 15.61 16.94 / / / / / / 

AHF 13.01 14.14 16.69 17.99 / / / / / / 

MRSCP 12.43 13.13 13.66 12.31 / / / / / / 

SSIM 

CR-MSS 0.71 0.73 0.74 0.76 0.77 0.78 0.76 0.75 0.81 0.80 

RSC-Net-10 0.60 0.61 0.63 0.77 0.67 0.77 0.77 0.79 0.85 0.82 

U-Net-10 0.70 0.70 0.69 0.72 0.73 0.76 0.74 0.75 0.77 0.78 

Cloud-GAN 0.48 0.57 0.54 0.55 / / / / / / 

AHF 0.69 0.73 0.79 0.80 / / / / / / 

MRSCP 0.62 0.67 0.72 0.72 / / / / / / 

T4 (Figure 7) 

PSNR 

CR-MSS 19.36 19.73 20.64 21.94 22.1 23.61 23.37 21.91 20.84 24.17 

RSC-Net-10 18.43 19.39 19.91 18.9 20.91 21.32 20.68 19.91 22.14 22.9 

U-Net-10 18.19 18.83 19.61 20.37 20.77 22.47 22.09 20.98 22.21 23.88 

Cloud-GAN 16.24 15.85 16.53 18.76 / / / / / / 

AHF 9.55 9.63 10.15 9.71 / / / / / / 

MRSCP 14.13 14.73 15.44 16.52 / / / / / / 

SSIM 

CR-MSS 0.62 0.62 0.67 0.66 0.71 0.74 0.75 0.79 0.84 0.85 

RSC-Net-10 0.56 0.55 0.59 0.56 0.61 0.61 0.61 0.67 0.73 0.77 

U-Net-10 0.53 0.54 0.57 0.6 0.62 0.64 0.66 0.71 0.77 0.79 

Cloud-GAN 0.40 0.41 0.42 0.57 / / / / / / 

AHF 0.31 0.39 0.52 0.58 / / / / / / 

MRSCP 0.18 0.21 0.30 0.40 / / / / / / 

Table 4. Corresponding PSNR and SSIM values of samples in Figure 8 (all real testing image pairs from 5 to 8, Table 2). 

Best results are marked in bold. 

Image Index Method B2 B3 B4 B8 B5 B6 B7 B8A B11 B12 

T5 

(Figure 

8) 

PSNR 

CR-MSS 19.85 18.39 21.17 18.63 20.25 21.14 20.29 17.67 14.98 15.82 

RSC-Net-10 14.42 13.5 16.28 18.73 15.68 17.98 18.74 19.32 17.41 19.36 

U-Net-10 20.02 19.6 20.12 15.94 20.09 17.00 16.21 14.36 12.88 14.10 

Cloud-GAN 7.55 6.71 6.87 10.74 / / / / / / 

AHF 10.05 11.18 14.03 15.55 / / / / / / 
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MRSCP 4.51 5.33 7.25 12.76 / / / / / / 

SSIM 

CR-MSS 0.78 0.77 0.77 0.77 0.84 0.86 0.87 0.86 0.81 0.81 

RSC-Net-10 0.68 0.64 0.71 0.71 0.76 0.78 0.8 0.81 0.8 0.8 

U-Net-10 0.74 0.74 0.70 0.73 0.79 0.79 0.8 0.79 0.73 0.74 

Cloud-GAN 0.32 0.30 0.33 0.38 / / / / / / 

AHF 0.45 0.54 0.70 0.75 / / / / / / 

MRSCP 0.17 0.21 0.34 0.59 / / / / / / 

T6 

(Figure 

8) 

PSNR 

CR-MSS 25.13 22.12 27.54 23.63 23.02 23.56 24.57 24.78 30.29 30.73 

RSC-Net-10 22.92 22.46 25.18 19.97 22.24 20.34 20.74 22.95 23.23 23.88 

U-Net-10 25.04 19.78 26.58 20.66 19.52 18.81 20.6 22.3 24.33 29.25 

Cloud-GAN 16.63 16.53 19.29 14.80 / / / / / / 

AHF 8.87 14.86 14.71 12.49 / / / / / / 

MRSCP 8.44 13.89 13.16 15.71 / / / / / / 

SSIM 

CR-MSS 0.65 0.71 0.80 0.90 0.87 0.91 0.91 0.92 0.96 0.95 

RSC-Net-10 0.66 0.7 0.80 0.89 0.87 0.89 0.9 0.91 0.94 0.93 

U-Net-10 0.65 0.68 0.78 0.87 0.83 0.87 0.89 0.91 0.92 0.92 

Cloud-GAN 0.41 0.46 0.54 0.50 / / / / / / 

AHF 0.28 0.60 0.56 0.67 / / / / / / 

MRSCP 0.40 0.58 0.59 0.83 / / / / / / 

T7 

(Figure 

8) 

