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Abstract: Remote sensing offers a way to map crop types across large spatio-temporal scales at
low costs. However, mapping crop types is challenging in heterogeneous, smallholder farming
systems, such as those in India, where field sizes are often smaller than the resolution of historically
available imagery. In this study, we examined the potential of relatively new, high-resolution imagery
(Sentinel-1, Sentinel-2, and PlanetScope) to identify four major crop types (maize, mustard, tobacco,
and wheat) in eastern India using support vector machine (SVM). We found that a trained SVM model
that included all three sensors led to the highest classification accuracy (85%), and the inclusion of
Planet data was particularly helpful for classifying crop types for the smallest farms (<600 m2). This
was likely because its higher spatial resolution (3 m) could better account for field-level variations in
smallholder systems. We also examined the impact of image timing on the classification accuracy, and
we found that early-season images did little to improve our models. Overall, we found that readily
available Sentinel-1, Sentinel-2, and Planet imagery were able to map crop types at the field-scale
with high accuracy in Indian smallholder systems. The findings from this study have important
implications for the identification of the most effective ways to map crop types in smallholder systems.

Keywords: smallholder farms; Planet; Sentinel-1; Sentinel-2; crop type; support vector machines (SVM)

1. Introduction

Smallholder farming comprises 12% of global agricultural lands and produces approx-
imately 30% of the global food supply [1,2]. Smallholder systems are being challenged by
environmental change, including climate change and natural resource degradation [3,4].
Mapping agricultural land cover and land use change (LCLUC) is critically important for
understanding the impacts of environmental change on agricultural production and the
ways to enhance production in the face of these changes [5,6]. While remote sensing has
been widely used to map agricultural LCLUC across the globe, it has historically been
challenging to map smallholder agricultural systems given the small size of fields (<2 ha)
relative to long-term, readily available imagery, such as Landsat and MODIS [7]. Over the
last decade, however, new readily available sensors, including Sentinel-1, Sentinel-2, and
Planet, have been launched and can provide higher-resolution datasets (<=10 m). These
new sensors have been shown to better detect field-level characteristics in smallholder
systems [8,9], and they have the potential to provide the critical datasets needed to improve
food security over the coming decades.

One key dataset for monitoring LCLUC in smallholder systems is crop type. This is be-
cause identifying crop types is an important precursor to mapping agricultural production,
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particularly yield [9], and studies have shown that crop switching is one of the main axes of
adaptation to environmental changes in smallholder systems [10,11]. Yet, to date, relatively
little work has been carried out to map crop types in smallholder systems compared to
other agricultural characteristics, such as cropped area and yield. The work that does
exist to map smallholder crop types using readily available imagery has largely focused
on using Sentinel 1 and 2 [9,12–14], yet it is likely that micro-satellite data could improve
classification accuracies given their higher spatial resolution, which reduces the effect of
mixed pixels at field edges [15]. To the best of our knowledge, only two studies have
examined the benefits that Planet micro-satellite data provide when mapping smallholder
crop types, and these two studies were conducted in Africa [16,17]. To date, no work, to
the best of our knowledge, has examined the ability of Planet satellite data to map crop
types in India, which is the world’s largest nation of smallholder farms [2].

In this study, we used radial kernel support vector machine (SVM) to map the crop
types of smallholder farms in two sites in eastern India. We focused on using SVM because
previous studies have suggested that it produces higher classification accuracies compared
to other commonly used algorithms, including random forest, for supervised pixel-based
classifications [18]. We specifically focused on mapping four major crops (maize, mustard,
tobacco, and wheat) planted during the dry winter season in Bihar, India. We used these
data to ask three specific research questions:

1. How accurately do Sentinel-1, Sentinel-2, and PlanetScope imagery map crop types
in smallholder systems? Which sensor or sensor combinations lead to the greatest
classification accuracies?

2. Does crop type classification accuracy vary with farm size? Does adding Planet
satellite data improve the classification accuracy more for the smallest farms?

3. How does classification accuracy vary based on the timing of imagery used? Are
there particular times during the growing season that lead to a better discrimination
of crop types?

This study provides important insights into the ability of new, higher-resolution
satellite data to map crop types in smallholder systems in India. Such information is critical
given that readily available crop type maps do not exist across the country, and crop type
information can be used to better understand the impacts of environmental change in this
globally important agricultural region.

