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Abstract: Local climate zone (LCZ) maps have been used widely to study urban structures and
urban heat islands. Because remote sensing data enable automated LCZ mapping on a large scale,
there is a need to evaluate how well remote sensing resources can produce fine LCZ maps to assess
urban thermal environments. In this study, we combined Sentinel-2 multispectral imagery and dual-
polarized (HH + HV) PALSAR-2 data to generate LCZ maps of Nanchang, China using a random
forest classifier and a grid-cell-based method. We then used the classifier to evaluate the importance
scores of different input features (Sentinel-2 bands, PALSAR-2 channels, and textural features) for the
classification model and their contribution to each LCZ class. Finally, we investigated the relationship
between LCZs and land surface temperatures (LSTs) derived from summer nighttime ASTER thermal
imagery by spatial statistical analysis. The highest classification accuracy was 89.96% when all
features were used, which highlighted the potential of Sentinel-2 and dual-polarized PALSAR-2
data. The most important input feature was the short-wave infrared-2 band of Sentinel-2. The
spectral reflectance was more important than polarimetric and textural features in LCZ classification.
PALSAR-2 data were beneficial for several land cover LCZ types when Sentinel-2 and PALSAR-
2 were combined. Summer nighttime LSTs in most LCZs differed significantly from each other.
Results also demonstrated that grid-cell processing provided more homogeneous LCZ maps than
the usual resampling methods. This study provided a promising reference to further improve LCZ
classification and quantitative analysis of local climate.

Keywords: local climate zone; random forest; feature importance; land surface temperature; grid
cells; Sentinel-2; PALSAR-2; ASTER

1. Introduction

With continuous urbanization and the increasing settlement in global cities, natural
landscapes are constantly converted to impervious surfaces in urban areas, altering the
natural surface energy and water balances, which often results in altered climatic conditions
in urban areas and the formation of the urban heat island (UHI) phenomenon [1–3]. As
a key topic in urban climate studies, the concept of a “local climate zone” (LCZ) was
introduced in 2012 by Stewart and Oke [4] to quantify the relationship between urban
morphology and the UHI phenomenon. LCZs provide a standardized framework to link
land cover types and urban morphology with corresponding thermal properties, so LCZs
have been the systematic criteria for UHI comparisons [5]. Notably, the World Urban
Database and Access Portal Tools (WUDAPT) project was developed as a new global
initiative to produce standardized LCZ maps [6–8]. Because remote sensing data are
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widely available, they have been routinely used for LCZ mapping and have shown great
potential for that purpose [9–12]. It is necessary to explore the combination of multi-source
remote sensing data to generate LCZ mapping.

Because of the heterogeneity and complexity of the composition and configuration of
urban pixels in remote sensing images, urban land cover maps based on remote sensing
data are characterized by inherent uncertainties [13]. Unlike optical sensors that capture
the spectral characteristics of objects on the ground, synthetic aperture radar (SAR) sensors
can record the characteristics of light scattered by objects on the ground. Previous studies
have demonstrated that the synergistic use of optical imagery and SAR data can facilitate
urban land cover classification [14–16]. The cost-free, high-spatial-resolution imagery from
the Sentinel-2 multispectral instrument (MSI) has been found to be suitable for large-scale
LCZ mapping [17–20]. In addition, high-spatial-resolution phased array L-band SAR-2
(PALSAR-2) data have been used for large-scale land use and land cover mapping [21]. The
use of a combination of Sentinel-2 imagery and PALSAR-2 data, therefore, has the potential
to produce large-scale LCZ classification maps.

Random forest (RF) models [22] have become popular in the classification of land
cover using remote sensing data because their classifications are highly accurate, their com-
putational costs are low, and they can handle high-dimensional datasets [23,24]. Various
studies have examined the importance of input features for the classifier [15,25–29] and
for each class [30–33] in the context of RF classification. However, the contributions of
the different bands and features of remote sensing data to the classification model and
its classes have not been systematically studied in the case of LCZ classification. Only a
few studies have examined the importance of features for LCZ mapping [12,17,34,35]. The
feature contribution method based on decision paths [36,37] must be further investigated
to take advantage of the RF model in LCZ land cover classification.

