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Abstract: In this paper, superpixel features and extended multi-attribute profiles (EMAPs) are em-
bedded in a multiple kernel learning framework to simultaneously exploit the local and multiscale
information in both spatial and spectral dimensions for hyperspectral image (HSI) classification.
First, the original HSI is reduced to three principal components in the spectral domain using prin-
cipal component analysis (PCA). Then, a fast and efficient segmentation algorithm named simple
linear iterative clustering is utilized to segment the principal components into a certain number of
superpixels. By setting different numbers of superpixels, a set of multiscale homogenous regional
features is extracted. Based on those extracted superpixels and their first-order adjacent superpixels,
EMAPs with multimodal features are extracted and embedded into the multiple kernel framework to
generate different spatial and spectral kernels. Finally, a PCA-based kernel learning algorithm is used
to learn an optimal kernel that contains multiscale and multimodal information. The experimental
results on two well-known datasets validate the effectiveness and efficiency of the proposed method
compared with several state-of-the-art HSI classifiers.

Keywords: hyperspectral classification; extended multi-attribute profiles; multiple kernel learning;
superpixel segmentation

1. Introduction

At present, hyperspectral images (HSIs) are attracting increasing attention. With the
fast iteration of hyperspectral sensors, researchers can easily collect a large amount of
HSI data having high spatial resolution and multiple bands that form high-dimensional
features, such as complex and fine geometrical structures [1,2]. These characteristics
encourage the wide use of HSIs for various thematic applications, such as military object
detection, precision agriculture [3], biomedical technology, and geological and terrain
exploration [4,5]. As one of the basic methods for the above applications, HSI classification
plays an important role and has made certain developments in the past few decades [6].

Many classic machine learning methods can be directly applied to the classification of
HSIs, such as naive Bayes, decision trees, K-nearest neighbor (KNN), wavelet analysis, sup-
port vector machines (SVMs), random forest (RF), regression trees, ensemble advancement,
and linear regression [7–9]. However, these methods either treat the HSI as a combination
of several hundreds of gray images and extract the corresponding features for classification
or use only spectral features for classification, thus producing unsatisfactory results [6].

Remote Sens. 2021, 13, 50. https://dx.doi.org/10.3390/rs13010050 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1395-6805
https://orcid.org/0000-0001-6465-8678
https://dx.doi.org/10.3390/rs13010050
https://dx.doi.org/10.3390/rs13010050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/rs13010050
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/1/50?type=check_update&version=2


Remote Sens. 2021, 13, 50 2 of 19

Recently, classification methods for HSIs based on sparse representation have at-
tracted the attention of researchers [10]. Many well-performing sparse representation
classification (SRC) methods have been developed. SRC assumes that each spectrum can
be sparsely represented by spectra belonging to the same class and then obtains a good
approximation of the original data through a corresponding algorithm [11,12]. Therefore,
more and more scholars have used the sparse representation technique to conduct HSI
classification. Due to the irrationality of the traditional joint KNN algorithm for setting
the same weights in the same region, Tu et al. proposed a weighted joint nearest neighbor
sparse representation algorithm [13]. Later, a self-paced joint sparse representation (SPJSR)
model was proposed. The least-squares loss used in the classical joint sparse represen-
tation model was changed to a weighted least-squares loss, and a self-paced learning
strategy was employed to automatically determine the weights of the adjacent pixels [14].
Because different scales of a region in an HSI contain complementary and correlated knowl-
edge, Fang et al. proposed an adaptive sparse representation method using a multiscale
strategy [15]. To make full utilization of the spatial correlation of HSI and improve the
classification accuracy, in [16], Dundar et al. proposed a multiscale superpixel and guided
filter-based spatial-spectral HSI classification method. However, when the sample size
is small, SRC will ignore the cooperative representation of other categories of samples,
resulting in an incomplete dictionary for each category of samples, which produces a
larger residual in the results. To alleviate this problem, the cooperative representation
method (CRC) was presented by researchers. Compared to SRC, the L2 norm used by
the CRC not only has discriminability like that of SRC, but also has lower computational
complexity. Using the collaborative representation, Jia et al. proposed a multiscale
superpixel-based classification method [17]. To further improve the accuracy of HSI classifi-
cation, Yang et al. proposed a joint collaborative representation method using a multiscale
strategy and a locally adaptive dictionary [18]. Considering the correlation between differ-
ent classes of HSIs, with the assistance of Tikhonov regularization, a discriminative kernel
collaborative representation method was proposed by Ma et al. [19] that utilized nuclear
collaborative representation for HSI classification. More recently, low rank representation
(LRR) has been studied by scholars in the field of HSI classification. To fully exploit the local
geometric structure in the data, Wang et al. proposed a novel LRR model with regularized
locality and structure [20]. Meanwhile, a new self-supervised low-rank representation
algorithm was proposed by Wang et al. for further improvement of HSI classification [21].
Moreover, Ding et al. proposed a sparse low-rank representation method that relied on
key connectivity for HSI classification [22]. This study combined low-rank representa-
tion and sparse representation while retaining the connectivity of key representations
within classes. To decrease the impact of spectral variation on subsequent spectral anal-
yses, Mei et al. conducted anti-coagulation research within coherent spatial and spectral
low-rank representation, which effectively suppressed the class spectral variations [23].