2. Materials and Methods
2.1. Data
2.1.1. Study Area and Field Polygons

Our study area covered a 20 km × 20 km region in the Vaishali and Samastipur
districts of Bihar in India (Figure 1), for which crop type information from 385 farms
across 30 villages was collected during the winter growing season of 2016–2017. The farms
sampled included four major crop types in this region: maize, mustard, tobacco, and
wheat, which are sown in late November through December and are harvested from March
to April.

We acquired a sample of crop types across the study region based on field accessibility
and to ensure adequate representation across the four main crop types; this likely resulted
in the oversampling of minor crops that were planted on the least amount of area. We
excluded any fields where more than one crop was planted within the same field. Farm
locations were collected using Garmin E-Trex GPS units. For each farm, we recorded the
geographic coordinates of the four corners and the center of the field, crop type, farmer
name, and village name.

The GPS coordinates of farm boundaries obtained from the field survey were imported
into ArcGIS (version 10.6.1) as a point shapefile and were overlaid on the ArcGIS base
imagery. Based on the coordinates of the four corners of the fields, farm polygons were
digitized manually by checking visible farm boundaries on the ArcGIS base imagery and
the Google Earth Pro (https://www.google.com/earth/versions/#earth-pro, accessed on
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15 March 2018) images closest to December 2016 (the date when polygons were collected).
We kept the 324 polygons with clear and accurate field boundaries according to the visual
interpretation of high-resolution imagery, and we did not include 61 polygons for which
the farm boundaries could not be clearly identified.

Figure 1. (A) Study region in Bihar in eastern India. (B) Distribution of sample fields overlaid on the ArcGIS base map
(ESRI Inc.). (C) Zoomed-in image of one village shown on Planet imagery acquired on 18 February 2017.

2.1.2. Satellite Data

We utilized multi-temporal data from two optical sensors, Planet and Sentinel-2,
and one radar sensor, Sentinel-1, that fell within our study period (15 November 2016,
to 20 April 2017). We used the Google Earth Engine platform (GEE; [19]) to download
preprocessed Sentinel-1 Ground Range Detected (GRD) and Sentinel-2 level-1C Top Of
Atmosphere (TOA) reflectance data covering our study area. GEE uses the Sentinel-1
Toolbox (https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1, accessed on 1 April
2018) to preprocess Sentinel-1 images to generate calibrated, ortho-corrected estimates
of decibels via log scaling. In addition, thermal noise removal, radiometric calibration,
and terrain correction were performed using a digital elevation model (DEM) from the
Shuttle Radar Topography Mission (SRTM) or the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER). We used all 17 Sentinel-1 GRD scenes with both VV
(vertical transmit/vertical receive) and VH (horizontal transmit/horizontal receive) bands
available for the 2016–2017 winter growing season (Figure 2).

We also used all six cloud and haze-free Sentinel-2 multispectral TOA data available
for the growing season (Figure 2); cloud and haze-free imagery were identified visually
given that only 13 images were available throughout the growing season. We conducted
atmospheric correction of all Sentinel-2 multispectral TOA bands using the Py6S pack-
age [20], which is based on the 6S atmospheric Radiative Transfer Model [21], to derive
the surface reflectance for the visible (blue, green, and red at 10 m), NIR (10 m), red-edge
(20 m), and SWIR (20 m) bands. In addition, based on the available literature, we derived
eight spectral indices (seven from Sentinel-2 and one from Sentinel-1) that are known to
capture distinct plant characteristics to improve crop classification accuracies (Table 1). We
resampled all Sentinel-1 and Sentinel-2 scenes to 3 m (the spatial resolution of PlanetScope
imagery) using nearest-neighbor assignment in ArcGIS software.

https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1
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Figure 2. Image acquisition dates for the three sensors during the 2016–2017 winter growing season
plotted against average NDVI values produced using MODIS satellite imagery for our study region.

Table 1. Spectral indices used in this study.