The land surface temperature (LST) observed by satellites is widely used for urban cli-
mate research, where pixel values are time-synchronized and spatially continuous [38–40].
Medium-resolution thermal satellite imagery is readily available and can provide a better
alternative for urban land surface thermal analysis (e.g., surface UHI) than in situ thermal
data [41]. Many studies have recently applied the LCZ classification scheme to understand
the thermal characteristics of cities based on LSTs retrieved from thermal remote-sensing
data [38,42–45]. Previous studies have indicated that nighttime LST could observe climatic
conditions more accurately than daytime LST [46,47]. Given that summer nighttime is a
crucial temporal period for surface UHI [48], it is important to explore the relationship
between summer nighttime LST and LCZs.

Typically, the scales of LCZs vary from about a hundred meters to several kilometers
that represent relatively homogeneous urban surfaces that share a similar energy bud-
get [4,49]. To achieve a suitable resolution for LCZ classification, the common approach
to generate LCZ maps is to preprocess the remote sensing images by resampling or to
post-process the classified LCZ maps by resampling. Considering the different spatial
resolutions of LCZ maps and LST data, as an alternative, the grid-cell-based method has
been found to be a powerful tool for linking data at different spatial resolutions; it enables
the user to fine-tune an analysis of data from multiple sources and to strike a compromise
between the need for details and the feasibility of computations [50,51].

In this study, we combined the Sentinel-2 MSI imagery and PALSAR-2 data to gen-
erate LCZ maps of Nanchang City, Jiangxi Province, China, based on the RF classifier.
The main objectives of this study were (i) to classify different combinations of spectral,
backscattering, and textural features in Sentinel-2 and PALSAR-2, (ii) to assess the impor-
tance and contribution of the input features from Sentinel-2 MSI imagery and PALSAR-2
data to LCZ classification, and (iii) to compare the advantages and disadvantages of the
resampling method and the grid-cell-based method in the process of LCZ mapping, and
then to perform spatial statistical analysis of the best LCZs map and LST derived from
summer nighttime Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) thermal imagery.
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2. Materials
2.1. Study Area

Nanchang City, which is located between 115◦27′–116◦35′ E and 28◦09′–29◦11′ N
(Figure 1), was selected as our study area to fill the research gap for LCZ maps in this
region. Nanchang is the capital city of Jiangxi Province in southeastern China. It is one of
the central cities in the middle reaches of the Yangtze River and covers about 7402 km2.
Since the 1980s, Nanchang has experienced rapid economic development, industrialization,
and urbanization [52]. The Gan River runs through Nanchang from south to north and
divides it into two parts. The eastern bank of the Gan River is the old urban district, while
the western bank of the Gan River is the emerging urban district. As of the end of 2019,
the permanent population of Nanchang was 5.6 million. The area on the eastern bank of
the Gan River in Nanchang has a higher population density than other areas. In addition,
Nanchang is one of the hottest cities in China, with a strong urban heat island effect [53].

Figure 1. Left: Location of the study area (Nanchang City, China). Right: Sentinel-2 MSI image of the
study area (R/G/B = bands 4/3/2). The square labeled “A” indicates a subregion shown in Figure 7.

