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Abstract: 3D (3-Dimensional) object recognition is a hot research topic that benefits environment
perception, disease diagnosis, and the mobile robot industry. Point clouds collected by range sensors
are a popular data structure to represent a 3D object model. This paper proposed a 3D object recogni-
tion method named Dynamic Graph Convolutional Broad Network (DGCB-Net) to realize feature
extraction and 3D object recognition from the point cloud. DGCB-Net adopts edge convolutional
layers constructed by weight-shared multiple-layer perceptrons (MLPs) to extract local features from
the point cloud graph structure automatically. Features obtained from all edge convolutional layers
are concatenated together to form a feature aggregation. Unlike stacking many layers in-depth, our
DGCB-Net employs a broad architecture to extend point cloud feature aggregation flatly. The broad
architecture is structured utilizing a flat combining architecture with multiple feature layers and
enhancement layers. Both feature layers and enhancement layers concatenate together to further
enrich the features’ information of the point cloud. All features work on the object recognition results
thus that our DGCB-Net show better recognition performance than other 3D object recognition
algorithms on ModelNet10/40 and our scanning point cloud dataset.

Keywords: point cloud analysis; 3D object recognition; broad learning system; dynamic graph con-
volution

1. Introduction

3D object recognition from clustered scenes is a popular research topic benefit for
massive computer vision applications, such as intelligent surveillance, mobile robots,
target tracking, and remote sensing [1]. Object recognition results provide supplementary
information for these applications to perceive and understand the environmental situation.
3D object models captured by Light Detection and Ranging (LiDAR) or other range sensors
consist of massive point clouds with rich geometric and shape information. Point cloud
technologies based on LiDAR devices are widely utilized in many application platforms,
for example, airborne laser scanning (ALS), mobile laser scanning (MLS), and terrestrial
laser scanning (TLS). 3D object recognition based on LiDAR point clouds collected from
these platforms is a meaningful research topic [2].

Although the significant advantage of 3D point clouds is its numerous original geomet-
ric and topology information, the disadvantage is that its inherent characteristics always
cause a series of bottleneck problems in feature extraction [3]. The inherent characteristics
mainly include uncertain vertex topology, uneven point density, arbitrary point count,
and unfixed point permutation [4]. To avoid the influence caused by these characteristics,
point cloud pre-processes, or registration steps are required in the majority of 3D object
recognition methods [5].
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For sampling uniform features from 3D object models, some researchers use volu-
metric models with a pre-defined resolution to resample and initial the point cloud [6].
Multiview transform is another common method to transform the uncertain geometric
structure into fixed temporal or frequency domains [7]. These projection-based feature
representation models contain a certain degree of information loss during transforming
processes. To avoid information loss existing in these kinds of projection-based mod-
els, point-based feature representation methods have gradually been adopted by most
researchers in recent years. Through utilizing weight-shared multiple-layer perceptrons
(MLPs), pointwise features are extracted from the point cloud directly without any pre-
processing steps [8]. Only global features that fused through using symmetrical functions
(e.g., max pooling) are not sufficient for object recognition applications that require high
recognition performance. Thus, some local feature grouping methods (e.g., farthest point
sampling, k-nearest neighboring) are adopted to extract local point cloud features.

The graph structure is a popular representation that can efficiently extract geom-
etry and topology information from the point cloud. Inspired by the dynamic graph
convolutional neural networks (DGCNNs) in the deep learning domain [9], this paper
developed a dynamic graph convolutional broad network (DGCB-Net) that maps and
flatly extends graph features to enrich point cloud features. After aggregating dynamic
graph features obtained from convolutional networks, we utilized a broad structure to
rich graph information, thus that the recognition performance was better than those only
using graph convolutional features. One significant difference between our DGCB-Net and
classic CNNs was the proposed broad structure structured by multiple additional feature
and enhancement layers, which maintained an independent relationship with each other.
Because the convolutional results in the previous layer were the inputting data of the next
layer, the relationship among contiguous layers in CNNs was close and interdependent. To
provide additional information from different perspectives, adopting independent feature
and enhancement layers was a suitable solution to enhance point cloud features.

To make up for the intimate relationship among the aggregation features extracted
from the CNNs, the broad structure was adopted to detect and perceive more potential
information from different perspectives. The broad structure in our system consists of
multiple feature layers and an enhancement layer that extended flatly with an independent
mapping relationship. During the feature layer mapping process, the weights and bias
were generated randomly and optimized independently through dozens of iterations. The
optimizing process of the feature layers follows the principles of sparse autoencoders. The
enhancement layer is also a very important part of our broad structure that further expands
the broad network of our proposed DGCB-Net. The parameters in enhancement layers
are composed of a series of orthogonal basis, which enhances the capability of feature
extraction in a high hierarchy. The training process of the output layer is crucial, where our
model adopted the ridge regression method to obtain the optimal solution without any
time-consuming process in the gradual parameter adjustment. Thus, the training process
of the broad structure was much simpler than that of the convolutional layers. Distinctly,
the broad structure of the DGCB-Net model was intuitive, concise, and owning the efficient
capabilities of automatic feature extraction and object classification.

The primary contributions of this paper are listed as follows:

1. A DGCB-Net architecture adopts a broad method to improve the recognition perfor-
mance of deep learning structures. This way, the model capabilities of both feature
extraction and object recognition are strengthened.

2. The object recognition performance of the proposed DGCB-Net consists of improve-
ment in both open point cloud dataset ModelNet10/40 and our collected outdoor
common objects. When the inputting point counts are uniformly downsampled, the
recognition results are especially better than the other popular methods, which means
our proposed DGCB-Net shows robust performance for sparse point clouds.

3. Pioneeringly, we bring the broad structure into the point cloud processing domain
to enhance the convolutional features of point clouds. Besides, the proposed broad
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structure is lightweight with fast training speed, which means it only requires a few
additional time and calculation consumptions to produce an efficient improvement
for the deep learning model.