Spectral Index Sensor Application Reference

Green-Blue Normalized Difference
Vegetation Index,

G-B NDVI: (G-B)/(G + B) *
Sentinel-2, Planet Plant pigment for differentiating species [22]

Green-Red Normalized Difference
Vegetation Index,

G-R NDVI: (G-R)/(G + R)
Sentinel-2, Planet Plant pigment for differentiating species [22,23]

Normalized Difference Vegetative Index,
NDVI: (NIR-R)/(NIR + R) Sentinel-2, Planet LAI, intercepted PAR [22,24]

Plant Senescence Reflectance Index,
PSRI: (R−G)/NIR Sentinel-2, Planet Plant senescence [25]

Normalized Pigment Chlorophyll Index,
NPCI: (R–B)/(R + B) Sentinel-2, Planet Leaf chlorophyll (esp. during late stages) [22,25,26]

Green Chlorophyll Index,
GCVI or CI green: (NIR/G)–1 Sentinel-2, Planet LAI, GPP, Chlorophyll (early stages) [27]

Normalized Difference Index 7,
NDI7: (NIR–SWIR)/(NIR + SWIR) Sentinel-2 Vegetation status, water content, residue cover [28,29]

Cross Ratio, CR: VH/VV Sentinel-1 Vegetation water content [30]

* G = green; B = blue; R = red; NIR = near-infrared; SWIR = short-wave infrared.

We accessed all available cloud-free Planet surface reflectance data (PlanetScope
AnalyticMS level 3B product) covering our study region and period (Figure 2) through
Planet’s API [31]; we similarly identified cloud-free scenes via the visual interpretation
of imagery. Each image was also visually inspected for any geo-referencing errors by
overlaying Planet images over the base satellite imagery in ArcGIS. As band values from
Planet were not comparable with those from Sentinel-2, likely due to differences in sensor
characteristics, atmospheric correction methods, and the relatively poor quality of surface
reflectance correction for Planet [32], we performed histogram stretching of Planet and
Sentinel-2 surface reflectance data using methods from Jain et al. [15]. Specifically, we
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linearly transformed histograms of each Planet band to match histograms of the same
bands from Sentinel-2 images. For this correction, we used Sentinel-2 data from the date
that was closest to the date of the Planet imagery. If there was no Sentinel-2 image that
was within a few days of the Planet date, we took the inverse distance-weighted value
between the closest Sentinel-2 dates before and after the Planet image date following
methods from Jain et al. [15]. After histogram matching, both Sentinel-2 and Planet NDVI
showed similar values and a consistent phenology (Figure 3). The 15 November 2016 Planet
scene did not cover our entire study area, including 47 of the reference polygons. To keep
all analyses constant across sensors, we removed these 47 polygons from all remaining
analyses, reducing the final number of polygons used to 277.

Figure 3. NDVI values of all pixels within the reference polygons from Planet and Sentinel-2 imagery
after histogram matching Planet data.

We stacked all available image dates from the resampled Sentinel-1 (3 m), resampled
Sentinel-2 (3 m), and Planet (3 m) datasets, and we extracted all bands for all pixels that
fell within each of the 277 polygons. This final dataset is available as a supplementary file
(Supplementary Data).

2.2. Methods
2.2.1. Sampling Strategy and Feature Selection for Model Development

The reference polygons were divided into training (70%) and testing (30%) polygons
stratified across crop type and field size. We stratified our training and testing polygons
because we were interested in evaluating how well our models performed across crop
types and field sizes. For training data, for each crop type, we selected 1893 pixels, which
was the number of pixels available across all training polygons for the smallest crop type
class (i.e., mustard); these pixels were selected randomly across all training polygons for
each of the other three crop types. By selecting the same number of training pixels across
each crop type, we ensured that each crop type was equally represented in the model. All
pixels within the testing polygons were considered as the test sample. We extracted all
band values and indices for all sensors and image dates for all training and test pixels using
the raster package [33] in R project software [34]. Before training the SVM, we removed
redundant (correlated) features following a simple correlation-based filter approach using
a cutoff value of 0.9 using the caret package [35] in R project software [33]. The selected
number of final input features ranged from 31 to 147 depending on the combination of
sensors under consideration (Table 2).
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Table 2. The number of final input features for developing the SVM model.

Sensor No. of Images No. of Bands and Indices
per Image No. of Features Used

Planet 5 4 bands; 6 indices 31 of 50
Sentinel-2 6 10 bands; 7 indices 65 of 102
Sentinel-1 17 2 bands; 1 index 51 of 51

Sentinel-1 +
Sentinel-2 18 – 116 of 153

Planet + Sentinel-2 11 – 96 of 152
Planet + Sentinel-1 +

Sentinel-2 28 – 147 of 203

2.2.2. Performance of Different Sensor Combinations

We ran the SVM using the caret package [34] in R project software [33] using a grid
search along with 10-fold cross-validation to appropriately tune the gamma and cost
parameters based on the training data. We then ran the SVM for each sensor and all sensor
combinations (research question 1). The performance of each model was compared by
examining the overall accuracy, producer/user accuracies, and crop-specific F1 scores that
combined both producer and user accuracies using the harmonic mean [32].