PSNR 

CR-MSS 16.73 18.39 16.78 21.57 20.83 23.62 23.54 23.22 22.65 21.84 

RSC-Net-10 14.11 13.82 12.69 22.28 16.3 23.16 23.22 23.17 20.96 18.61 

U-Net-10 15.01 15.06 15.36 23.01 18.56 22.2 22.84 24.41 21.93 21.61 

Cloud-GAN 8.10 8.77 7.57 15.95 / / / / / / 

AHF 9.15 10.88 10.94 15.06 / / / / / / 

MRSCP 3.36 4.35 5.30 13.16 / / / / / / 

SSIM 

CR-MSS 0.61 0.67 0.62 0.83 0.77 0.89 0.90 0.90 0.85 0.80 

RSC-Net-10 0.52 0.58 0.52 0.78 0.74 0.87 0.89 0.89 0.77 0.71 

U-Net-10 0.53 0.56 0.56 0.8 0.70 0.89 0.90 0.90 0.78 0.75 

Cloud-GAN 0.31 0.39 0.33 0.57 / / / / / / 

AHF 0.33 0.51 0.48 0.75 / / / / / / 

MRSCP 0.20 0.25 0.26 0.69 / / / / / / 

T8 

(Figure 

8) 

PSNR 

CR-MSS 22.64 18.66 21.02 20.84 19.16 21.32 21.35 21.55 19.12 22.83 

RSC-Net-10 19.06 19.69 17.82 20.79 19.74 19.45 19.56 19.36 19.78 20.34 

U-Net-10 18.66 18.69 20.14 19.73 18.17 20.20 20.48 20.29 17.85 18.96 

Cloud-GAN 11.26 13.82 13.34 11.33 / / / / / / 

AHF 21.63 13.30 17.91 21.05 / / / / / / 

MRSCP 18.63 16.08 18.27 12.90 / / / / / / 

SSIM 

CR-MSS 0.62 0.57 0.66 0.68 0.59 0.63 0.65 0.65 0.55 0.67 

RSC-Net-10 0.56 0.60 0.69 0.67 0.60 0.62 0.63 0.63 0.55 0.67 

U-Net-10 0.59 0.56 0.65 0.68 0.58 0.62 0.64 0.64 0.56 0.64 

Cloud-GAN 0.34 0.33 0.42 0.31 / / / / / / 

AHF 0.52 0.38 0.59 0.79 / / / / / / 

MRSCP 0.52 0.43 0.61 0.40 / / / / / / 

Table 5 shows the averaged PSNR and SSIM values on each band over all testing 

samples. It can be seen that CR-MSS outperforms the compared methods on SSIM values 

in all bands as well as PSNR values in bands 3/8, and performs almost the same as the best 

methods on PSNR in bands 2/4 (U-Net-10 and RSC-Net-10, respectively). The SSIM values 

illustrate that CR-MSS can preserve more structure information than compared methods. 

Since both U-Net-10 and RSC-Net-10 are end-to-end methods, they achieve good results 
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that are close to the results of CR-MSS. Still, CR-MSS has the advantage of being able to 

restore background information in all bands, not just Vis/NIR bands. 

Table 5. Average PSNR and SSIM values over all eight real testing image pairs from Table 2 (3782 testing samples). Best 

results are marked in bold. 

Index Method B2 B3 B4 B8 B5 B6 B7 B8A B11 B12 

PSNR 

CR-MSS 19.53 18.49 20.29 21.09 19.30 20.70 21.03 21.26 21.62 21.98 

RSC-Net-10 18.11 17.97 19.92 20.68 20.09 20.90 21.03 21.32 21.34 21.41 

U-Net-10 18.68 18.09 19.87 20.68 19.39 20.68 20.97 21.11 20.5 20.79 

Cloud-GAN 15.63 15.23 16.22 15.90 / / / / / / 

AHF 14.72 14.62 16.90 19.22 / / / / / / 

MRSCP 15.13 14.94 16.18 13.15 / / / / / / 

SSIM 

CR-MSS 0.69 0.71 0.77 0.81 0.80 0.82 0.83 0.84 0.85 0.84 

RSC-Net-10 0.66 0.70 0.76 0.80 0.79 0.82 0.83 0.83 0.83 0.84 

U-Net-10 0.67 0.69 0.74 0.79 0.79 0.82 0.83 0.83 0.83 0.82 

Cloud-GAN 0.47 0.49 0.53 0.51 / / / / / / 

AHF 0.49 0.54 0.67 0.77 / / / / / / 

MRSCP 0.47 0.51 0.62 0.55 / / / / / / 

U-Net-10 extracts the features at different levels by max/average pooling and com-