Nanchang is located on the southwest shore of Poyang Lake, China’s largest freshwater
lake and the link between the Gan River and the Yangtze River. Nanchang lies within the
Poyang Plain, which is rich in vegetation, rivers, and lakes. The city has rolling hills to the
northwest and relatively flat terrain to the southeast. Nanchang has a subtropical, humid
monsoon climate, with annual precipitation of 1613.3 mm, an average annual temperature
of 19.1 ◦C, the highest temperature of 37.5 ◦C, and the lowest temperature of 0 ◦C, based
on the meteorological statistics of 2019 [54]. Nanchang has a large diversity of land use
and land cover types, which mainly includes urban and industrial land, rural settlements,
paved land, rivers and bottomlands, ponds and reservoirs, cultivated land, forests, bush,
grassland, and bare land [52]. The main types of buildings in Nanchang are residential
buildings (e.g., elevator buildings, walk-up buildings, townhouses, bungalows, and villas),
public buildings, industrial buildings, and agricultural buildings.

2.2. Remote Sensing Data

We chose Sentinel-2 MSI imagery and PALSAR-2 data to generate LCZ maps in the
study area. To minimize classification errors due to different acquisition dates, we chose
PALSAR-2 data with the acquisition date closest to that of Sentinel-2. The coverage of the
PALSAR-2 scene is not the same as that of Sentinel-2. Therefore, we selected PALSAR-2
acquired in summer and late spring, which are closest to the acquisition date of Sentinel-2,
to cover the whole study area. ASTER land surface temperature products (AST_08) were
selected to investigate the relationship between the LCZs and the LST. Table 1 provides the
details of the remote sensing images used in this study.
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Table 1. Summary of remote-sensing data used in this study.

Remote Sensing Data Date
Local Time at the

Start of the
Observation

Location in the Study
Area Spatial Resolution (m)

Sentinel-2B MSI L2A
17 September 2019 10:55:49 Northwest

10, 20, 6017 September 2019 10:55:49 Southwest

Sentinel-2A MSI L2A
19 September 2019 10:45:51 Northeast

10, 20, 6019 September 2019 10:45:51 Southeast

PALSAR-2 L3.1

19 May 2019 00:12:54 Southwest

6.25

19 May 2019 00:13:02 West
19 May 2019 00:13:10 Northwest
28 July 2019 00:12:54 Southeast
28 July 2019 00:13:02 East
28 July 2019 00:13:10 Northeast

ASTER L2 AST_08

29 July 2019 22:31:08 Southeast

90

29 July 2019 22:31:17 East
29 July 2019 22:31:26 Northeast

23 August 2019 22:25:01 Southwest
23 August 2019 22:25:10 West
23 August 2019 22:25:18 Northwest

All remote sensing data were acquired in 2019 and were projected to the same co-
ordinate system by transforming projection (universal transverse mercator (UTM) zone
50 north map projection, World Geodetic System 84 (WGS-84) datum). For each source of
remote sensing data, multiple scenes were mosaicked using a histogram-matching method.

2.2.1. Sentinel-2 MSI Imagery

Four Sentinel-2 MSI level-2A images (bottom-of-atmosphere reflectance) acquired
in September 2019 were selected to generate a cloud-free image of the study area (https:
//scihub.copernicus.eu/dhus/#/home, (last accessed on 8 May 2021)). Sentinel-2 data
are acquired in 13 spectral bands ranging from the visible and near-infrared (VNIR) to the
short wave infrared (SWIR) at spatial resolutions of either 10 m, 20 m, or 60 m [55]. Band 10
(SWIR/cirrus) was excluded because it does not contain information about the land surface.
To maintain consistency and facilitate calculations, we resampled bands with 20 m and 60 m
resolutions to 10 m using a bilinear interpolation method based on Sentinel application
platform (SNAP) 7.0 software (https://step.esa.int/main/download/snap-download/,
(last accessed on 8 May 2021)).