F1 score = 2 * (Producer’s accuracy * User’s accuracy)/(Producer’s accuracy + User’s accuracy) (1)

The SVM model that produced the best results (highest overall accuracy and F1 scores
for most crops) was used in the further analysis for the remaining research questions. We
found this to be the SVM model that was run using all three sensors (Section 3.1).

2.2.3. Classification Accuracy Based on Farm Size

To understand how classification accuracy varies with farm size, we examined the
classification accuracy of small (<600 m2, n = 135) versus large (>=600 m2, n = 142) farms
(Figure 4). We used 600 m2 to differentiate between small versus large farms because this
value approximated the median value of farm sizes (627 m2) for all crops. We ran the
SVM algorithm on the three-sensor dataset, as well as a two-sensor model using Sentinel-1
and Sentinel-2, to assess whether the addition of Planet data improved crop classification
accuracies, particularly for small fields (research question 2).

Figure 4. Farm sizes based on crop types. The x-axis labels also show the number of small and large
farms based on the 600 m2 threshold (dotted horizontal line) obtained from the field survey.
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2.2.4. Classification Accuracy and Image Sampling Dates

To assess whether certain periods of crop growth were more important for improving
classification accuracies (research question 3), we ran the SVM model on different subsets
of input datasets based on the stages of crop growth within the growing season (Table 3).
These subsets include dates from the early, peak, and late growing seasons, identified using
crop phenology (Figure 2) and local knowledge. For each crop growth stage, we selected
one image from each sensor that was close in date to reduce the confounding effect of
increased temporal information provided when using images from multiple sensors. We
compared SVM classification accuracies when using images from only one season and for
all season combinations (Table 3).

Table 3. Image acquisition dates in month and day (mmdd) within different growth stage periods during the 2016–2017
winter growing season (November to April) for all three sensors.

Sensor
Early

(Mid November–
Early December)

Peak
(Mid January–
late February)

Late
(Late March–
Mid April)

Early and Peak Peak and Late Early and Peak and Late

Sentinel-1 1120 0221 0410 1120 + 0221 0221 + 0410 1120 + 0221 + 0410
Sentinel-2 1119 0217 0418 1119 + 0217 0217 + 0418 1119 + 0217 + 0418

Planet 1115 0218 0409 1115 + 0218 0218 + 0409 1115 + 0218 + 0409

3. Results
3.1. Crop Classification Accuracies from a Combination of Different Sensors

Considering research question 1, the highest overall accuracy (0.85) was yielded when
all three sensor datasets were combined (Tables 4 and S1). For individual sensors, Planet
resulted in the highest classification accuracy, though this was only moderately better than
that using Sentinel-2 data, and Sentinel-1 resulted in the lowest classification accuracy
(Table 4). The accuracies increased as more sensors were added into the model, with the
biggest increase occurring between the one-sensor and two-sensor models (Table 4).

Table 4. Comparison of overall classification accuracies using each sensor and all sensor combinations.

Overall Accuracy for Each Sensor and Sensor Combination

Sentinel-1 Sentinel-2 Planet Sentinel-1 +
Sentinel-2

Planet +
Sentinel-1

Planet +
Sentinel-2

Planet +
Sentinel-1 + Sentinel-2

0.69 0.72 0.73 0.80 0.82 0.82 0.85

Considering the best model (the three-sensor model), the F1 scores varied across
crop type (Table 5), with the highest accuracies for wheat and tobacco. A major source of
classification error appeared to come from the omission of mustard pixels, as indicated by
the lower F1 scores and producer accuracies for the crop (Tables 5 and S1).

Table 5. Crop-specific F1 scores from the model using all three sensors.