The paper is organized as follows. Section 2 investigates related work about LiDAR
point cloud processing methods and popular object recognition models. Section 3 describes
the structure and theory of our proposed DGCB-Net model. Section 4 illustrates our exper-
imental platform, LiDAR point cloud library, and object recognition results estimated on
ModelNet10/40 and outdoor object samples collected by a Velodyne-32E LiDAR. Section 5
is the conclusion of our paper.

2. Related Works

This section described several typical inherent characteristics of point clouds and
common bottleneck problems that existed in object recognition. Some classic and useful
hand-crafted descriptors were briefly analyzed about their advantages and disadvantages.
Besides, several innovative and popular state-of-the-art object recognition methods inspired
by deep learning algorithms were discussed and summarized.

Point clouds generated by CAD models or collected by range sensors possessed some
inherent characteristics, like uncertain topology, density, point count, permutation, and
noise. Because the efficiency of feature extraction seriously affected the object recognition
accuracy, these inherent characteristics were widely discussed and researched in the point
cloud domain. For example, the uncertain vertex topology characteristic resulted in com-
plex neighborhood area division and time-consuming neighboring points research [10].
Point clouds with uncertain density always required a density balancing step as a pre-
process before consequent feature extraction and object recognition [11]. Besides, different
3D object models did not contain the same point count. In this way, point clouds were not
available to be analyzed directly by unified kernels or descriptors. In addition, the rela-
tionship between point order and their spatial distribution was not indefinite. The unfixed
point permutation characteristic caused large computational consumption in neighboring
point research and local feature extraction [12]. This way, to avoid the disadvantages
caused by these inherent characteristics, copious classic descriptors were proposed and
widely analyzed by researchers.

Classic descriptors mainly focused on key point search, local feature description,
surface shape retrieval, and category recognition [13]. Yang et al. [14] proposed a triple
orthogonal local depth images (TOLDI) descriptor to perceive point clouds’ local features
based on a local reference frame (LRF). If the TOLDI descriptor is used, a series of local
geometry information is required to be calculated, such as normal and projection vector in
original 3D space, and neighboring point projection and local depth distance after virtual
view transformation in the LRF. Similar to the local voxelized structure (LoVS) descriptor
proposed by Quan et al. [15], LRF was also constructed as the first step to transform
neighbor points from global to a local coordinate system with rotation invariance. Through
projecting neighbor points into a binary cubic volume, local features were represented
as a zero/one sequence with implicit meaning. These classic local feature descriptors
always required LRF construction and neighbor points’ projection, thus that the speed
performance was highly relative with the neighboring area definition [16].

Inspired by the remarkable achievement of image processing in the deep learning
domain, some researchers combined classic descriptors and deep learning algorithms
to increase feature extracting efficiency [17]. Without hand-draft feature selection, Han
et al. [18] proposed an unsupervised method to extract point cloud features through
utilizing stacked sparse auto-encoder (SSAE). After mapping object point clouds into a
pre-defined 3D voxel model, they adopted four fixed views to sample point distribution
features. Automatically, both local and global features were extracted based on a voxel
model after an unsupervised training process. Theoretically, voxel models with higher
resolution have stronger information expressing capability [19]. Limited by the computing
performance of the experiment platform, the most suitable voxel model resolution of
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different 3D objects is barely set as an extreme highest value. Corresponding to different
scenes and applications, the most suitable voxel resolution is relative to individual object
size and point density [20].

Traditional convolution operations were always applied on a regular grid structure
with a concise neighbor grid relationship (e.g., neatly arranged pixels in images) [21].
However, vertexes in point clouds were arranged arbitrarily, thus, that point clouds are
not available to be processed directly by classic CNNs. To overcome the arbitrary topology
relationships among neighbor points, Groh et al. [22] proposed a flex convolution method
to map arbitrary Euclidean distance from a continuous to a discrete domain using a grid
shape model and a discrete function. This way, local point cloud features were converted
as a series of regularly arranged values thus that convolution operation was available to
work on point clouds based on the voxelization strategy. However, the resolution selection
problem still troubled these convolutional-based point cloud recognition algorithms [23].

If these voxel models or convolutional operators utilized a single resolution, the
feature information obtained from point clouds was insufficient. Liu et al. [24] proposed
DensePoint that used a series of multi-scale operators in different convolutional layers
to obtain rich local geometry features. Based on the feature maps generated by different
sizes of convolutional operators, they concatenated feature maps together by using a
long-range connection method. Compared with basic convolutional models, DensePoint
showed better overall accuracy on the open dataset ModelNet 40. Different from simple
convolution operation working on regular grids, Esteves et al. [25] proposed a spherical
CNN architecture that represents object point clouds by a spherical model. Based on
spherical convolution and pooling operations, spherical CNN exploited distance and
surface normal without any pre-defined resolution. Besides, another obvious advantage
of the spherical CNN was the insensitive characteristic for point cloud orientation and
rotation angles in three axes. Although these convolution-based algorithms maintain
better-recognizing performance than voxel-based algorithms, convolution-based models
also required pre-defined continuous or discrete kernels to process unstructured point
clouds in 3D spaces. Whether continuous or discrete convolutional kernels, the design was
more complex than that of 2D data (e.g., image).

Graph-based point cloud processing algorithms were widely researched in recent
years because of their strong capability in topology feature extraction [26]. In graph-based
object recognizing models, each point of the point cloud is considered as a vertex in a
graph structure, thus that the topology information was represented better than other
models. Shen et al. [27] proposed a kernel correlation network (KCNet) to realize semantic
segmentation and object classification based on graph architecture. In this method, a k
nearest neighbor (k-NN) method was adopted to define neighborhood area for searching
neighboring points. Through utilizing a graph max pooling and a kernel correlation, the
vertex topology features were extracted from neighboring points. Although graph-based
algorithms did not have to consider the convolution resolution, the neighboring point
search was still a time-consuming procedure in the graph convolutional process [28].