2.2.2. PALSAR-2 Data

The L-band PALSAR-2 level 3.1 products were produced by the Japan Aerospace
Exploration Agency (JAXA) (https://auig2.jaxa.jp/ips/homepalsar, (last accessed on
8 May 2021)) [56,57]. The data were acquired in stripmap fine beam dual (FBD) mode
(HH and HV) during an ascending orbit with a right-looking observation direction, a
pixel spacing of 6.25 m, and off-nadir angles of 28.6◦ (for 19 May 2019) and 32.9◦ (for
28 July 2019). To combine the PALSAR-2 data with the Sentinel-2 imagery at the pixel
level, we transformed the PALSAR-2 data into the same coordinate system as the Sentinel-2
imagery and resampled it to a spatial resolution of 10 m using a bilinear interpolation
method. The PALSAR-2 data were coregistered by using dispersed ground control points
selected from Sentinel-2 imagery and applying a quadratic polynomial transformation and
bilinear interpolation. The root-mean-square error of the ground control points was less
than 0.5 pixels.

2.2.3. ASTER Land Surface Temperature Products

ASTER level-2 AST_08 (surface kinetic temperature) products are generated from
ASTER’s five thermal infrared bands at 90 m resolution and produced by the temperature

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://step.esa.int/main/download/snap-download/
https://auig2.jaxa.jp/ips/homepalsar


Remote Sens. 2021, 13, 1902 5 of 21

and emissivity separation (TES) algorithm [58]. The AST_08 products were downloaded
from the Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/
products/ast_08v003/, (last accessed on 8 May 2021)) and processed by the science scalable
scripts-based science processor for missions (S4PM) algorithm (Version 3.4) [59]. Because a
very small amount of data covering the study area were missing in 2019, we used the values
of their nearest neighbors according to Euclidean distance to substitute for the missing
data based on the nibble tool in ArcGIS 10.8 software.

3. Methods
3.1. Local Climate Zones Scheme

LCZs are climate-related regions that span hundreds of meters to several kilometers
on a horizontal scale and are functions of surface cover, structures, construction material,
and human activity [4]. As depicted in Figure 2a, the standard LCZ scheme comprises
two major types: built types (LCZ classes 1–10) and land cover types (LCZ classes A–G).
The 17 standard classes of LCZs are determined by surface characteristics; each provides
a unique thermal environment that is most apparent in areas of simple relief, over dry
surfaces, and on calm nights [4].

Figure 2. (a) Standard local climate zone (LCZ) scheme modified from Stewart and Oke [4].
(b) Google Earth images of typical samples of the LCZs in Nanchang.

3.2. Training and Test Datasets

To collect field-based land cover observations, we conducted field surveys in Nan-
chang from May to September 2019. To reduce the effects caused by the imbalance of
classes [60], roughly balanced ground reference samples of 13 LCZ classes were randomly
collected throughout the study area based on this field investigation and visual interpreta-
tion of high-spatial-resolution Google Earth imagery from May to September 2019. The
reference samples were then randomly split into two sets of disjoint training and test pixels
to ensure spatial separation of training and test sites [61] (Table 2). Figure 2b shows Google
Earth images of typical samples of the LCZ classes in Nanchang. It should be pointed out
that LCZ 1 (compact high-rise) was not included because there was almost no LCZ 1 in our
study area. Furthermore, we merged LCZ B (scattered trees) and LCZ C (bush, scrub) into
a new class LCZ BC (scattered trees with bush and scrub) because in most cases, shrubs,
short trees, and scattered trees were mixed.

https://lpdaac.usgs.gov/products/ast_08v003/
https://lpdaac.usgs.gov/products/ast_08v003/
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Table 2. Description of LCZ classes and the number of training and test pixels in the classification.