As one of the hottest feature extraction techniques, deep learning has made excel-
lent progress in computer vision and image processing applications [24–27]. Currently,
deep learning is also becoming more popular in the field of HSI classification [28]. HSI data
consist of multi-dimensional spectral cubes that contain much useful information, so the
intrinsic features of the image are easily extracted by deep learning techniques [29]. For in-
stance, the currently popular convolutional neural network (CNN) model has produced
excellent HSI classification results [30,31]. In addition, some improved HSI classification
methods have been proposed based on deep learning. For instance, by combining active
learning and deep neural networks, Liu et al. proposed an effective framework for HSI
classification, where the deep belief network (DBN) was employed to extract the deep
features hidden in the spectral dimension [32]. Then, a learning classifier was used to
refine those training samples to boost their quality. Zhong et al. further enhanced the
DBN model and proposed a diversified DBN model [33]. In their design, the pre-training
and tuning procedures of the DBN were regularized to achieve better classification accu-
racy. Moreover, 1D CNN [34,35] and 1D generative antagonistic networks [36,37] were also
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employed to describe the spectral features of the HSI. However, deep learning methods
also have some problems; for example, they usually need many training samples, and the
extracted features are not always interpretable. Therefore, the trend of subsequent research
is to combine traditional feature extraction methods with deep learning methods to obtain
more accurate classification results.

Another, more powerful classification technique for the HSI is the kernel method, espe-
cially the composite kernel (CK) method. In the actual classification process, samples in the
original space are often not linearly separable [38]. Therefore, to solve the problem of linear
inseparability, the kernel method is used to map the samples to a higher dimensional fea-
ture space so that the samples are linearly separable [39]. Certainly, the performance of the
kernel method depends largely on the kernel selection. For example, the Gaussian kernel
and the polynomial kernel are common kernels, and they are often not flexible enough to
reflect the comprehensive features of the data [40]. Moreover, with increasing requirements
of classification accuracy, a single kernel with a specific function cannot deliver a satisfac-
tory result [41]. To solve this problem, the CK was proposed. It combines two or more
different features, such as the global and local kernel, or the local kernel and spectral kernel,
into a kernel composition framework for HSI classification [42]. Sun et al. proposed a CK
classification method using spatial-spectral information and abundance information in the
HSI [43]. For intrinsic image decomposition of the HSI, Jin et al. put forward a new opti-
mization algorithm, and the CK learning method was then utilized to combine reflectance
with the shading component [44]. Furthermore, Chen et al. proposed a spatial-spectral com-
posite feature broad learning system classification method [45]. This method inherits the
advantages of a broad learning system and is well-suited to multi-class tasks. As the most
widely-used classier, SVM can also bring excellent classification accuracy to the HSI [46].
Huang et al. proposed an SVM-based method for HSI classification [47]. In this work,
weighted mean reconstruction and CKs were combined to explore the spatial-spectral
information in the HSI. With the continuous development of superpixel segmentation
technology, Duan et al. further improved edge-preserving features by considering the
inter- and intra-spectral properties of superpixels and formed one CK for the spectral and
edge-preserving features [48]. Because the HSI contains many spectral bands, mapping
the high-dimensional data to achieve improved classification speed has been of great
concern in recent years. To address this problem, Tajiri et al. proposed a fast patch-free
global learning kernel method based on a CK method [49]. Compared with the original
single-kernel method, the CK function has the following obvious advantages: (1) it maps
the data into a complex nonlinear space to extract more useful information and make the
data separable; (2) it provides the flexibility to include multiple and multimodal features.

Different from a CK in which only one kernel function is constructed to contain both
spatial and spectral information, the spatial-spectral kernel (SSK) constructs two clus-
ters in kernel space, thus capturing the hidden manifold in the HSI [50]. For example,
the spatial-spectral weighted kernel embedded manifold distribution alignment method
constructs a complex kernel with different weights for the spatial kernel and the spectral
kernel [51]. The spatial-spectral multiple-kernel learning method utilizes extended mor-
phological profiles (EMPs) as spatial features and the original spectra as spectral features.
In this way, multiscale spatial and spectral kernel methods are formed [52]. In addition,
the joint classification methods for HSIs based on spatial-spectral kernels and multi-feature
fusion are especially suitable for a limited number of training samples [53]. Generally,
the CK method and the SSK method adopt square windows or superpixel technology to
extract spatial information. However, both methods may misclassify the pixels at the class
boundary. To alleviate this problem, several methods for selecting adaptive neighborhood
pixels to construct the spatial-spectral kernel have been proposed, which further improved
classification performance [54,55]. For those CK or SSK methods, determining the weights
of the base kernels is another difficult and urgent challenge. Therefore, many scholars
have proposed multiple kernel learning methods, where the core idea is to obtain a linear
optimal combination of those base kernels using an optimization algorithm [56–58].
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In this study, following the line of the multiple kernel learning framework, we propose
a novel multiscale, adjacent superpixel-based embedded multiple kernel learning method
with the extended multi-attribute profile (MASEMAP-MKL) for HSI classification. The
proposed method makes full use of superpixels and the EMAP to exploit multiscale and
multimodal spatial and spectral features for the generation of multiple kernels. For the
spatial information, both the superpixel and its first-order neighborhood superpixels are
utilized to extract geometric features at different scales and combine the EMAP features
to construct different base kernels. Finally, a principal component analysis (PCA)-based
multiple kernel learning method is employed to determine the optimal weights of the base
kernels. The main contributions of the proposed MASEMAP-MKL method are summarized
as follows.