Because point-based models were available to deal with point clouds directly in
3D space, point-based feature representation became popular in object recognition do-
mains [29]. Hua et al. [30] developed a pointwise CNN framework that employed convo-
lution operation on each point to obtain pointwise features. Using several convolutional
layers to expand the point cloud from 3 to 36 dimensions, fully connected layers were
added in the end to realize object classification. The simple convolution and fully connected
layers alone were inadequate, thus that the performances of both semantic segmentation
and classification were not satisfied. Qi et al. [8] proposed PointNet architecture with
a transform model and weight-shared MLPs to extract pointwise point cloud features.
Similar to Hua’s model, PointNet also employed several full connection layers directly on
the last mapping layer to realize the classification function. To supplement point cloud
features, the feature map obtained by the last layer and DensePoint also concatenated
features from different convolutional layers together to form the following recognition
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foundation. Through using this kind of feature concatenation approach, object recognizing
performance realized a certain degree of improvement.

Different from deep learning algorithms, Chen et al. [31] adopted a broad learning
system with significant advantages of the flexible structure and fast training speed. Based
on the broad architecture, Zhang et al. [32] added a graph convolution structure in it to
realize good performance in emotion recognition. Inspired by the graph and broad fusion
architecture, this paper proposed DGCB-Net to improve object types from point clouds
within affordable computation consumption.

3. Object Recognition Method from 3D Point Clouds

As discussed in Section 2, raw point clouds sampled from CAD models or collected
by range sensors own special characteristics, especially their permutation and uncertain
structures. To overcome the above difficulties, our proposed DGCB-Net employed a view
transform network and several edge convolutional layers. In each edge convolutional
layer, we applied the kNN method to generate subgraphs with abundant local features
and used weight-shared multiple-layer perceptrons to extract them. This section intro-
duces the whole architecture of our proposed DGCB-Net model, contains the detailed
process of graph generation, and definitions of edge convolutional layers. Our system was
roughly divided into 2 parts, the feature extraction part to aggregate features and the broad
learning network part to recognize objects. Their details are described in the following
Sections 3.1 and 3.2.

3.1. Graph Feature Generalization and Aggregation

In our system, m edge convolutional layers were stacked together to extract point
information from the data ρl ∈ Rn×dl . The variable l is the edge convolutional layer index,
l ∈ [1, L]. Matrix ρl−1 means the input data of the lth convolutional layer, for example, the
ρ0 is the original point cloud as the input of the 1st convolutional layer. The input feature
of ρl contains n elements pl

i as pl
i ∈ ρl, i ∈ [1, n]. The variable n is the point count, which is

uncertain among different object samples. The variable dl is the dimension of the vector pl
i

as pl
i ∈ Rdl .
In the lth layer, the mapping relationship between its input data ρl−1 and its the output

ρl is defined as Φl: Rdl−1 → Rdl . Each layer executes a kNN algorithm first to generate
a dynamical graph structure Gl =

(
ρl , El

)
for concatenating edge topology information,

where the vertex ρl and the edge El ⊆ ρl × ρl . As shown in Figure 1a, the local feature of
the center point pl

i is related with its k nearest neighboring points pl
j, j ∈ [1, k]. The edge

feature el
i,j between point pl

i and pl
j is computed according to Equation (1) with the edge

mapping function ψl .
el

i,j = ψl
(

pl
i , pl

i − pl
j

)
(1)
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Figure 2 illustrates the implementation details of feature generation and aggregation 
by using a view transform network and weight shard MLPs achieved by convolutional 
layers, batch normalization layers, leaky ReLu activation functions, and max pool layers. 
After executing L layers of edge convolutional operations, the point features of the object 
sample were transformed from dimension n×d0 to 2dL. Through using a back-propagation 
method, these edge convolutional layers were pre-trained with feature extraction capabil-
ity. The cost function was computed according to the following Equation (4). The Y and 𝑌 are the ground truth and the predicted output of object labels, which contains N sam-
ples with M classes, respectively. 
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When the pre-training process was finished, our proposed DGCB-Net model concat-
enated the intermediate features obtained from different convolutional layers to increase 
the feature utilization efficiency. We employed both max and average pooling operators 
to compress point features 𝜌  (l ∈ [1, L]) into as X, which was considered as the input 
data of the following broad network. 

Figure 1. Point and edge feature transformation in the lth graph convolutional layer. (a) Neighboring points with edges, (b)
feature transformation in the lth convolutional layer.
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Figure 1b illustrates the total process of the lth edge convolution layer, where we
adopted a series of weight-shared MLPs to exact the edge features. After executing the
kNN method, the input data ρl−1 generates the edge feature tensor El as El ∈ Rn×k×dl−1 .
Equation (2) describes the generation of feature ul

i from edge feature el
i,j based on the

edge convolutional operator φ(.). Similar to the classic convolutional principle in the
deep learning domain, the edge convolutional operator φ(.) the lth convolutional layer
consists of weight wl

i ∈W l and bias bl
i ∈ bl to transform features as Rdl−1 ×Rdl−1×al → Ral ,

W ∈ Rdl−1 ×Rdl . The implementation details of most MLP in the point cloud domain are
realized by convolutional operators.

ul
i = φl

j∈[1,k]

(
el

i,jw
l
i + bl

i

)
(2)

All the features ul
i are concatenated as the feature tensor υl , defined as υl ∈ Rn×k×dl .

Considering that the model requires permutation-symmetric compression and aggregation,
a max aggregation operation ϕl is employed on the feature tensor υl to obtain the feature
ρl in the lth edge convolutional layer in Equation (3).