Class Description Training Pixels Test Pixels

LCZ 2 Compact mid-rise 4078 1211
LCZ 3 Compact low-rise 4377 1336
LCZ 4 Open high-rise 4500 1297
LCZ 5 Open mid-rise 4843 1343
LCZ 6 Open low-rise 4226 1420
LCZ 8 Large low-rise 4134 1303

LCZ 10 Heavy industry 4046 1310
LCZ A Dense trees 4616 1448

LCZ BC
Scattered trees with

bush and scrub 4063 1214

LCZ D Low plants 4283 1387
LCZ E Bare rock or paved 4723 1430
LCZ F Bare soil or sand 4654 1289
LCZ G Water 4727 1381
Total 57,272 17,369

3.3. Input Features

The 12 spectral bands of Sentinel-2 MSI imagery (bottom-of-atmosphere reflectance),
four backscattering intensity features obtained from dual-polarized PALSAR-2 (HH and
HV backscattering coefficients, and the difference and ratio between the two polarization
bands), and 24 textural features were used for the LCZ classification (Table 3). To explore
the effects of different combinations of input features on classification accuracy, we set up
six datasets designated as D1–D6 using these 40 features (Table 3). The textural features
were extracted by using ENVI 5.5 software as follows: First, we performed a minimum
noise fraction (MNF) transformation [62] on four bands at 10 m (bands 2, 3, 4, and 8) in the
Sentinel-2 image. Second, the gray-level co-occurrence matrix (GLCM) [63] was computed
considering a processing window of 3 × 3, the grayscale quantization level of 64, and the
distance of 1. For the Sentinel-2 based GLCM, we selected the first MNF component (MNF
1) as the input. For the PALSAR-2 based GLCM, we selected the two polarization bands
(HH and HV) as the input, respectively. Third, based on the obtained GLCM, we averaged
eight textural features (contrast, correlation, dissimilarity, entropy, homogeneity, mean,
angular second moment, and variance) in four directions (0◦, 45◦, 90◦, and 135◦) to achieve
rotational invariance.

3.4. Random Forest Classification

The RF [22] is a parallel ensemble based on a classification and regression tree and can
be generated simultaneously without strong dependencies between individual learners [64].
We implemented the RF classifier by using the scikit-learn library [65] and the Geospa-
tial Data Abstraction Library (GDAL, https://gdal.org/, (last accessed on 8 May 2021))
in Python.

We used out-of-bag (OOB) samples for selecting the hyperparameters of the model.
Before launching the RF classifier, two important hyperparameters that determine the
randomness of the RF model had to be set: the number of trees (T) and the number
of features (as listed in Table 3) randomly selected at each node (nr). We kept the other
hyperparameters of the RF classifier as defaults and performed a grid search. The searching
range of T was between 100 and 2000 using intervals of 100, whereas the searching range
of nr was between the total number of features in intervals of 1. Based on the OOB scores
of different RF models using various combinations of hyperparameters, we selected the
optimal combination of hyperparameters (Table 3).

https://gdal.org/


Remote Sens. 2021, 13, 1902 7 of 21

Table 3. Six datasets of different input features for LCZ classification and hyperparameters used for RF classifiers (T: the
number of trees; nr: the number of features randomly selected at each node).

Dataset Features Number of Features Source Hyperparameters
(T and nr)

D1 Sentinel-2 bands (1–8, 8a, 9,
11–12) 12 Sentinel-2 T = 2000,

nr = 4

D2

Sentinel-2 bands (1–8, 8a, 9,
11–12) + MNF 1_GLCM

(contrast, correlation,
dissimilarity, entropy,

homogeneity, mean, angular
second moment

(ASM), variance)

20 Sentinel-2 T = 2000,
nr = 12

D3 Backscattering intensity (HH,
HV, HH–HV, HH/HV) 4 PALSAR-2 T = 2000,

nr = 2

D4

Backscattering intensity (HH,
HV, HH–HV, HH/HV) +

HH_GLCM (contrast,
correlation, dissimilarity,

entropy, homogeneity, mean,
ASM, variance) + HV_GLCM

(contrast, correlation,
dissimilarity, entropy,

homogeneity, mean, ASM,
Variance)

20 PALSAR-2 T = 2000,
nr = 12

D5

Sentinel-2 bands (1–8, 8a, 9,
11–12) + backscattering

intensity (HH, HV, HH–HV,
HH/HV)