bining these features with skip connections. The different level features are fully used by 

the skip connection, but the neighborhood pixel information is altered in the pooling op-

eration. This is probably the reason why U-Net-10 results are worse than CR-MSS. RSC-

Net-10 uses symmetrical concatenations to preserve the information in cloud-free regions. 

Since it does not down-sample the feature maps, the receptive field of RSC-Net-10 is very 

small, which means the information from long distance neighborhood pixels cannot be 

used to restore background information. Unlike U-Net-10 and RSC-Net-10, CR-MSS 

down-samples the feature maps by convolutional layers with stride = 2, thus preserving 

neighborhood pixel information and keeping a large receptive field. Although Cloud-

GAN does not need paired cloud and cloud-free images, which are very time-saving for 

the generation of training dataset, Cloud-GAN performs the worst on SSIM value among 

all methods. This may be because it not only translates a cloudy image into a cloud-free 

image, but also preserves some texture features from the cloudy image that are used to 

restore the translated cloud-free image back to a cloudy image—and by this operation, the 

retained texture features include cloudy texture features, or the training of the generators, 

ending in a poor location of the optimization landscape. The instability of training adver-

sarial networks also makes it difficult to generate realistic cloud-free images. AHF can 

filter some cloud components, but the low frequency components in background may be 

filtered out as well. MSRCP estimates the incident light by Gaussian filtering, which can 

help to reduce the influence of light but will not help much to remove thin clouds. This is 

the reason why AHF performs better than MSRCP in most cases on thin cloud removal. 

Because clouds have the least effects in SWIR bands, and VRE bands are less influenced 

by clouds than VIS bands, more background information is contained in these bands. By 

taking VRE/SWIR bands into consideration, CR-MSS can restore more information in 

Vis/NIR bands. This is another reason why CR-MSS can always obtain better performance 

on SSIM than compared methods. 

Table 6 shows the computing time for all methods. The deep learning base methods 

are much more efficient than traditional methods. MSRCP takes the longest time, because 

the Gaussian filtering is very time-consuming, especially in such large images as Sentinel-

2. RSC-Net-10 was the fastest method, only outputting 32 feature maps in each convolu-

tional and deconvolutional layer, which reduces a lot of calculations. Although CR-MSS 
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had a longer computing time than compared deep learning-based methods, the difference 

is marginal, and CR-MSS obtained the best performance among all methods in most cases. 

Table 6. Computing time of different cloud removal methods (in minutes and seconds on a Sentinel-2 image with size 

10980 × 10980 pixels. Best results are marked in bold. 

Method CR-MSS RSC-Net-10 U-Net-10 Cloud-GAN AHF MSRCP 

Time 1 min 29 s 0 min 47 s 1 min 19 s 1 min 8 s 5 min 16 s 37 min 24 s 

3.2. Influence of the Temporal Shift between Images 

As mentioned in Section 2.2, the temporal shift between paired cloud and cloud-free 

images is 10 days in all experimental data. Table 7 shows the averaged PSNR and SSIM 

values of all methods on testing samples of different land covers. The highest values are 

marked in bold, and the symbol ‘/’ is used to represent the band that is not included in the 

training and testing. We can see that CR-MSS performs the best for SSIM values on urban 

areas, vegetation areas, and bare land on bands 2/3/4/8, except on band 2 for vegetation, 

which is slightly better for RSC-Net-10. It can be seen that on vegetation areas, CR-MSS 

has five PSNR and three SSIM values that are lower than those of RSC-Net-10 or U-Net-

10, while only 2 PSNR and 1 SSIM values are lower on Urban areas and four PSNR and 

one SSIM values are lower on bare land. This is because during the same temporal shift of 

10 days between training and testing images, the spectral information in 

Vis/NIR/VRE/SWIR bands over vegetation areas changes faster than over the two other 

land cover areas. With VRE/SWIR bands as output, the reference images change more in 

CR-MSS than baseline methods that only process Vis/NIR bands. Therefore, the temporal 

shift on vegetation areas influence the performance of CR-MSS more than baseline meth-

ods. However, it is worth noticing that CR-MSS obtains competitive SSIM values on veg-

etation areas, because SSIM contains the properties of the object structure that will not 

change much in vegetation areas within a short temporal shift. It can also be seen that CR-

MSS obtains the best performance on SSIM values on urban and bare land areas on nine 

out of 10 bands, because the influences of temporal shift on the properties of the object 

structure are much less than on vegetation areas in the same temporal shift. 