ρl = ϕl

(
φl

j∈[1,k]

(
ElW l + bl

))
(3)

Figure 2 illustrates the implementation details of feature generation and aggregation
by using a view transform network and weight shard MLPs achieved by convolutional
layers, batch normalization layers, leaky ReLu activation functions, and max pool layers.
After executing L layers of edge convolutional operations, the point features of the object
sample were transformed from dimension n×d0 to 2dL. Through using a back-propagation
method, these edge convolutional layers were pre-trained with feature extraction capability.
The cost function was computed according to the following Equation (4). The Y and Y are
the ground truth and the predicted output of object labels, which contains N samples with
M classes, respectively.

J
(
Y, Y

)
= − 1

N

N

∑
s=1

M

∑
c=1

ys,c log
(

ys,c

)
(4)
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Figure 2. The framework of the proposed Dynamic Graph Convolutional Broad Network (DGCB)-Net with feature
extraction and object recognition modules.
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When the pre-training process was finished, our proposed DGCB-Net model concate-
nated the intermediate features obtained from different convolutional layers to increase
the feature utilization efficiency. We employed both max and average pooling operators to
compress point features ρl (l ∈ [1, L]) into as X, which was considered as the input data of
the following broad network.

3.2. Broad Network Construction

Our proposed broad network structure was inspired by the basic broad learning
system [31], as shown in Figure 3. Different from popular deep learning models, the broad
learning system expanded the model structure flatly instead of stacking them layer-by-layer.
The most significant advantages of the broad learning system were the fast training speed
and not inferior fitting performance. Inspired by the broad learning system, we pioneered
the broad structure into the deep learning models as a feature enhancement component to
improve the recognition performance of convolutional neural networks.
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Figure 3. The broad network with concatenating input.

As shown in Figure 3, all object features obtained by these edge convolutional layers
were concatenated together as X, xi ∈ X, i ∈ [1, dL], where variable dL is computed as

dL = 2×
L
∑

l=1
dl . For enhancing the point cloud feature, X was mapped into m feature layers

Zj with individual projection relationships among each layer. Different from the deep
learning models that employed the gradient descent method on the training process, the
parameter optimizing and fine-tuning processes of the broad structure were faster and
more concise. In the feature layer, a series of mapping matrix Wj were randomly initialized
to project X to m feature layers Zj according to Equation (5). Different from the relationships
among convolutional layers, feature layer Zj was not influenced by the last layer Zj−1 in
broad networks. In other words, the input data of all the feature layers Zj were directly
connected with the input data X, which means the projecting operation between features X
and different feature layers Zj are independent of each other.

Zj = ξ
(
XWj + bj

)
(5)

Our broad structure adopted a sparse autoencoder to fine-tune their weight matrix W j
instead of the popular gradient descent method. The fine-tuning process was transformed
into a convex optimization problem, as shown in Equation (6), which target was to obtain
the sparse and efficient weight matrix Wj in feature layers. The matrix Wj in Equation (6)
contained an additional column vector with value 1 as an augmented matrix to multiple



Remote Sens. 2021, 13, 66 8 of 19

with the bias item. Through defining the optimization problem as the lasso format, the
near-optimal solution Wj was available to be solved by many methods.

Wj = argmin
Wj

1
2
‖ZWj − X‖2

2 + α‖Wj‖1 (6)

Through using the L1 regularization as a penalty term during the optimization pro-
cess, the obtained matrix Wj was composed of meaningful values and 0 values. Lots of
algorithms, such as the alternating direction method of multipliers (ADMM), orthogo-
nal matching pursuit, and fast iterative shrinkage-thresholding algorithm, were widely
discussed and utilized for solving a convex optimization problem. We used the ADMM
algorithm as an example to describe how the matrix Wj was computed by several times
of iteration. According to the ADMM algorithm, the total objective function was equally
divided into 2 parts f 1(Wj) and f 2(Wj) as shown in Equation (7).

min f
(
Wj
)
= min f1

(
Wj
)
+ f2

(
Wj
)
= min

1
2
‖ZWj − X‖2

2 + α‖Wj‖1 (7)

Next, the optimization problem was transformed into a global variable consensus
optimization problem with the equality constraints written as Equation (8). The constraint
condition requires that the local variable Wj in the objective function is consistent with the
global variable δ.

min f1
(
Wj
)
+ f2(δ), s.t. Wj − δ = 0. (8)

The ADMM algorithm implement by dozens of the iteration process, where the
variable Wj and δ are alternately updated as shown in Equation (9). Because the objection
function of the optimization problem can be decomposed as f1

(
Wj
)

and f2
(
Wj
)
, alternate

updating the two variables Wj and δ was available to be adopted as the solution. The
variable u is the dual variable, ρ > 0 is the penalty coefficient.

Wk+1
j = arg min

Wj

(
f1
(
Wj
)
+ (ρ/2)‖Wj − δ + uk‖2

2

)
δk+1 = arg min

δ

(
f2(δ) + (ρ/2)‖δ−Wk+1

j − uk‖2
2

)
uk+1 = uk + Wk+1

j − δk+1

(9)

Through dozens of updating iterations, we obtained the mapping matrix Wj with
sparse characteristics. The s groups of feature layers Zj were concatenated flatly as
Zs ∈ RN×st as the input data of the enhancement layer H. The enhancement layer H
used a series of orthogonal basis W’ to improve the expressiveness of features. The imple-
mentation process of the enhancement layer is easy, and the generation speed was faster.
Then, the enhancement layers H were computed from Zs by a mapping matrix W’ and
bias vector β’ according to the Equation (10). The weight matrix W’ and bias β′ in the
enhancement layers obeyed the orthogonal relationship. A nonlinear function ζ was used
to project the generated features into a relatively uniform interval. The enhancement layer
H contained s’ enhancement nodes hj’ denoted as hj’ ∈ H, j ∈ [1, s’].