16 Sentinel-2 + PALSAR-2 T = 2000,
nr = 6

D6 D2 + D4 40 Sentinel-2 + PALSAR-2 T = 2000,
nr = 18

3.5. Grid-Cell Processing and Postprocessing

Because LCZs are defined at the local scale (102–104) [4,49], we used a grid-cell
(100 m × 100 m) process for pixel aggregation. First, we used ArcGIS 10.8 software to
create nets of grid cells with sizes of 100 m × 100 m covering the entire study area. The
100 m × 100 m grid cells were intersected with the LST data (90 m spatial resolution), and
the area of each intersected portion was calculated. The LST attribute of a grid cell was then
obtained by the weighted average of the LST values of the intersected portion according
to the area percentage. Next, for each grid cell, the area of each LCZ class within a grid
cell was calculated and stored in the attribute table. To calculate the percentage of each
LCZ class within each grid cell, we divided the area of each LCZ class by the area of the
grid cell. For a single grid cell, we assigned the dominant LCZ class that accounted for the
largest area to the corresponding grid cell. Finally, we used a 3 × 3 majority filter for LCZ
classification maps to include more contextual information.

3.6. Usual Resampling Methods

To explore the differences between the grid-cell-based method and the usual resam-
pling methods, we used the D6 dataset to generate 100 m LCZ maps based on ArcGIS
10.8 software. We performed majority resampling and nearest neighbor resampling on
the classified LCZ map. For the classified LCZ map (categorical data), we did not include
bilinear interpolation or cubic convolution in the comparison because they alter the pixel
values so that the original categories are not maintained. In addition, we applied nearest
neighbor resampling, bilinear interpolation resampling, and cubic convolution resampling
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to the original images before executing the classification. To ensure the consistency of the
comparison, the 100 m LCZ classification results obtained by each resampling method were
subjected to the same 3 × 3 majority filter as those obtained by the grid-cell-based method.
Finally, we used the grid-cell-based method as the baseline to compare the differences
between the other five resampling methods and the grid-cell-based method.

3.7. Feature Importance for the RF Model and Feature Contributions for Each Class

To understand how each feature affected the RF classification model, we used the
mean decrease in Gini/Gini importance and the mean decrease in accuracy/permutation
importance [22] based on the training set. The Gini importance of a feature was obtained
by averaging the decrease of the Gini impurity at all nodes where this feature was used
in all trees. The permutation importance was expressed as the value of the change in the
accuracy of a trained model when the values of a feature in the dataset were randomly
permuted. For the second of these calculations, we performed 100 repeated shuffles for all
features separately and averaged the decrease of accuracy to reduce randomness.

To explore the impact of each feature on each class, we employed a feature contribution
method using the tree-interpreter package. The feature contribution method is based on
decision paths through each tree in a forest and can reveal the relationship between features
and predictions [36,37].

For classification tasks, consider a dataset of m samples D = {(x1, y1), (x2, y2), . . . , (xm, ym)}
consisting of n input features and one label yi, where xi,j (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the
value of the j-th feature at the i-th sample. Denote classes by k (1 ≤ k ≤ K), where K is the
total number of classes. Let t (1 ≤ t ≤ T) be the t-th tree in a forest, where T is the total
number of trees. For a single input xi, there is a decision path from the root node to the leaf
node in each tree. At a node in the decision path, if this node (parent node) is split into
child nodes by feature j, then the contribution of feature j to class k is defined as:

FCj,k =

 pchild
j,k − pparent

j,k ,
if the split in a parent node is
performed over the feature j;

0, otherwise,
(1)

where pchild
j,k is the fraction of samples that belong to class k at the child node, corresponding

to the feature j, and pparent
j,k is the fraction of samples that belong to class k at the parent

node, corresponding to the feature j.
The predicted probability Pk that xi belongs to class k can be written as:

Pk =
1
T

T

∑
t=1

p(t,root)
k +

n

∑
j=1

(
1
T

T

∑
t=1

FC(t)
j,k

)
, (2)

where p(t,root)
k is the fraction of samples that belong to class k at the root node in the t-th

tree and FC(t)
j,k is the sum of FCj,k over all nodes on the decision path in the t-th tree.