• The superpixel segmentation is used to extract geometric structure information in the
HSI, and multiscale spatial information is simultaneously extracted according to the
number of superpixels. In addition, the spectral feature of each pixel is replaced by
the average of all the spectra in its superpixel, which is used to construct a superpixel-
based mean spectral kernel.

• The EMAP features, together with the multiscale superpixels and the adjacent super-
pixels obtained above, are used to construct the superpixel morphological kernel and
the adjacent superpixel morphological kernel. At this stage, multiscale features and
multimodal features are fused together to construct three different kernels for classifi-
cation.

• The multiple kernel learning technique is used to obtain the optimal kernel for HSI
classification, which is a linear combination of all the above kernels.

• An experimental evaluation with two well-known datasets illustrates the compu-
tational efficiency and quantitative superiority of the proposed MASEMAP-MKL
method in terms of all classification accuracies.

2. Materials and Methods
2.1. Preliminary Formulation
2.1.1. Kernelized Support Vector Machine

As a two class classification model, the basic principle of SVM is to classify data by
solving the convex quadratic programming problem in the feature space. The kernelized
SVM introduces a kernel function based on the SVM, which simplifies the calculation
of the complicated vector inner product in the original space and directly calculates the
inner product in the feature space. Specifically, given a set of labeled samples in HSIs,
i.e., {(x1, y1), (x2, y2), ..., (xN , yN)}, where xi ∈ RL×1 is the i-th labeled spectrum and L
is the number of bands, yi ∈ {−1, 1} for i ∈ {1, 2, ..., N}, and N is the number of all
labeled samples in the scene. Therefore, the classification function of the kernelized SVM is
formulated as:

f (x) =
N

∑
i=1

αiyiK(xi, x) + b (1)

where α denotes the Lagrangian duality parameter, K(xi, x) denotes a kernel function,
and b denotes the bias parameter. Then, we obtain the objective function as:

argmax
α

N

∑
i=1

αi −
1
2

N

∑
i,j=1

αiαjyiyjK(xi, xj)

s.t., 0 ≤ αi ≤ β, i = 1, ..., n
N

∑
i=1

αiyi = 0

(2)

where β is a parameter that controls the weight between two items in the objective function
(e.g., to find the hyperplane with the largest margin and to guarantee the smallest deviation
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of the data points). Usually, the value of β is determined manually and in advance.
Under the above two constraint conditions, the most suitable values of α and l are obtained
to get an optimal classifier. Our commonly used kernel functions are as follows.

The first one is the Gaussian kernel function:

K(xi, xj) = exp

{
−
||xi − xj||22

2σ2

}
(3)

This kernel function maps the original space to an infinite-dimensional space. We can
control the mapping dimension flexibly by adjusting the value of parameter σ.

The second kernel function is the polynomial kernel function:

K(xi, xj) = (αxT
i xj + C)d (4)

where C denotes an offset parameter and d is an integer. We can change the dimension
of the mapping by setting the value of d. When the value of d is one, the kernel function
degrades to a linear kernel function. The linear kernel function is actually an SVM in the
case of linear separability, which can only process linear data. In this situation, the classifier
degrades to the most primitive SVM.

2.1.2. Superpixel Segmentation

A superpixel is a sub-region of the image that is local, consistent, and able to maintain
certain local structural characteristics of the image. Superpixel segmentation is the process
of aggregating pixels into a superpixel. Compared with a pixel, the basic unit of traditional
processing methods, a superpixel is not only more conducive to the extraction of local
features and the expression of structural information, but can also greatly reduce the
computational complexity of subsequent processing. Achanta and others proposed simple
linear iterative clustering (SLIC), which is based on the relationship between color similarity
and spatial distance [59]. Firstly, J initial clustering centers are uniformly initialized in the
image, and all pixels are labeled with the nearest cluster center. Therefore, the normalized
distance based on color and spatial location features is:

d(i, j) =

√√√√(∥∥ci − cj
∥∥

nc

)2

+

(∥∥si − sj
∥∥

ns

)2

(5)

In the formula, vector c represents the 3D color feature vector in the CIELAB color
space. The vector s represents the two-dimensional spatial position coordinates. The sub-
script j = 1, 2, · · · , J is the label of the cluster center. The subscript i is the pixel label in the
2 s × 2 s neighborhood corresponding to the cluster center j, and s =

√
N/J, where N is

the total number of image pixels. nc and ns are normalization constants for the color and
space distance, respectively. After the initial clustering, the clustering center ϕj is updated
iteratively according to the mean values of all the pixels’ color and spatial features in the
corresponding clustering HSI block Gj.

ϕj =
1
nj

∑
i∈Gj

[
ci
si

]
(6)

where nj is the number of pixels in the image block Gj. This formula iteratively clusters
and updates until the termination conditions are met. Finally, a neighbor merging strategy
is used to eliminate the isolated small size superpixels, which ensures the compactness of
the results.
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2.1.3. EMAP

Based on mathematical morphology, Mauro et al. [60] proposed a method using
the EMAP and independent component analysis. Compared with PCA, this method
is more suitable for modeling the different information sources in the scene, and the
classification accuracy obtained is higher. Later, Stijn et al. [61] proposed computing
extended attribute profiles (EAPs) on features derived from supervised feature extraction
methods. Song et al. [62] proposed a new image data classification strategy-decision fusion
method that combines a complete classifier with extended multi-attribute morphological
profiles to optimize the classification results.