H = ζ
(
([Z1|Z2|. . .|Zs])W ′ + β′

)
(10)

The reason for setting the enhancement layer was to improve the model’s stability
and feature extraction capability. Then, both feature Zs and enhancement layers H were
extended together as feature matrix A in a flat way. As shown in Equation (11), the output
Ŷ of our broad network was obtained by multiplying feature matrix A and a mapping
matrix W*. The dimensions of feature matrix A and weight matrix W* were RN×(st+s′)
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and R(st+s′)×s∗, respectively. The detailed feature generation and model structure of our
proposed DGCB-Net is illustrated in Figure 3.

Y = [Zs|H]W∗ = AW∗ (11)

For calculating the target mapping matrix W*, this paper employed a ridge regression
algorithm to obtain an optimal solution. Through using the biased estimation regression
method, a reliable and realistic optimal result was obtained at the expense of partial
information and reduced accuracy. As shown in Equation (12), our model’s optimal target
was narrowing the L2 distance between the predicted result AW* and ground truth Y,
which means the object labels in our application. Meanwhile, an L2 regularization term
λ‖W∗‖2

2 was added in this objective function to control the weights w* that belonged to
the mapping matrix W* located in a relatively small value. This way, the obtained optimal
solution can alleviate the over-fitting problem to a certain extent.

argmin
W∗

: ‖AW∗ −Y‖2
2 + λ‖W∗‖2

2 (12)

In the process of solving regression coefficients, it was necessary to consider whether
the characteristic matrix was invertible. When the number of features dL is greater than the
number of samples N (matrix X is not full-rank), standard linear regression cannot solve
the optimal solution. In other words, the inverse of the matrix ATA shown in Equation (13)
cannot be solved.

W∗ = A+Y =
(

AT A
)−1

ATY (13)

Thus, broad learning networks use ridge regression to deal with the problem of
features’ numbers bigger than the samples’ numbers. By adding a disturbance term kI, as
shown in Equation (14), the matrix XTX+kI becomes non-singular, thus that its pseudo-
inverse can be computed. The variable k is a super parameter that influences the identity
matrix I, whose diagonal consists of a series of the number 1.

W∗ =
(

AT A + kI
)−1

ATY (14)

This way, through using the computed weight matrix W*, our proposed DGCB-Net
model can realize the automatic feature extraction and object classification. The broad
structure initiative combines with deep learning to achieve a certain degree of feature
enhancement. The broad structure was simple to implement, and good performance can
be achieved with only a little additional time on the deep learning training process. On
account of the broad architecture, our DGCB-Net model computed the weight and bias
parameters without any gradient descent computation in the training process. If the trained
model was not satisfied with the required performance, our proposed DGCB-Net adopted
an incremental learning method for remodeling the broad structure. The trained part did
not need a retraining process, new feature and enhancement layers were inserted flatly to
expand the existing structure.

4. Experiments and Analysis

This section estimates our DGCB-Net on several public datasets ModelNet10 and a
dataset that was collected by our Unmanned Ground Vehicle (UGV) platform.
Figure 4a is our data collection platform that is an EU260 unmanned vehicle produced
by the BAIC Motor Corporation and carried with an HDL-32E Velodyne LiDAR sensor.
Our experiment ran on a computer carrying Intel® Xeon CPU E5-1650 CPU with 64.0 GB
RAM and a GeForce GTX 1070 GPU with 8.0 GB memory. We employed the open deep
learning architecture Pytorch 1.5 and a GPU development toolkit CUDA 10.2 to train the
pre-training model.
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(b) outdoor object that segment from the scene.

Figure 4b is a point cloud of a whole outdoor scene captured by the LiDAR sen-
sor, which contains multiple separated obstacles that generate our collected datasets.
Table 1 shows the statistical data of datasets that were used in our experiment, including
the numbers of training samples, testing samples, average point numbers, and classes.
Dataset ModelNet10 contained 10 classes, containing 3991 training samples and 908 testing
samples. Dataset ModelNet40 contained 40 classes with 9840 training samples and 2468 test-
ing samples. All the samples in both ModelNet10 and ModelNet40 owned 1024 points,
which were uniformly sampled from standard CAD models. The outdoor object dataset
consisted of LiDAR point clouds collected from the real scene. Different from the point
cloud generated from standard CAD models, LiDAR point clouds were the surface of out-
door obstacles without inside or back parts. Thus, to estimate the recognition performance
on real LiDAR point clouds, we collected 1010 real samples for model training and 463 for
testing. The average point number of our collected dataset that was named as an outdoor
object was around 415, which was slightly less than the 490 of the Sydney datasets.

Table 1. Dataset Description.

Modelnet10 Modelnet40 Outdoor Object

Training Samples 3991 9840 1010
Testing Samples 908 2468 463

Avg. Point Number 1024 1024 415
Classes 10 40 6

4.1. Modelnet10 and Modelnet40

Algorithm Comparison Modelnet10 and ModelNet40 were 2 popular point cloud
datasets to estimate object recognition algorithm. Various object recognition methods
were developed and tested based on the 2 datasets, which were ideal datasets generated
by CAD models. As shown in Table 2, the recognition performance of our proposed
DGCB-Net algorithm was slightly higher than other classic algorithms. For example, it was
conveniently observed that the performance of our algorithm was better than point-based
input according to the accuracies of the PointNet [8], PointNet++ [33], and Pointwise-
CNN [30]. That was because point-based algorithms (e.g., PointNet and Pointwise-CNN)
only consider global point features without local geometry information, which means the
input of these kinds of models were just raw point coordinates. Their convolutional-like
operators applied on global point coordinates, and global aggregation operation (e.g.,
max/average pooling) was adopted to generate global features. This way, no local features
were the most significant bottleneck problem that affected the recognition performance
of these pointwise algorithms that only contained global features. The accuracy rates of
ModelNet40 obtained from Pointwise-CNN and PointNet algorithms were less than 90%.
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To supplement the local features, PointNet++ adopted a single-scale grouping that divides
point clouds into different small subspaces with the local feature aggregation function,
thus that the accuracy upgraded to 90.7%.