Table 7. Average PSNR and SSIM values over different land covers and all eight real testing image pairs from Table 2 

(3782 testing samples). Best results are marked in bold. 

Landcove

r 
Index Method B2 B3 B4 B8 B5 B6 B7 B8A B11 B12 

Urban 

(1st, 2nd, 

5th) 

PSNR 

CR-MSS 17.23 16.93 19.08 21.02 20.74 19.02 20.84 20.90 21.20 21.65 

RSC-

Net-10 
15.89  16.31  18.31  20.43  17.35  19.96  20.55  20.92  20.84  20.98  

U-Net-

10 
16.28  16.71  18.56  20.26  18.49  20.32  20.60  20.54  20.33  20.36  

Cloud-

GAN 
13.58 13.64 14.37 16.60 / / / / / / 

AHF 13.06 13.78 15.68 18.01 / / / / / / 

MRSCP 13.00 13.83 14.30 14.55 / / / / / / 

SSIM 

CR-MSS 0.67 0.69 0.76 0.84 0.80 0.81 0.83 0.84 0.86 0.86 

RSC-

Net-10 
0.67  0.65  0.75  0.80  0.78  0.82  0.83  0.84  0.85  0.85  

U-Net-

10 
0.67  0.64  0.74  0.78  0.79  0.81  0.82  0.83  0.84  0.84  

Cloud-

GAN 
0.45 0.48 0.52 0.50 / / / / / / 
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AHF 0.50 0.56 0.66 0.74 / / / / / / 

MRSCP 0.46 0.53 0.63 0.64 / / / / / / 

Vegeta-

tion 

(6th, 7th, 

8th) 

PSNR 

CR-MSS 21.40 19.30 21.50 21.96 22.08 19.59 21.55 22.42 22.77 23.64 

RSC-

Net-10 
19.08  19.10  21.09  22.78  21.78  23.12  23.25  23.84  22.74  22.40  

U-Net-

10 
18.83  19.88  20.70  21.92  19.83  21.86  22.27  22.78  21.60  21.97  

Cloud-

GAN 
16.77 15.78 17.03 16.43 / / / / / / 

AHF 16.83 15.48 18.09 21.75 / / / / / / 

MRSCP 17.00 15.17 17.84 11.95 / / / / / / 

SSIM 

CR-MSS 0.68 0.70 0.76 0.86 0.83 0.81 0.85 0.87 0.87 0.86 

RSC-

Net-10 
0.70  0.64  0.76  0.83  0.81  0.85  0.86  0.87  0.87  0.86  

U-Net-

10 
0.69  0.67  0.74  0.82  0.80  0.85  0.86  0.87  0.84  0.83  

Cloud-

GAN 
0.45 0.46 0.52 0.50 / / / / / / 

AHF 0.49 0.54 0.67 0.82 / / / / / / 

MRSCP 0.49 0.51 0.63 0.47 / / / / / / 

Bare land 

(3rd, 4th) 

PSNR 

CR-MSS 18.50 18.45 19.10 20.07 20.08 19.32 20.01 20.35 21.10 20.49 

RSC-

Net-10 
18.43  17.85  19.13  17.55  19.56  18.62  18.19  17.78  20.00  20.52  

U-Net-

10 
18.65  18.09  19.03  19.48  19.54  20.15  19.86  19.76  19.51  19.90  

Cloud-

GAN 
14.37 14.94 15.32 14.71 / / / / / / 

AHF 12.73 13.60 14.28 15.45 / / / / / / 

MRSCP 14.75 15.42 16.06 14.31 / / / / / / 

SSIM 

CR-MSS 0.71 0.73 0.75 0.75 0.74 0.76 0.75 0.76 0.80 0.78 

RSC-

Net-10 
0.70  0.68  0.72  0.71  0.75  0.73  0.73  0.74  0.79  0.78  

U-Net-

10 
0.71  0.68  0.71  0.72  0.75  0.74  0.74  0.75  0.78  0.77  

Cloud-

GAN 
0.52 0.54 0.56 0.52 / / / / / / 

AHF 0.48 0.53 0.60 0.67 / / / / / / 

MRSCP 0.50 0.54 0.60 0.59 / / / / / / 

3.3. Influence of VRE/SWIR Bands 

To analyze the influence of the VRE/SWIR bands, we conducted two other experi-

ments with or without VRE/SWIR bands as inputs, and without VRE/SWIR bands as out-