The attribute profile (AP) is an extension of the morphological profile (MP), which is
obtained by processing a scalar grayscale image f (such as each band image of an HSI or
one principal component (PC) of an HSI), according to a criterion t with morphological
attribute thickening (φt) and n attribute thinning (γt) operators:

AP( f ) =
{

φt
n( f ), φt

n−1( f ), ..., φt
1( f ), f , γt

1( f ), ..., γt
n−1( f ), γt

n( f )
}

(7)

Analogous to the definition of the extended MPs (EMPs), EAPs are generated by
concatenating many APs. Each AP is computed on one of the q PCs extracted by the PCA
of an HSI:

EAP =
{

AP(PC1), AP(PC2), ..., AP(PCq)
}

(8)

An EMAP is composed of m different EAPs based on different attributes (a1, a2, ..., am):

EMAP = {EAPa1 , EAPa2 , ..., EAPam} (9)

where EAPai = EAPai /
{

PC1, PC2, ..., PCq
}

means calculating the EAPon each PC of the
HSI with attribute ai. The value of q is usually set to be smaller than three. Three attributes,
i.e., area, inertia, and the standard deviation, are used in the proposed method to extract
different spatial information from the HSI.

2.1.4. CK

The CK usually takes the spectral mean or the variance of the neighborhood pixels
as the spatial spectral characteristics and then forms the CK through the following core
combination methods.

(1) Stacked characteristic kernel: In this design, both the spectral and spatial features
are directly stacked together as sample features.

Ks,w
CK = K(xi, xj) =< φ(xi), φ(xj) > (10)

(2) Direct addition kernel: The spatial feature after nonlinear mapping is juxtaposed
with the spectral feature as the feature of a high-dimensional space.

KCK(xi, xj) =< φ(xi), φ(xj) >

=< φ1(x
spe
i ), φ2(x

spa
i ), φ1(x

spe
j ), φ2(x

spa
j ) >

= Ks(xspe
i , xspe

j ) + Kw(xspa
i , xspa

j )

(11)

(3) Weighted summation kernel: By assigning different weights to the spatial and
spectral features, µ is the weight parameter of the balanced spatial and spectral
kernel. The weighted summation kernel can be constructed as follows:

KCK(xi, xj) = µKs(xspe
i , xspe

j ) + (1− µ)Kw(xspa
i , xspa

j ) (12)

2.2. The Proposed MASEMAP-MKL Method

In this section, we propose a novel multiscale adjacent superpixel-based EMAP em-
bedded multiple kernel learning method named MASEMAP-MKL for HSI classification.
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The flowchart of the proposed MASEMAP-MKL is shown in Figure 1. Two steps are
performed as follows.

PCA

Original

HSI
PCA 3 bands

Multi-Scale

Segmentation

.

.

.

Scale 1

Scale 2

Scale n

Adjacent Superpixel 

system

EMAP

EAP_a

EAP_i

EAP_std

Scale 1

Scale 2

Scale n

Multiple Kernel Learning

Base kernel    k1

Base kernel    k2

Base kernel    kn

.

.

.

⊕ 

SVM
Classification

Embedded
Combination K 

EMAP

⊕ 

Sp-EMAP

.

.

.

ASp-EMAP

.

.

.

0
1 2

5
3

4

Mean spectra 
in Sp

.

.

.

Figure 1. Flowchart of the proposed multiscale, adjacent superpixel-based embedded multiple kernel
learning method with the extended multi-attribute profile (MASEMAP-MKL) method.

2.2.1. Adjacent Superpixel-Based EMAP Generation

The first step is the generation of the adjacent superpixel-based EMAP. Three different
image features, i.e., the mean superpixel spectral feature, the superpixel morphological
feature, and the adjacent superpixel morphological feature, are given.

(1) Superpixel-based mean spectral feature:

After superpixel segmentation, the PC images are divided as sp = {sp1, sp2, · · · spJ},
where J is the number of superpixels. We employ the local mean operator to obtain the
superpixel-based mean spectral feature of a given spectrum in spi, which is formulated as:

xsp−mean
i =

ni

∑
j=1

xj/ni,

xj ∈ spi

(13)
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where ni is the number of pixels in the i-th superpixel. Therefore, after implementing
the local mean operator for all superpixels, the obtained average features constitute the
superpixel-based mean spectral feature of the HSI.

(2) Superpixel-based morphological feature:

Enforcing the EMAP feature extraction operation on the segmented multiscale super-
pixel produces the superpixel morphological feature:

xsp−EMAP
i =

ni

∑
i=1

xEMAP
i

/
ni (14)

where xEMAP
i represents the EMAP feature vector. The superpixel morphological feature

inherits the advantages of superpixel segmentation and morphological features at the same
time and achieves a more thorough description of spatial information during classification.

(3) Adjacent superpixel-based morphological feature:

Based on the superpixel morphological feature, we further empower the adjacent
superpixel strategy to obtain adjacent superpixel morphological features; thus, the fusion
of multiscale feature and multimodal features is realized for classification. The adjacent
superpixel set is defined as:

xasp
i = {xsp1

i , xsp2
i , · · · xspr

i } (15)

where r is the number of adjacent superpixels with respect to the central superpixel xspi
i .