Table 2. Accuracy of ModelNet10/40 under popular recognition algorithms.

Method Input Modelnet40
(Accuracy %)

Modelnet10
(Accuracy %)

Pointwise-based
Networks

PointNet [8] point 89.2 -

PointNet++ [33] point 90.7 -

Pointwise-CNN [30] point 86.1 -

Voxel-based
Networks

VoxNet [34] voxel 83 92

3DShapeNets [35] voxel 77.3 83.5

BV-CNNs [36] voxel 85.4 92.3

ORION [37] voxel - 93.8

Image-based
Networks

MVCNN [38] image 90.1 -

DeepPano [39] image 82.5 88.7

Graph-based
Networks

ECC [26] graph 87.4 90.8

DGCNN [9] graph 92.2 -

DGCB-Net (Our) graph 92.9 94.6

Voxel-based and image-based algorithms own similar point cloud processing flow,
where unstructured and uncertain ordered point clouds were transformed into a series
of regular pixels or voxels in the initial phase. As shown in Table 2, the accuracies of
the 2 voxel-based methods VoxNet [34] and 3DShapeNet [35] were around 77% and
84% on Modelnet40, which were around 10% less than graph-based algorithms. The
BV-CNN [36] and ORION [37] models showed relatively better results than VoxNet [34]
and 3DShapeNet [35] on ModelNet10. The average accuracies of image-based algorithms
MVCNN [38] and DeepPano [39] were 90.1% and 82.5%, respectively. The main reason
that caused pool performance in voxel-based and image-based algorithms was their coarse
grain sampling resolutions of 2D/3D grids. A certain information loss exists in these infor-
mation sampling processes, at the same time, the information loss is almost irreparable.
This way, the rigid sample method causes some limitations in the recognition perfor-
mance of voxel-based and image-based algorithms, which have become less researched in
recent years.

Different from the poor performance in voxel-based and image-based algorithms,
using graph structure to extract both local and global features significantly improved
the recognition efficiency in the point cloud domain. Graph structure owns the better
precepting capability than 2D/3D grids to extract topology information among center
point and its neighboring points. Besides, graph-based algorithms do not exit information
loss of point cloud sampling during graph structure generation. This way, graph-based
algorithms own better recognition performance than voxel/image-based algorithms on
both ModelNet10/40. We listed the 2 most popular graph-based algorithms ECC [26] and
DGCNN [9], in Table 2. The ECC [26] algorithm uses a fixed graph structure with multiple
resolutions before point cloud inputting. Whereas DGCNN generates dynamic graph
structure in each convolutional layer, which means richer information is perceived from
different graph spaces. Thus, the recognition performance of the graph-based network
ECC [26] was slightly worse than the DGCNN [9] on both ModelNet10 and Modelnet40.
Besides, the recognition accuracy of DGCNN was higher than other popular point-based,
voxel-based, and image-based algorithms, which means the dynamic graph structure has
stronger feature extraction capability than others.
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Compared with the 2 graph-based algorithms that only adopted deep learning ar-
chitectures, recognition results on ModelNet10/40 obtained by DGCB-Net were slightly
improved. As shown in the last row of Table 2, our average accuracies on ModelNet10/40
were 94.3% and 92.8%, respectively. The main reason for our good performance was that
we adopted a broad structure to enhance the recognition backbone flatly. Our algorithm
combined graph features from all convolutional layers together and transformed them into
multiple higher and more abstract feature spaces at the same time. These feature layers
improved the discrimination of combining graph information from convolutional layers,
thus that our proposed DGCB-Net algorithm owned the best recognition performance on
the ModelNet10/40 at the same time.

To offer a detailed description of the recognition performance of our proposed DGCB-
Net on the classic dataset ModelNet40, we gave accurate results of each class in Table 3.
Compared with the DGCNN algorithm, our algorithm showed better performance in most
object types. For example, our algorithm was effective for cars, cones, laptops, etc., where
the F1 scores reached around 1.00. Besides, the recognition performance of table, plant,
and TV stand obstacles were slightly better than that of DGCNN.

Table 3. Each class accuracy in ModelNet40 datasets.

Network Performance Airplane Bathtub Bed Bench Bookshelf Bottle Bowl Car Chair Cone

DGCNN

PR 1.0 0.98 0.97 0.79 0.90 0.95 0.83 0.99 0.98 1.00

RC 1.0 0.90 0.99 0.75 0.99 0.98 0.95 1.00 0.98 0.95

F1 1.0 0.94 0.98 0.77 0.94 0.97 0.88 0.99 0.98 0.97

Ours

PR 1.0 0.99 0.99 0.70 0.99 0.97 0.90 1.0 0.98 1.00

RC 1.0 0.98 0.97 0.82 0.93 0.97 0.82 0.99 0.96 1.00

F1 1.0 0.96 0.98 0.76 0.96 0.97 0.86 1.00 0.97 1.00

Network Performance Cup Curtain Desk Door Dresser Flower
Pot

Glass
Box Guitar Keyboard Lamp

DGCNN

PR 0.61 0.95 0.79 0.95 0.80 0.20 0.97 0.99 0.95 1.00

RC 0.70 0.95 0.88 0.95 0.86 0.30 0.95 1.00 0.95 0.90

F1 0.65 0.95 0.84 0.95 0.83 0.24 0.96 1.00 0.95 0.95

Ours

PR 0.70 0.90 0.90 0.85 0.92 0.10 0.96 1.00 0.95 0.85

RC 0.67 0.82 0.84 0.94 0.72 0.18 0.97 0.98 0.95 1.00

F1 0.68 0.86 0.87 0.89 0.81 0.13 0.96 0.99 0.95 0.92

Network Performance Laptop Mantel Monitor Night
Stand Person Piano Plant Radio Range