puts. The experiment with Vis/NIR/VRE/SWIR bands as inputs and Vis/NIR bands as out-

puts is called CR-MSS-10-4. The experiment with Vis/NIR bands as inputs and outputs is 

called CR-MSS-4-4. CR-MSS-10-4 has Vis/NIR-In and VRE/SWIR-In in the input branches, 

while CR-MSS-4-4 only has Vis/NIR-In branch. Both CR-MSS-10-4 and CR-MSS-4-4 only 

have Vis/NIR-Out branch. 

Figures 9–12 show cloud removal results of CR-MSS, CR-MSS-10-4 and CR-MSS-4-4 

on four samples from the fifth, sixth, seventh, and eighth real testing pairs. The first and 

second rows show the cloud contaminated image and the corresponding cloud-free im-

age. The following rows show the results of CR-MSS, CR-MSS-10-4, and CR-MSS-4-4, 
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respectively. It can be seen that results on Vis/NIR bands are quite good visually. How-

ever, as shown in Figure 10, the sample (from the sixth testing image pair) contains une-

venly distributed clouds. Thus, the cloud effect in this sample is not completely removed 

by CR-MSS-10-4 and CR-MSS-4-4, while CR-MSS removes clouds in this sample on all 

experimental bands. 

Figure 12 shows a sample (from the eighth testing image pair) affected by cloud shad-

ows. It can be seen that the effect of cloud shadow is removed by CR-MSS, CR-MSS-10-4, 

and CR-MSS-4-4. The results on other four samples from the first, second, third, and 

fourth testing pairs are presented in Figure 13. The first two columns are the cloud con-

taminated image and corresponding cloud-free image. The last three columns are the re-

sults of CR-MSS, CR-MSS-10-4, and CR-MSS-4-4. It can be seen that most of the clouds 

over different land cover types can be removed by all CR-MSS-based methods. It can be 

seen that CR-MSS-based methods try to restore the original background information in 

the cloudy image, rather than directly transferring the cloudy image into the reference 

image 10 days apart from the input cloud image. 

Table 8 shows corresponding PSNR and SSIM values of Figures 9–12. The average 

PSNR and SSIM values of real samples in Figure 13 and all 3782 real testing samples are 

listed in Tables 9 and 10, respectively. From Tables 8–10, we can see that the performances 

of CR-MSS are better than CR-MSS-10-4 and CR-MSS-4-4 most of the time. However, the 

PSNR and SSIM values of all CR-MSS-based methods are similar. Although CR-MSS-10-

4 has the same input bands as CR-MSS, CR-MSS obtains better results on most bands. This 

is because the output of CR-MSS contains VRE/SWIR bands, which are not included in 

the output of CR-MSS-10-4, and the restoration of VRE/SWIR bands can add more super-

vision information on the training of CR-MSS than the restoration of Vis/NIR bands. CR-

MSS-4-4 with only Vis/NIR bands as inputs and outputs performs the worst among all 

CR-MSS-based methods. This is because a lot of background information is damaged by 

clouds on visible bands. Although NIR band is less affected by clouds than Vis bands, the 

information it contains is limited and less than bands 8A/11/12 combined. Thus, CR-MSS 

and CR-MSS-10-4 obtain slightly better results than CR-MSS-4-4. 

Table 8. Corresponding PSNR and SSIM values of four real samples in Figure 9–12. Best results are marked in bold. 