Because the mean pixels are the representative feature of the superpixel, after calculating
the mean pixels of the superpixels in xasp

i , the weighted adjacent superpixel morphological
feature can be obtained by calculating the weighted mean pixel of the central adjacent su-
perpixel:

xasp−EMAP
i =

r

∑
j=1

ωi,j × xsp−mean
j (16)

where ωi,j is the weight of adjacent superpixel x
spj
i with respect to the central superpixel

xspi
i , which is obtained by:

ωi,j =

exp
(
−

SAD(xsp−mean
j −xsp−mean

i )

h

)
r
∑

j=1
exp

(
−

SAD(xsp−mean
j −xsp−mean

i )

h

) (17)

Unlike most studies that use the Euclidean distance to measure the distance between
pixels, we use the spectral angle distance (SAD) to further explorer the spectral correlation
of the HSI, which is denoted as:

SAD(xsp−mean
j − xsp−mean

i ) = arccos
(xsp−mean

j )T · xsp−mean
i∥∥∥xsp−mean

j

∥∥∥ · ∥∥∥xsp−mean
i

∥∥∥ (18)

The above three different features achieve a more comprehensive description of the
local and multiscale spatial-spectral information, and the richer features bring higher
classification accuracy.

2.2.2. Multiscale Kernel Generation

For each pixel, we can obtain the three feature kernels according to the above
Equations (13), (14), and (16), that is the superpixel-based mean spectral feature kernel
Ksp−mean, the superpixel-based mean EMAP feature kernel Ksp−EMAP, and the adjacent
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superpixel-based weighted EMAP feature kernel KASP−EMAP. Then, by setting different
number of superpixels, we can obtain the corresponding kernels at each scale. That is,

{Ksp−mean
1 , ..., Ksp−mean

i , ..., Ksp−mean
m1 } (19)

{Ksp−EMAP
1 , ..., Ksp−EMAP

i , ..., Ksp−EMAP
m2 } (20)

{Kasp−EMAP
1 , ..., Kasp−EMAP

i , ..., Kasp−EMAP
m3 } (21)

Here, m1, m2, m3 are three parameters related to the scales for the superpixels of the
corresponding features. For simplicity, we let m = m1 = m2 = m3 represent the multiscale
for the superpixels of all three features.

So far, we have the kernels of different scales corresponding to the three features.
To fuse all the above kernels, we use a linear combination to obtain an optimal kernel for
HSI classification.

KMASPEMAP =
m

∑
i=1

w1
i Ksp−mean

i + w2
i Ksp−EMAP

i + w3
i Kasp−EMAP

i (22)

where w1
i , w2

i , and w3
i are the weights that control the ratio of the three kinds of kernels.

2.2.3. Multiple Kernel Learning Based on PCA

From Equation (22), we know that the optimal kernel is completely determined by
the weights of the base kernels. Because KMASPEMAP is the linear combination of the base
kernels, we can employ the multiple kernel learning method based on PCA to solve it,
and we can directly use the first principal component of the PCA of the matrix composed
of all base kernels as the optimal kernel, that is,

KMASEMAP = PCA1([K
sp−mean
1 , ..., Ksp−mean

i , ..., Ksp−mean
m1 ;

Ksp−EMAP
1 , ..., Ksp−EMAP

i , ..., Ksp−EMAP
m2 ;

Kasp−EMAP
1 , ..., Kasp−EMAP

i , ..., Kasp−EMAP
m3 ])

(23)

where PCA1 denotes the first component of the PCA. Therefore, the details of calculating
the weights based on the PCA technique can be summarized as follows.

(1) Construct the three kinds of kernel matrices at scale i using the training sam-
ples, i.e., {x1, x2, ..., xNt} where Nt is the number of all training samples. There-
fore, the kernel matrix Ki for the three kinds of features can be calculated by the
following formulations.

Ksp−mean
i =

 K(xsp−mean
1 , xsp−mean

1 ) ... K(xsp−mean
1 , xsp−mean

Nt )

... ... ...
K(xsp−mean

Nt , xsp−mean
1 ) ... K(xsp−mean

Nt , xsp−mean
Nt )

 ∈ RNt×Nt

Ksp−EMAP
i =

 K(xsp−EMAP
1 , xsp−EMAP

1 ) ... K(xsp−mean
1 , xsp−EMAP

Nt )

... ... ...
K(xsp−EMAP

Nt , xsp−EMAP
1 ) ... K(xsp−EMAP

Nt , xsp−EMAP
Nt )

 ∈ RNt×Nt

Kasp−EMAP
i =

 K(xasp−EMAP
1 , xasp−EMAP

1 ) ... K(xasp−EMAP
1 , xasp−EMAP

Nt )

... ... ...
K(xasp−EMAP

Nt , xasp−EMAP
1 ) ... K(xasp−EMAP

Nt , xasp−EMAP
Nt )

 ∈ RNt×Nt

(2) For the above three types of kernel matrices, we first vectorize them by column to
generate kernel feature vectors, then use these vectors as columns to form a matrix
D, which is called a multi-scale kernel matrix.
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D = [vec(Ksp−mean
1 ); ...; vec(Ksp−mean

Nt );

vec(Ksp−EMAP
1 ); ...; vec(Ksp−EMAP

Nt );

vec(Kasp−mean
1 ); ...; vec(Kasp−EMAP

Nt )] ∈ RNt2×3m

(24)

where vec(·) is the vectorized operator, which converts a matrix into a vector by column.