Hood Sink

DGCNN

PR 0.95 0.99 0.97 0.81 1.00 1.00 0.88 0.80 0.98 0.94

RC 1.00 0.98 1.00 0.81 0.95 0.95 0.80 0.80 0.97 0.85

F1 0.98 0.98 0.99 0.81 0.97 0.97 0.84 0.80 0.97 0.89

Ours

PR 1.0 0.95 1.0 0.74 0.95 0.94 0.88 0.75 0.97 0.95

RC 1.0 0.97 0.95 0.91 1.0 1.00 0.87 0.94 1.00 1.00

F1 1.0 0.96 0.98 0.82 0.97 0.97 0.88 0.83 0.98 0.97

Network Performance Sofa Stairs Stool Table Tent Toilet Tv
Stand Vase Wardrobe Xbox

DGCNN

PR 0.98 1.00 0.84 0.86 0.95 1.00 0.92 0.87 0.76 0.94

RC 1.00 0.95 0.80 0.79 0.95 0.99 0.86 0.80 0.80 0.85

F1 0.99 0.97 0.82 0.82 0.95 0.99 0.89 0.83 0.78 0.89

Ours

PR 1.0 0.95 0.75 0.86 0.95 1.00 0.87 0.90 0.75 0.80

RC 0.97 0.95 0.88 0.83 0.90 0.99 0.95 0.84 0.88 0.89

F1 0.99 0.95 0.81 0.85 0.93 1.00 0.91 0.87 0.81 0.84
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Parameter Detail The structure of the DGCB-Net used for the ModelNet10/40 con-
tained 4 feature generating layers, 4 2D dynamic graph convolutional layers, 1 2D combi-
nation convolutional layer, 33 feature layers, and 500 enhancement nodes. Based on the
dataset, the k value was set as 20, and the edge features contained 6 dimensions. During
each feature generating layer, the edge features and graph structures were recomputed,
and the k nearest neighbors were ordered. The channels in the first 2 layers were 64, the 3rd
layer owned 128 channels, the channels in the 4th layer were 256, and the last layer owned
1024 channels. After the first 4 convolutional layers, corresponding 2D batch normalization
layers, LeakyReLU functions with 0.2 negative slopes, and max-pooling layers were follow-
ing. The input of the 5th 1D convolution layer was the graph feature concatenation of the
above 4 convolutional layers. After the first concatenation, both max and average 1D pool
operators were adopted at the same time to downsample the graph feature and element
the uncertain dimension of point counts. The concatenation of the 2 kinds of pooling
results was the input of the feature layers in our broad structure. The results were projected
into 33 feature layers under sparse autoencoders, which were separately initially obeying
normal distribution and training under 50 iterations. The weights between 33 feature
layers and 500 enhancement nodes were initialized as random normal distribution obeys
an orthogonal constrain. The activation function in the feature layer was a linear function
between [0, 1] and a tansing function in the enhancement layer. The features obtained from
both the features layers and enhancement layer were concatenated together as the input of
the output layer.

Based on the above feature extraction module, we estimated the recognition perfor-
mance under different sizes of broad networks on the ModelNet10/40 (abbr. as MN10/40).
Figure 5 contains 6 heat maps representing corresponding recognition accuracies, where
high value was rendered in oxblood red, and low value was rendered in navy blue. The
horizontal and vertical axes were feature node numbers in each feature layer and feature
layer, respectively. The enhancement node numbers (N_E) were set as 100, 1000, and
2000 in the 3 columns. Most accuracy rates of ModelNet10/40 were located in the range
from 90% to 95% under the given parameter options. In the first row, it was evident that
an improved performance appeared in Figure 5a when enhancement nodes were set as
500. When increasing the enhancement to 1000, the main colors of the heat map were
light orange and light blue. When the enhancement was increased to 2000, the overall
performance was not good with a large area of blue. On the contrary, the MN40 dataset
prefers high enhancement performance. As shown in the 2nd row, the dark orange mainly
focused on Figure 5e,f. Besides, the inner trend of performance variance in each heat map
was clear in the 2nd row, where the accuracy in the lower right corner was significantly
higher than that of the upper left corner. This way, we can conclude that dataset MN40
relied on a wider architecture to obtain better performance, whereas MN10 favored a small
broad network.

Robust Estimation We also estimated the robustness of our proposed DGCB-Net on
point clouds with random input dropout. We selected a car sample from ModelNet40 as
a template to visualize its object structure and point distribution under different point
numbers 1024, 512, 256, and 128 in Figure 6a. When the points were dropped by 50%, at 512,
the car still had a complete inside structure and clear contour information. When dropping
75% points in 256, there was a certain amount of shape information loss. For instance, the
front and rear wheels were blurred—the shape of the font part was not complete. If 12.5%
points were dropped, and 128 points remained, only the basic shape and outline were left.
Figure 6b was the corresponding recognition performance tested on the different point
numbers. It was evident, by that blue curve that represented our proposed DGCB-Net, that
it provided better robustness than other popular algorithms. The downward trend of the
blue curve was much slower than others, where the yellow and red curves have steeper
decline degrees. Especially when samples only own 128 points, our recognition rate was
still more than 90.5%. However, that of the DGCNN and PointNet++ were less than 90%.
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Thus, the robustness of our DGCB-Net showed better performance when object samples
existed a certain degree of point missing.
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4.2. Outdoor Object Datasets

Because the sample count of the Sydney urban object dataset was small, we collected
a series of real outdoor LiDAR objects by using our experiment platform. Figure 7 shows
the collected 6 kinds of common outdoor objects LSOOD collected by our UGV, which
contained cars (a–e), pedestrians (f–i), bushes (j–l), trees (m–p), trunks(q–u), and walls
(v–x). The numeric statistic of each kind of object for both training and testing was written
in Table 4. There were 1473 samples total, 1010 samples used for model training, and
463 samples for testing. Through using our proposed DGCB-Net, the recognition accuracy
reached was around 97.15%.
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Table 5 gives the detailed precision, recall, and F1 score of each class by the proposed
algorithm and the other 3 popular object recognition algorithms. Our algorithm displayed
the better performance of F1 scores on bush, tree, building, and car objects. The average
weighted precision, recall, and F1 scores reached 0.98.