Image Index Method B2 B3 B4 B8 B5 B6 B7 B8A B11 B12 

Figure 9 

PSNR 

CR-MSS 17.40 17.07 17.95 20.74 21.21 17.45 19.73 21.98 19.30 18.00 

CR-MSS-10-4 15.12 13.91 16.06 19.57 / / / / / / 

CR-MSS-4-4 14.11 13.72 14.80 20.16 / / / / / / 

SSIM 

CR-MSS 0.67 0.69 0.75 0.88 0.81 0.83 0.86 0.89 0.87 0.84 

CR-MSS-10-4 0.64 0.64 0.74 0.82 / / / / / / 

CR-MSS-4-4 0.62 0.63 0.71 0.82 / / / / / / 

Figure 10 

PSNR 

CR-MSS 21.28 19.24 21.65 22.87 22.62 19.41 22.15 23.12 26.39 25.03 

CR-MSS-10-4 19.83 18.71 20.18 22.46 / / / / / / 

CR-MSS-4-4 19.58 18.38 20.11 20.91 / / / / / / 

SSIM 

CR-MSS 0.70 0.69 0.81 0.88 0.88 0.79 0.87 0.88 0.92 0.92 

CR-MSS-10-4 0.69 0.69 0.81 0.88 / / / / / / 

CR-MSS-4-4 0.69 0.69 0.79 0.87 / / / / / / 

Figure 11 

PSNR 

CR-MSS 23.56 21.75 24.84 24.24 23.54 22.89 23.15 24.72 23.08 20.41 

CR-MSS-10-4 26.20 23.51 24.91 23.08 / / / / / / 

CR-MSS-4-4 27.71 25.19 22.63 23.15 / / / / / / 

SSIM 

CR-MSS 0.73 0.72 0.76 0.91 0.83 0.85 0.90 0.91 0.91 0.88 

CR-MSS-10-4 0.75 0.73 0.78 0.81 / / / / / / 

CR-MSS-4-4 0.77 0.73 0.75 0.82 / / / / / / 

Figure 12 PSNR 
CR-MSS 19.83 21.41 21.91 22.59 22.09 22.56 22.44 22.60 18.39 21.72 

CR-MSS-10-4 21.68 21.45 20.65 22.07 / / / / / / 
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CR-MSS-4-4 18.52 21.31 21.63 21.11 / / / / / / 

SSIM 

CR-MSS 0.65 0.67 0.78 0.78 0.75 0.73 0.77 0.78 0.79 0.84 

CR-MSS-10-4 0.70 0.68 0.77 0.77 / / / / / / 

CR-MSS-4-4 0.65 0.70 0.78 0.78 / / / / / / 

Table 9. Average PSNR and SSIM values of four real samples in Figure 13. Best results are marked in bold. 

Index Method B2 B3 B4 B8 B5 B6 B7 B8A B11 B12 

PSNR 

CR-MSS 19.85 19.83 22.18 23.50 23.29 22.22 23.93 23.56 23.36 24.77 

CR-MSS-10-4 18.87 18.58 20.42 22.87 / / / / / / 

CR-MSS-4-4 18.89 18.93 20.23 23.23 / / / / / / 

SSIM 

CR-MSS 0.73 0.74 0.77 0.85 0.80 0.84 0.85 0.86 0.88 0.86 

CR-MSS-10-4 0.73 0.75 0.77 0.78 / / / / / / 

CR-MSS-4-4 0.70 0.71 0.73 0.78 / / / / / / 

Table 10. Average PSNR and SSIM values over all eight real testing image pairs from Table 2 (3782 testing samples). 

Best results are marked in bold. 

Index Method B2 B3 B4 B8 B5 B6 B7 B8A B11 B12 

PSNR 

CR-MSS 19.53 18.49 20.29 21.09 19/30 20.70 21.03 21.26 21.62 21.98 

CR-MSS-10-4 19.50 18.47 20.34 20.86 / / / / / / 

CR-MSS-4-4 19.43 18.30 20.03 20.56 / / / / / / 

SSIM 

CR-MSS 0.69 0.71 0.77 0.81 0.80 0.82 0.83 0.84 0.85 0.84 

CR-MSS-10-4 0.69 0.71 0.77 0.80 / / / / / / 

CR-MSS-4-4 0.69 0.71 0.76 0.79 / / / / / / 

As the results of different methods and different number of input bands show, CR-

MSS can achieve the best performance in these experiments on most bands. SSIM values 

of CR-MSS on VRE/NIR/SWIR bands are more acceptable than those on visible bands. 

This means that the cloud effect is less in bands VRE/NIR/SWIR than visible bands, which 

is the reason why CR-MSS is designed to take multi-spectral images as input. With more 

input and output bands, CR-MSS can make full use of the spectral information to restore 

cloud contaminated images. 