(3) Calculate the singular value decomposition of the covariance matrix of the matrix,
that is 1

3m DT D ∈ R3m×3m, and we have the following formula to calculate the
weights in Equation (22).

w1
i = ui1/

3m

∑
j=1

uj1, i = 1, ..., m

w2
i = u(m+i)1/

3m

∑
j=1

uj1, i = 1, ..., m

w3
i = u(2m+i)1/

3m

∑
j=1

uj1, i = 1, ..., m

(25)

where ui1, i = 1, ..., 3m is the eigenvector corresponding to the largest eigenvalue of the
covariance matrix of D. After obtaining the multiscale adjacent superpixel-based optimal
kernel, we can directly employ SVM for HSI classification. The entire process of the
proposed MASEMAP-MKL method is summarized in Algorithm 1.

Algorithm 1 Proposed MASEMAP-MKL for HSI Classification

1: Input: HSI data X, the number of superpixels N, and the scale parameter n;

2: Conduct PCA on the original HSI X to get the first 3 PCs;

3: Employ the SLIC method to generate multiscale segmentation based on the first

3 PCs;

4: Extract the EMAP features based on the first 3 PCs;

5: According to the multiscale segmentation results, use the mean spectral operator

to obtain the superpixel-based mean spectral feature xsp−mean
i , the superpixel-based

EMAP feature xsp−EMAP
i , and the adjacent superpixel-based weighted EMAP feature

xASPEMAP
i at scale i;

6: Generate the multiscale based kernels based on the above features, that is Ksp−mean
i ,

Ksp−EMAP
i , and Kasp−EMAP

i at scale i;

7: Integrate the above multiscale kernels to obtain the optimal kernel KMASEMAP via (22)

or (23);

8: Output: Generate the color map of classification by SVM.

3. Results

In this section, two well-known HSI datasets, i.e., Indian Pines and University of
Pavia, are utilized to validate the effectiveness of the proposed method. Both datasets
were normalized to the range of [0, 1] before the experiment. All experiments were run on
MATLAB 2018b and an Intel Core i7-9700 CPU with 32GB RAM.

3.1. Datasets’ Description
3.1.1. Indian Pines

The Indian Pines (IP) dataset was acquired by the AVIRIS sensor and consists of
16 different types of land cover. It contains 220 continuous bands that range from 0.4 to
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2.4 µm. The spatial resolution is 145× 145 pixels at 20 m/pixel. Several bands were highly
corrupted by mixed noise; thus, we chose a subset of 145× 145× 200 for the experiments.
In the experiment, two-point-seven percent of the samples per class were randomly selected
for training, and the rest were kept for testing. The details of the IP dataset are listed in
Table 1.

3.1.2. University of Pavia

The University of Pavia (UP) dataset was acquired by the ROSIS sensor and consists
of nine different types of land cover. It contains 115 continuous bands in the range of
0.43 to 0.86 µm. The spatial resolution is 610× 340 pixels at 1.3 m/pixel. Several bands
were highly corrupted by mixed noise; thus, we chose a subset of 610× 340× 103 for the
experiments.

We randomly selected 15 samples per class for training and left the remaining samples
for testing. The details of the UP dataset are also listed in Table 1.

Table 1. Details of the training samples and test samples for the two datasets used for the evaluations
(the background color represents the label of one class).

Indian Pines University of Pavia

Class Name Train Test Class Name Train Test
1 Alfalfa 2 52 1 Asphalt 15 6626
2 Corn-no till 40 1394 2 Meadows 15 18,644
3 Corn-min till 24 810 3 Gravel 15 2094
4 Corn 7 227 4 Tree 15 3059
5 Grass/pasture 14 483 5 Metal sheets 15 1340
6 Grass/tree 24 723 6 Bare soil 15 5024
7 Grass/pasture-mowed 2 24 7 Bitumen 15 1325
8 Hay-windrowed 13 476 8 Bricks 15 3677
9 Oats 2 18 9 Shadows 15 942
10 Soybeans-no till 14 954
11 Soybeans-min till 70 2498
12 Soybeans-clean till 15 599
13 Wheat 8 204
14 Woods 36 1258
15 Bldg-grass-tree-drives 11 369
16 Stone-steel towers 4 91

Total 286 10,180 Total 135 42,641

3.2. Comparison Methods and Evaluation Indexes

To verify the classification performance of the proposed MASEMAP-MKL, multiple
kernel-based spatial-spectral classification methods were employed for comparison, i.e., the
SVM and CK method (SVM-CK) [63], the superpixel-based multiple kernel (SpMK) [64]
method, the adaptive nonlocal SSK (ANSSK) [54], the EMAP-based method [60], a novel
invariant attribute profile (AIP) method [65], the region-based multiple kernel (RMK) [66]
method, the adjacent superpixel-based multiscale SSK (ASMSSK) [52] method, and the low-
rank component-induced SSK (LRCISSSK) [55] method. As a competitor, the SVM classifier
only considers spectral information; the SVMCK, SpATV, SSK, and ANSSK methods
take advantage of spatial-spectral information for HSI classification and deliver much
smoother classification results, and the SCMK and RMK methods combine spectral and
multiscale spatial information for HSI classification to achieve outstanding classification
results. In addition, the overall accuracy (OA), average accuracy (AA), Kappa coefficient,
and corresponding standard deviations (std) were employed to quantitatively assess the
classification accuracy.