Table 5. Outdoor objects collected by our UGV platform.

No.
DGCBN DGCNN PointNet PointNet++

P R F1 P R F1 P R F1 P R F1

0 Pedestrian 0.93 0.96 0.95 0.93 1.00 0.96 0.43 0.92 0.59 0.96 0.87 0.92
1 Bush 0.98 0.96 0.97 1.00 0.95 0.97 0.98 0.76 0.86 0.92 0.98 0.95
2 Tree 1.00 1.00 1.00 1.00 0.97 0.99 0.99 0.99 0.99 0.98 1.00 0.99
3 Trunk 0.95 1.00 0.98 0.97 0.99 0.98 0.99 0.99 0.99 0.92 1.00 0.96
4 Building 1.00 0.98 0.99 1.00 0.93 0.96 0.99 0.99 0.99 1.00 0.97 0.99
5 Car 0.99 0.96 0.98 0.84 0.97 0.90 0.98 0.98 0.98 0.99 0.92 0.95

avg 0.98 0.98 0.98 0.97 0.96 0.96 0.97 0.95 0.95 0.97 0.97 0.97

In order to illustrate the robustness of our proposed DGCB-Net on the scanned data,
we used a random dropout method to downsample the collected 3D object point cloud.
Figure 8a shows the visualization results of the pedestrian, tree, building, and car objects
in total, 256, 128, 64, and 32 points, respectively. When the point cloud has 256 points, the
object can retain almost all the detailed information. For example, the image in the 1st row
and 2nd column can still clearly see the outline of the head and legs. When 128 sampling
points were reserved, we can distinguish their categories based on the main parts of object
point clouds in the 3rd column. However, if there were only 64 points, pedestrian and
tree objects can be vaguely recognized by humans, but the point cloud structure of the car
was somewhat illegible. The last column demonstrates the object with only 32 points, the
point clouds were difficult to recognize with the naked eye. The recognition performance
of the DGCNN model that shows in Figure 8b by the blue curve expresses the obvious fact
that fewer number of point clouds own fewer object features. Thus, the slope of the blue
curve was very steep. However, the slope of the orange curve was relatively flat even the
recognition accuracy was higher than 95% when only 32 points were provided. This way,
the experiment can strongly prove that our proposed DGCB-Net algorithm with the broad
structure was more robust than the deep learning model DGCNN.
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5. Discussion

Dataset Types This paper estimates DGCB-Net on two different kinds of point clouds.
One is the public dataset ModelNet10/40 that consists of evenly distributed point clouds
in the whole object space. The other dataset is the outdoor object point clouds scanned by
our LiDAR sensor from a certain view that showing sheet structure with occlusion and
uneven density. Our proposed DGCB-Net shows better classification performance than
other popular object recognition algorithms on both two different kinds of point clouds.

Performance Improvement Table 2 clearly shows that our proposed DGCB-Net algo-
rithm has a significant improvement on the public datasets Modelnet10/40. The recognition
accuracies of DGCB-Net reach 92.9 and 94.6 on ModelNet10/40, respectively, owning at
least 0.5 than other algorithms. Besides, we compared the accuracy of each category in
ModelNet40 with the DGCNN algorithm in Table 3. Among them, our DGCB-Net algo-
rithm achieved better efficiency on 17 categories, and 8 categories remained at the same
performance as the DGCNN algorithm.

Broad Network Parameter We set different counts of nodes and layers in the broad
network to explore the relationship between the network size and classification perfor-
mance. For solving the 10 classification problem on the ModelNet10 dataset, the small
parameter size of the broad network reached a better classification performance when
comparing Figure 5a–c. However, while solving the 40 classification problem on the Mod-
elNet40 dataset, the big parameter size in the broad network obtained better results, as
shown in Figure 5d–f.

Robustness Discussion To estimate the robustness of our DGCB-Net, we downsample
the point clouds of modelnet40 in Figure 6a and the outdoor dataset collected by ourselves
in Figure 8a. When the point cloud is sparse, for example, only 128 points are retained in
the modelnet40, the recognition accuracy remains above 90%, as shown in Figure 6b. In the
outdoor dataset we collected, although only 32 LiDAR points were retained, the DGCB-Net
algorithm can still guarantee higher performance than DGCNN, as shown in Figure 8b.

6. Conclusions

This paper proposed a DGCB-Net model to realize object recognition from point
clouds by combining convolution and broad learning systems. When estimated on Model-
net40 and our collected outdoor common object datasets, the DGCB-Net model showed a
better performance than other state-of-the-art deep learning algorithms. Through graph
convolution-like operations and feature concatenation, our broad network obtained de-
scriptive LiDAR point cloud features, which are beneficial for environment perception and
consequence scenes reconstruction for UGVs. Besides, the robustness of our algorithm is
another significant advantage that the performance is relatively stable even when a certain
part of points have been randomly dropped. In the future, more pre-training structures
and feature transformation methods will be explored to improve recognition performance.
Besides, improving existing deep learning architecture with a flat strengthening way is
another interesting research point. Furthermore, other feature extraction models in the
deep learning domain will be extended in a flat way to enhance their performance in 3D
object recognition and other kinds of point cloud applications.
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