Comparing results from Tables 4 and 10, it can be seen how well CR-MSS based 

methods perform on average over the eight testing image pairs compared to baseline 

methods when using the same input and output bands. For every Vis/NIR band taken 

separately, CR-MSS-4-4 has a PSNR slightly lower but close to each best result among the 

baseline methods. As it comes to SSIM values, CR-MSS-4-4 outperforms every baseline 

method on every Vis/NIR band. This demonstrates that, even when restricted to visible 

and NIR bands, the proposed CR-MSS method performs similarly well or better than base-

line methods, depending on the measure. One of the main advantages of CR-MSS method 

remains its capability to handle more than visible and NIR bands seamlessly, as well as 

the ability to further improve results on visible and NIR bands when adding other bands 

as inputs. 

As can be seen in Figures 4–13 and Tables 3, 4, 7, and 8, all methods perform best on 

vegetation areas under thin clouds, but worst on urban areas under thin clouds. This is 

because urban area has more textures than vegetation area, and the details of complex 

textures in images are very difficult to restore in many image processing tasks. 

3.4. Spectral Preservation on Simulated Data 

As explained in Section 3.1, we applied all methods to simulated cloud images and 

then computed NRMSE values between cloud removal results and real cloud-free images. 

The average NRMSE values in each band over all eight simulated cloud testing samples 

are shown in Table 11. The best values are marked in bold. The lower the NRMSE value, 
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the more spectral information is preserved. It can be seen that the lowest NRMSE values 

for bands 3/4/5/6/11/12 fall in CR-MSS based methods, while U-Net-10 performs better for 

band 2, and RSC-Net performs better for bands 7/8/8A. Cloud-GAN obtains the worst 

performance on spectral preservation; this may be because Cloud-GAN is a cycle network 

designed for image style transformation, which preserves more texture information than 

spectral information. 

Table 11. Average NRMSE values over all eight simulated testing image pairs (3782 simulated testing samples). Best 

results are marked in bold. 

Index Method B2 B3 B4 B8 B5 B6 B7 B8A B11 B12 

NRMSE 

CR-MSS 0.5697 0.2830 0.2382 0.0190 0.0767 0.0298 0.0249 0.0161 0.0123 0.0221 

CR-MSS-10-4 0.5873 0.2840 0.2182 0.0194 / / / / / / 

CR-MSS-4-4 0.4762 0.2335 0.2408 0.0208 / / / / / / 

RSC-Net-10 0.6244 0.3216 0.3114 0.0177 0.1008 0.0325 0.0239 0.0101 0.0163 0.0337 

U-Net-10 0.4279 0.2621 0.2210 0.0249 0.0938 0.0352 0.0316 0.0220 0.0289 0.0594 

Cloud-GAN 1.3156 0.5831 1.1778 0.0785 / / / / / / 

AHF 0.7123 0.2666 0.3874 0.0952 / / / / / / 

MSRCP 1.1203 0.4694 0.8262 0.0615 / / / / / / 

4. Discussion 

From the experimental results on the real image dataset, we can see that most of the 

time, CR-MSS performs the best qualitatively and quantitatively. This is because CR-MSS 

takes VRE/SWIR bands into consideration when removing cloud in Vis/NIR bands, which 

is not available in other deep learning-based cloud removal methods in remote sensing 

images, e.g., Cloud-GAN [64] and CGAN [65] only process RGB bands. Some methods 

such as Qin et al. [61] and RSC-Net-10 [62] take SWIR bands in Landsat-8 images as input 

when removing cloud, but it can only handle the images at the same spatial resolution. 

Although VRE/SWIR bands have lower spatial resolution than Vis/NIR bands in Sentinel-

2A images, they are less influenced by cloud than Vis/NIR bands. Similar to super resolu-

tion reconstruction, CR-MSS can make full use of the less influenced low spatial resolution 

VRE/SWIR bands to reconstruct the missing information in much influenced high spatial 

resolution Vis/NIR bands. Therefore, CR-MSS can also be considered as a combination of 

cloud removal and super resolution reconstruction. 

Experimental results on the simulated dataset show CR-MSS based methods can pre-

serve more spectral information than baseline methods on most bands in simulated cloud 

images. We understand this simulated cloud dataset is not perfect, and these results 

should be taken only for their comparative value, not as an indication of how the proposed 

method would perform on a real dataset. This was just a complementary experiment to 

quantitatively assess spectral preservation in a way the real cloud dataset could not. 