Remote Sens. 2021, 13, 50 12 of 19

3.3. Classification Results

The classification results of all methods on the IP dataset are shown in Figure 2.
Clearly, with the limited training samples, the proposed MASEMAP-MKL maintains
the best object boundaries and detailed information of the image edge. The insufficient
description of spatial information results in the methods based on SVM and CK giving the
worst classification map. The SpMK method and the non-local similarity-based method
SSK achieve better preservation of object boundaries only when they have enough training
samples. Serious over-smoothing occurs in the classification map given by the EMAP,
and the AIP method fails to accurately classify the marginal part of the categories. With
the limited number of training samples, their ability to maintain better image details were
inferior to that of the MASEMAP-MKL. However, a comparison with the ground-truth
reveals that the proposed MASEMAP-MKL gives a classification map much closer to the
ground-truth. Using adjacent superpixel segments and low-rank induced components,
AMSSK and LRCISSSK further improve the ability to maintain image edges.

Compared with the latest methods, one certain conclusion is that the proposed
MASEMAP-MKL achieved state-of-the-art classification results on the IP dataset, whose
ground-truth distribution is relatively simple. Similar conclusions can be drawn from
the classification results on the UP dataset, which has a more complex objective distribu-
tion. The classification maps are shown in Figure 3. The proposed method achieves the
most accurate classification of the pixels located at the object boundaries, with the finest
image texture. Another clear conclusion is that the advantages of the proposed method
MASEMAP-MKL are further highlighted for more intricate images. The ability of our
design to fully utilize spatial-spectral information is proven.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Classification results of Indian Pines (IP) with about 2.7% training samples per class. (a) Ground-truth; (b) SVM-CK;
(c) SpMK; (d) ANSSK; (e) RMK; (f) EMAP; (g) invariant attribute profile (AIP); (h) ASMSSK; (i) LRCISSK; (j) MASEMAP-
MKL.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Classification results of University of Pavia (UP) with 15 training samples per class. (a) Ground-truth; (b) SVM-CK;
(c) SpMK; (d) ANSSK; (e) RMK; (f) EMAP; (g) AIP; (h) ASMSSK; (i) LRCISSK; (j) MASEMAP-MKL.

3.4. Classification Accuracy

The classification accuracy values of all methods on the IP and UP datasets are shown
in Tables 2 and 3, respectively. The optimal values are highlighted in bold. Ten Monte Carlo
runs were executed to obtain the average value. In almost all categories, the proposed
MASEMAP-MKL achieved the highest accuracy. On the IP dataset, several categories
achieved 100% classification accuracy. Meanwhile, the optimal OA, AA, and Kappa values
were also obtained. On the UP dataset, which contained more complicated ground objec-
tives, many competitors failed to maintain the balance between smoothness and fineness:
the details of the image were lost, thus leading to inferior classification accuracy. The pro-
posed method still achieved the optimal OA, AA, and Kappa values, which indicates that
MASEMAP-MKL is more competitive on high spatial resolution images. Furthermore,
the proposed MASEMAP-MKL also achieved the most stable std value for both OA and
AA indicators. The results also show that the SSK-based method achieved higher classifi-
cation accuracy than other competitors. The multiscale features-based method ASMSSK
and the low-rank property-based method LRCISSSK achieved average second-best results
compared with the proposed MASEMAP-MKL classifier. Thus, the advantages of fusing
the multiscale features and multimodal features are reflected. In summary, the results of
the above quantitative analysis demonstrate the effectiveness of the proposed method.



Remote Sens. 2021, 13, 50 14 of 19

Table 2. Average classification accuracy (%) of all methods on the Indian Pines dataset with 2.7% labeled samples per class
(the optimal results are highlighted in bold).

Categories SVMCK [63] SpMK [64] ANSSK [54] RMK [66] EMAP [60] AIP [65] ASMSSK [52] LRCISSK [55] MASEMAP-MKL

1 19.01 80.00 95.58 94.81 95.97 58.65 97.12 97.12 100.00
2 83.15 85.60 96.15 94.89 62.59 74.41 96.78 96.61 98.64
3 81.44 78.52 95.35 94.23 75.12 66.67 98.62 97.10 99.26
4 34.63 62.82 96.87 84.41 76.75 68.90 91.06 91.94 97.80
5 85.26 86.50 87.83 90.66 79.41 63.02 94.62 90.43 99.79
6 95.99 96.46 97.01 98.66 94.34 70.08 98.46 97.43 98.06
7 10.00 95.83 97.08 96.25 92.31 81.25 95.42 95.83 100.00
8 97.50 98.36 99.47 99.24 93.20 80.29 99.79 99.90 100.00
9 0.00 98.89 90.56 100.00 100.00 67.78 99.44 96.67 100.00

10 29.43 76.31 86.97 86.80 77.70 53.12 89.42 84.65 92.14
11 90.34 89.87 97.68 97.77 70.86 79.13 98.72 97.75 98.04
12 73.81 59.18 94.99 92.39 70.89 60.67 98.18 93.32 97.50
13 94.80 99.31 99.22 99.51 98.03 70.05 99.02 99.36 99.02
14 96.48 95.93 99.72 99.63 78.76 81.02 99.22 99.49 98.73
15 61.95 74.09 96.12 96.48 70.15 77.67 96.26 95.18 98.65
16 88.02 81.10 95.38 96.26 90.71 69.34 94.84 96.15 92.31

OA(%) 80.11 85.63 95.84 95.41 75.69 72.11 97.12 95.76 97.90
std (%) 1.54 1.13 1.07 0.89 1.67 1.33 1.05 0.68 1.02
AA (%) 63.94 84.92 95.37 95.12 82.92 70.13 96.69 95.56 98.12
std (%) 1.94 1.59 1.70 0.89 0.54 2.34 0.99 0.85 0.96
Kappa 0.7702 0.8357 0.9525 0.9477 0.7256 0.6816 0.9672 0.9517 0.9761

std 0.0187 0.0129 0.0122 0.0102 0.0177 0.0153 0.0120 0.0078 0.0110

Table 3. Average classification accuracy (%) of all methods on the University of Pavia image with 15 labeled samples
per class (the optimal results are highlighted in bold).