Crop-Specific F1 Scores

Maize Mustard Tobacco Wheat

0.81 0.76 0.87 0.89

3.2. The Influence of Farm Size on Classification Accuracy

For research question 2, we found that the classification accuracies were higher for pix-
els within large farms (≥600 m2) compared to those within small farms (<600 m2) (Tables 6
and S2–S5). Notably, including data from Planet appeared to improve the crop classification
of smaller farms more significantly than that of larger farms (Table 6). For example, when
Planet data were combined with the other two sensors, the overall classification accuracy
increased by almost 6% for small farms compared to around 4% for larger farms. Planet
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data also generally increased the crop-specific F1 scores (Table 6), including producer’s
and user’s accuracies, except for the producer’s accuracy of tobacco (Tables S2–S5). Over-
all, these results suggest that including Planet data improves the classification accuracy,
particularly for small farms.

Table 6. Classification accuracies for the test pixels from the large and small farms before and after
including Planet data with the combined Sentinel-1 and Sentinel-2 data.

F1 Score
Small Farms Large Farms

Without Planet With Planet Without Planet With Planet

Maize 0.76 0.82 0.71 0.81
Mustard 0.61 0.68 0.71 0.78
Tobacco 0.65 0.71 0.84 0.88
Wheat 0.78 0.82 0.88 0.90

Overall accuracy 0.73 0.79 0.82 0.86

3.3. Classification Accuracies Based on Images from Different Periods of the Growing Season

Considering research question 3, we found that the late season (i.e., late-March to
mid-April) led to the highest classification accuracy (0.67) when the three-sensor SVM was
run separately using images from one of the three stages of the growing period (early,
peak, and late, Figure 5, Tables S6–S11). The overall accuracy and F1 scores for all four
crops were quite low when only early-season images were used (Figure 5). The time
period that resulted in the highest accuracy varied based on crop type. The F1 scores for
mustard and tobacco were highest when using peak-season images, while the F1 scores
were highest when using late-season images for maize and wheat. This was likely due
to differences in phenologies and harvest dates across crops (Figure 6). Generally, the
classification accuracies improved as more growing seasons were considered in the model,
though adding early-season images did not improve the model fit compared to only using
peak and late-season images (Figure 5, Tables S6–S11).

Figure 5. F1 scores for identifying different crops using images from different periods of the 2016–
2017 growing season. The values inside the parentheses on the y-axis show overall accuracies (OAs)
for the given combination of images from different periods of the growing season.
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Figure 6. Average NDVI values across all training and test pixels for each crop type for the end of
the growing season.

4. Discussion

This study explored the ability of three readily available, high-resolution sensors
(Planet, Sentinel-1, and Sentinel-2) to identify four major winter-season crops (wheat,
mustard, tobacco, and maize) across smallholder farming systems in eastern India. We
found that we were able to map crop type with high accuracies (85%), particularly when
using all three sensors. Accuracies varied across crop type, with the highest accuracy
for wheat and the lowest accuracy for mustard, and these patterns remained largely
consistent across sensor combinations. Among the sensors considered in this study, Planet
satellite data led to the greatest improvements in classification accuracy, both in single
and multi-sensor models; in particular, Planet data improved the classification accuracy
of the smallest farms. Finally, we found that images from the peak and late stages of the
crop calendar led to the highest accuracies, and early-season imagery contributed little to
the crop classification accuracy. Overall, our results suggest that crop type in smallholder
systems can be accurately mapped using readily available satellite imagery, even in systems
with very small field sizes (<0.05 ha) and high heterogeneities in crop type across farms.

Considering which sensor(s) lead to the highest classification accuracy, we found that
the highest accuracies were achieved when using the model that included all three sensors
(85%). The overall accuracy of this model was 3% higher than that of the best two-sensor
model, and 13% higher than that of the best one-sensor model. This suggests that including
all three sensors is important for mapping crop type. Among the two-sensor models, all
sensor combinations performed similarly (80–82% overall accuracy), though the model that
did not include Planet data had an accuracy that was 2% lower than those of models that
included Planet data. Considering single-sensor models, we found that using only Planet
data led to the highest overall accuracy (73%), though this model performed similarly to
the one that used only Sentinel-2 data (72%). Sentinel-1 led to the lowest-accuracy models,
despite having the best temporal coverage of all three sensors (Figure 2). This is interesting
given that previous studies have shown that Sentinel-1 provides benefits for mapping crop
type, particularly in regions with high cloud cover and haze [17,36].