In Meraner et at. [49], Sentinel-2 low spatial resolution bands were first rescaled to 10 

m resolution and then processed with Vis/NIR bands and Sentinel-1 SAR images. A hand 

designed rescaling algorithm was adopted in Meraner et at. [49] to rescale all data to the 

same resolution. Hand designed rescaling algorithms such as Nearest neighbor, Bilinear, 

and Cubic convolution have at least one inevitable drawback: the parameters in the algo-

rithms are not optimal for specific tasks. This drawback can be avoided by training the 

convolution neural network to learn optimal parameters for specific tasks such as cloud 

removal automatically. Therefore, convolutional layers were adopted to handle multi-

spectral bands at different spatial resolution in CR-MSS, and up-sampling low spatial res-

olution bands to high resolution is not necessary anymore. In addition, up-sampling low 

spatial resolution bands to high resolution will not produce more useful spatial infor-

mation when real high resolution bands are already available and introduce more spectral 

information. 
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Since single image based cloud removal methods can hardly remove the influence of 

clouds completely, many multi-temporal based methods have been proposed to solve this 

problem. Multi-temporal cloud removal methods usually include three steps: first, select 

a time series images in the same region as the experimental data; then the cloud regions 

in each image are detected; finally, the cloud-free regions are mosaicked to get a com-

pletely cloud-free image. If the spectral information of each cloud-free regions in the mo-

saicked image are not consistent with each other, radiometric harmonization across the 

temporal stack will be conducted to solve this problem. Although the components in the 

mosaicked cloud-free image are completely cloud-free, there are still some limitations to 

the multi-temporal based methods. (1) Accurate cloud masks are necessary for each image 

in the multi-temporal stack; those masks are difficult to obtain, especially for thin clouds, 

and any labelling error compounds across the temporal stack. (2) Time series images used 

in the methods are acquired at different times, which means the ground information in 

the mosaicked cloud-free image is not consistent in time. (3) The longest time period of 

the time series images depends on the revisit time of the satellite and weather conditions: 

the longer the time period, the less meaningful the result is. (4) Multi-temporal cloud re-

moval methods usually require more input data ad processing than single-image meth-

ods. They are naturally justified as part of a whole multi-temporal chain including, e.g., 

multi-temporal classification or time series analysis. However, if the end application can 

be achieved with single image (e.g., classification) or dual images (bi-temporal change 

detection), often single-image cloud removal methods are still preferred in practice for 

their ease of use. 

Although there are many complex and effective deep learning-based networks in the 

image processing field, U-Net architecture is the most widely adopted in image in-paint-

ing, image de-hazing, and image super resolution due to its simplicity and effectiveness. 

In view of this, CR-MSS adopted U-Net as the main architecture, with some modifications, 

so that it can be used for handling multispectral satellite images at different spatial reso-

lutions. As a result, CR-MSS remains a relatively simple deep learning model that is easy 

to understand, implement, and deploy in operational conditions. CR-MSS was designed 

for thin cloud removal; however, it can also be easily applied to other remote sensing im-

age processing tasks such as cloud detection and semantic segmentation, due to the sim-

plicity and effectivity inherited from U-Net. 

5. Conclusions 

In this paper, we proposed a thin cloud removal method, CR-MSS, which used the 

VRE/SWIR spectral information to better restore the original background information 

contaminated by thin clouds in Vis/NIR bands in Sentinel-2A images. CR-MSS takes 

Vis/NIR and VRE/SWIR bands of Sentinel-2A images as inputs, grouped into two images 

at 10 m resolution and 20 m resolution, and fed into separated input/output branches 

without rescaling low spatial bands to high resolution by hand designed rescaling algo-

rithm. Compared with baseline methods on real and simulated testing datasets, CRMSS 

can achieve better overall performance for texture and spectral information preservation 

both qualitatively and quantitatively. Ablation experiments were also conducted to ana-

lyze the influence of VRE/SWIR bands on the performance of thin cloud removal in Sen-

tinel-2A images. The experiment results show that even VRE/SWIR bands have lower spa-

tial resolution than Vis/NIR bands; their spectral information can help restore the cloud 

contaminated pixels in Vis/NIR bands. Additionally, adding VRE/SWIR bands into input 

and output, CRMSS performs better than only adding VRE/SWIR bands as input. The 

quantitative results derived from the simulation experiment showed CR-MSS based meth-

ods can preserve more spectral information than all baseline methods in bands 2/3/4/8. 

In future work, we will improve and apply CR-MSS thin cloud removal to other op-

tical satellites that acquire multispectral images with bands at different spatial resolutions 

(such as CBERS-04 and ZY-1 02D). We will also modify CR-MSS so that it can be applied 

to other remote sensing image processing tasks such as cloud detection and semantic 
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segmentation. The combination of generative adversarial networks and CR-MSS will also 

be taken into consideration to remove clouds in a semi-supervised way. 
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