To obtain the feature contributions of each class, we averaged the results computed
from all training samples belonging to the same class.

3.8. Statistical Analysis for Nighttime LST within LCZs

To examine the spatial autocorrelation of nighttime LST, we used the global Moran’s I
statistic and the Anselin local Moran’s I statistic based on ArcGIS 10.8 software. For grid
cells, we used an inverse distance conceptualization to generate a spatial weight matrix
with a default threshold value of 270 m. Subsequently, the global Moran’s I index for all
grid cells was computed based on the spatial weight matrix. The Anselin local Moran’s
I analysis for all grid cells was also based on the spatial weight matrix. In addition, to
explore the differences in LST among LCZ classes, we carried out statistical analysis using
SPSS Statistics 26 software. First, we examined the normality of the LST in each LCZ class
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by using histogram comparisons, Q–Q plots, and Kolmogorov–Smirnov tests. We then
performed Levene’s test to examine the homogeneity of variances. Based on the results
of these two tests, to estimate the statistical significance of the LST differences between
LCZ classes, we finally chose nonparametric tests, including the Kruskal–Wallis one-way
analysis of variance (ANOVA) test followed by all pairwise multiple comparisons and a
median test followed by all pairwise multiple comparisons.

4. Results
4.1. Accuracy Assessment of LCZ Maps

Figure 3a shows the LCZ maps obtained with different datasets (D1–D6), respectively.
The percentages of the area occupied by each LCZ class in different datasets (D1–D6) are
shown in Figure 3b. The accuracies of the classification were evaluated in terms of user’s
accuracy (UA), producer’s accuracy (PA), and overall accuracy (OA), which were derived
from the confusion matrix based on test pixels [61]. The confusion matrices of LCZ maps
obtained using different datasets (D1–D6) are shown in Figure 4. Figure 5 also shows the
differences in the PAs and UAs of each LCZ class for the different LCZ maps.

Figure 3. (a) LCZ maps obtained with each of the six datasets (D1–D6); (b) percentages of LCZ
classes with each of the six datasets (D1–D6).
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Figure 4. Confusion matrices and overall accuracies (OAs) of LCZ maps obtained by RF classification
using different datasets (D1–D6). The confusion matrices are expressed as percentages to the total
number of test pixels.

Figure 5. Producer’s accuracies (PAs) and user’s accuracies (UAs) of different LCZ maps obtained by
RF classification using different datasets (D1–D6).

Compared to using the D1 dataset, the OAs were improved by 2.24% using D2, 2.32%
using D5, and 4.03% using D6. There was a small improvement in the OA after using
textural features. For example, the D2 dataset improved 2.24% over the D1 dataset, the
D4 dataset improved 7.14% over the D3 dataset, and the D6 dataset improved 1.71% over
the D5 dataset. When using the D5 dataset, the OAs were improved by 51.9% over the
D3 dataset and 44.76% over the D4 dataset. The LCZ map derived using only the dual-
polarized PALSAR-2 data (the D3 dataset) had the lowest OA. Using the D3 or D4 dataset,
either the OAs were relatively low, or the land cover was not satisfactorily categorized. The
highest OA was 89.96%, obtained from the D6 dataset by using all 40 input features.
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For the D6 dataset, land cover LCZ types were generally classified with higher accu-
racy than built LCZ types (except for LCZs E and F). The confusion was manifested mainly
among the built LCZ types. For the land cover LCZ types, LCZs E (bare rock or paved) and
F (bare soil or sand) tended to be confused with built LCZ types. For the D6 dataset, LCZs
A (dense tree), G (water), and D (low plants) had relatively high PA and UA among the land
cover types. Among the built types, LCZs 2 (compact mid-rise) and 4 (open high-rise) had
relatively high PA and UA. For the D6 dataset, open buildings (LCZs 4–6) were generally
more difficult to distinguish than compact buildings (LCZs 2 and 3). This difficulty reflects
that compact buildings are clustered in high-to-medium-spatial-resolution (10-m to 100-m)
satellite imagery, whereas open buildings are scattered and occupy small pixels.