Overall, among the three sensors used in this study, we found that Planet satellite data
led to the highest accuracies when using a single sensor and to the greatest improvement
in accuracies when using multiple sensors (Table 4). These results are similar to those from
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previous studies that found that including Planet satellite data, along with Sentinel-1 and
Sentinel-2 data, improved crop type classification in smallholder systems in Africa [16,17],
and that including data from other high-resolution sensors, such as RapidEye (5 m),
improved small farm classification [37]. We believe improved spatial resolution was the
main reason Planet models had the highest accuracy given that Planet imagery had more
limited temporal and spectral resolutions compared to other sensors; Planet had the fewest
scenes available throughout the growing season (Figure 2) and had fewer spectral bands
and indices compared to Sentinel-2 (Table 2). The reason that the high spatial resolution
of Planet satellite data (3 m) is likely important is because it better matches the spatial
resolution of smallholder farms and reduces the chance of mixed pixels at field edges [15]
(Figure 7).

Figure 7. Several field polygons overlaid on (A) Planet satellite imagery and (B) Sentinel-2 satellite imagery. The spatial
resolution of Planet (3 m; A) better matches the size of fields and results in fewer mixed pixels compared to Sentinel-2
imagery (10 m; B).

Considering the impact of farm size on classification accuracy, we found that larger
farms (≥600 m2) had higher classification accuracies than small farms did (<600 m2,
Table 6). In addition, we found that the benefit of including Planet imagery was larger
considering the classification accuracy of small farms, though the improvement in accuracy
was not very different between small and large farms (6% vs. 4%, respectively). We
also found that the classification accuracy varied based on crop type, with the highest
classification accuracies for wheat and tobacco, and the lowest classification accuracy for
mustard (Table 5). One reason for the reduced classification accuracy for mustard may be
that mustard fields were smallest across the four crop types considered in our study, and
our results suggest that the SVM performed better for larger farms (Table 6). In addition,
all crops are irrigated in this region, and previous work has shown that vegetation indices
become more similar between mustard and wheat in irrigated systems [14].

The classification accuracy also varied based on the timing of imagery used (Figure 5).
Early-season images did little to improve classification accuracies, likely because crops
are challenging to differentiate during the early stages of crop growth when crops have
little biomass [38]. Peak- and late-season imagery were found to be particularly useful for
classifying crop type, with peak-season images improving the classification accuracies for
mustard and tobacco and late-season images improving the classification accuracies for
maize and wheat. This is likely due to differences in the planting and harvest dates of these
four crops, with mustard and tobacco being harvested earlier (late March) than wheat and
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maize (early to late April; Figure 6). These results suggest that only using imagery for the
second half of the crop growth cycle is likely adequate for mapping crop types in this area.

There were several limitations to our study. First, our study area was relatively small
and it is unclear how well the results from our study may generalize to other locations
across India or other smallholder systems. Nevertheless, we believe that the main findings
of our study are likely applicable across systems, particularly the importance of including
Planet imagery when classifying smallholder fields. Second, we conducted our study
during the largely dry winter season when there is relatively little cloud cover and haze
compared to the monsoon growing season. It is likely that the inclusion of Sentinel-1 would
become more important during the monsoon season when there may be limited optical data
available due to cloud cover and haze [39]. Future work should examine how generalizable
our findings are to the monsoon season, which is the main agricultural growing season
across India. Finally, we relied on an SVM classifier, which can be computationally and
time-intensive to run when using a large training data set or number of features [18]. Future
work should examine how well more computationally efficient classifiers, such as random
forest, perform in mapping smallholder crop types.

5. Conclusions

In this study, we assessed the ability of three readily available, high-resolution sensors
(Sentinel-1, Sentinel-2, and Planet) to detect four major crop types across smallholder
farming systems in eastern India. We found that using all three sensors led to the highest
classification accuracy (85%). Planet satellite imagery was important for classifying crop
types in this system, leading to the greatest increases in classification accuracy, particularly
for the smallest farms (<600 m2). Furthermore, our results suggest that using only imagery
from the second half of the growing season is adequate to differentiate crop types in this
system. Overall, our results suggest that Sentinel-1, Sentinel-2, and PlanetScope imagery
can be used to accurately map crop type, even in heterogeneous systems with small field
sizes such as those in India.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13101870/s1, Table S1. Confusion matrix when all three sensors were used; Table S2.
Confusion matrix across small fields using Sentinel-1, and Sentinel-2 data; Table S3. Confusion matrix
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