Categories SVMCK [63] SpMK [64] ANSSK [54] RMK [66] EMAP [60] AIP [65] ASMSSK [52] LRCISSK [55] MASEMAP-MKL

1 83.02 90.08 89.83 94.76 86.60 84.28 96.60 96.21 93.49
2 82.91 80.87 86.07 91.07 74.12 85.61 93.60 89.79 98.66
3 78.97 91.47 81.81 95.55 92.71 85.18 99.51 92.62 99.74
4 93.10 81.22 88.03 89.18 91.14 80.93 89.22 90.43 88.32
5 99.02 98.87 96.92 98.85 97.18 99.56 98.68 99.44 98.57
6 81.67 93.89 96.85 92.68 81.39 95.28 97.94 98.86 96.97
7 89.63 99.47 96.88 97.55 97.94 94.03 98.94 98.87 99.24
8 76.32 92.20 91.44 93.21 90.88 73.31 98.22 98.33 98.69
9 98.42 81.26 99.36 88.73 99.57 99.25 97.44 91.04 98.44

OA (%) 83.80 86.49 89.28 92.49 82.49 86.12 95.36 94.62 96.99
std (%) 3.01 4.18 2.86 2.93 2.90 2.35 3.41 3.58 1.04
AA (%) 87.01 89.92 91.91 93.51 90.17 88.60 96.68 95.07 96.90
std (%) 1.28 2.16 1.13 1.45 2.54 1.45 1.28 2.23 0.62
Kappa 0.7913 0.8290 0.8616 0.9028 0.7778 0.8206 0.9397 0.9140 0.9601

std 0.0355 0.0499 0.0345 0.0368 0.0351 0.0289 0.0432 0.0428 0.0138

4. Discussion
4.1. Parameter Analysis

The width of the kernel σ plays a key role in classification. Figure 4 shows the
classification accuracy of the proposed MASEMAP-MKL under different settings of−log(σ)
values on both the IP and UP datasets. On the IP dataset, when the −log(σ) value was
selected in the interval [5, 9], the proposed MASEMAP-MKL method achieved the highest
classification accuracy. On the UP dataset, the value of −log(σ) was selected in the interval
[3, 6]. Therefore, we recommend choosing the kernel width parameter −log(σ) according
to the dataset itself.
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Figure 4. Classification accuracies of the proposed MASEMAP-MKL method as a function of param-
eter σ: (a) IP; (b) UP.

4.2. Execution Efficiency

The execution efficiency of an algorithm determines its practicality in real scenarios.
Table 4 lists the average execution time of the proposed MASEMAP-MKL and three SSK-
based methods in seconds. Each method was executed ten times to obtain the average
value. For the SSK-based methods, the main computational cost was composed of two
parts. The first part was the search of similar regions, and for this, ANSSK consumed the
most time. This is because a non-local algorithm requires tedious block-matching and
aggregation operations. With the assistance of the highly efficient superpixel division, both
ASMSSK and MASEMAP-MKL achieved competitive time consumption for the search. The
second part is the kernel computations. Because the HSI contained many pixels, both SpMK
and ANSSK consumed an extremely high computing time. Meanwhile, The superpixels
replaced the original pixels in our design, so the number of superpixels was much lower
than the number of original pixels; therefore, both AMSSK and MASEMAP-MKL achieved
a low kernel calculation cost. As the number of pixels increased, this advantage of the
proposed method became more and more obvious. Although the time consumed by
the proposed MASEMAP-MKL was slightly higher than that of the ASMSSK method,
MASEMAP-MKL also achieved higher classification accuracy. The conclusion drawn is
that our method achieves a better trade-off between efficiency and classification accuracy.

Table 4. Execution time (seconds) of different classifiers on the IP and UP datasets (the optimal results are shown in bold).

IP UP

Classifiers SpMK ANSSK ASMSSK MASEMAP-MKL SpMK ANSSK ASMSSK MASEMAP-MKL

search similar regions 6.21 9.22 0.38 0.41 58.23 84.85 4.51 5.05
kernel computation 17.59 12.50 4.61 4.68 495.17 232.33 59.06 65.55

total 23.80 21.74 4.99 5.09 553.40 318.28 63.57 70.60

5. Conclusions and Future Work

To improve the accuracy and efficiency of HSI classification, a novel multiscale adja-
cent superpixel-based extended morphological attribute profile embedded multiple kernel
learning method was proposed in this study. In summary, multiscale and multimodal
spatial-spectral features are described by superpixel segmentation and the EMAP to con-
struct different kernel functions. Meanwhile, we employed a PCA-based multi-kernel
learning method to determine the weight of the different kernels. With our careful design,
multiscale and multimodal features were fused, which makes full utilization of the ample
spatial-spectral features for HSI classification. Extensive experiments on two datasets
proved that the proposed method was both effective and efficient.
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For future work, the fusion of deep features, multiscale features, and multimodal
features will be considered to further improve the accuracy of HSI classification.
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