To measure the compliance or divergence of individual LCZ classifications, we com-
puted the number of the same classes for a given location (individual cells of the grid)
(Figure 6). The most obvious differences among the six LCZ maps were located in the
northeastern part (close to Poyang Lake), the eastern part, and the urban district. A total of
86.2% of the grid cells showed good compliance for all datasets (Figure 6b).

Figure 6. Difference (a) and its percentages (b) between six LCZ maps using different datasets
(D1–D6). The difference is presented as the number of the same classes for individual cells of
the grid.

To visualize the discrimination of LCZ classes using the datasets D1–D6, we extracted
a subregion A in the urban district of Nanchang (Figure 7). This subregion is a typical
urban region consisting of different types of buildings and land cover. It could be visually
observed that the classification using PALSAR-2 polarimetric data alone did not yield
a satisfactory result. Using the D3 dataset, most LCZ classes were under-represented.
When using D4 by adding textural features to D3, there was a slight improvement in the
classification of built LCZ types. Nevertheless, worse performance on LCZ classification
was obtained using the D3 or D4 dataset. When using D2 by adding textural features
to D1, the discrimination among built LCZ types was notably improved, especially for
LCZ 4 (open high-rise). Compared to the classification results obtained from datasets D5
and D6, LCZ E (bare rock or paved) was under-represented using the D1 or D2 dataset.
Compared to the D6 dataset, LCZ 4 was under-represented, while LCZ 6 (open low-rise)
was over-represented using the D5 dataset. The most desirable result was produced when
all 40 input features (the D6 dataset) were used because the confusion among LCZ classes
was markedly reduced.
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Figure 7. Sentinel-2 MSI image (RGB = bands 4, 3, 2) and LCZ classification maps using six datasets
(D1–D6) of a subregion A in the urban district of Nanchang.

4.2. Comparison of the Grid-Cell-Based Method and Resampling Methods

As shown in Figure 8, using the nearest neighbor resampling, bilinear interpolation
resampling, and cubic convolution resampling produced salt-and-pepper noise. Visually,
the grid-cell-based method generated a more homogeneous result. The result of the majority
resampling lay between those of the grid-cell-based method and the other resampling
methods. Compared with other resampling methods, the difference between the majority
resampling after classification and the grid-cell-based method was relatively small. As
shown in Figure 8b–e, the basic patterns of these maps were relatively similar.

4.3. Importance and Contributions of Features for LCZ Classification

As mentioned above, the best LCZ classification was obtained using the D6 dataset.
Therefore, we analyzed the feature importance of the RF model trained by all features
(the D6 dataset) (Figure 9). The patterns of these two importance measures differed
slightly from each other. In general, spectral features showed greater importance than
polarimetric features and textural features. For both measures of importance, the most
beneficial feature in the LCZ classification was S2_B12. Polarimetric features were also
helpful for LCZ classification, especially the backscattering intensity at the HV polarization.
In the eight textural features, GLCM_Mean was found to be the most useful feature. In
addition, GLCM_Mean at the HV polarization of PALSAR-2 was more important than
those extracted by Sentinel-2.
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Figure 8. Detail of the comparison between the grid-cell-based method and the resampling methods
using the D6 dataset. (a) Majority resampling after classification; (b) nearest neighbor resampling
after classification; (c) nearest neighbor resampling before classification; (d) bilinear interpolation
resampling before classification; (e) cubic convolution resampling before classification.

Figure 9. (a) Gini importance and (b) permutation importance of 40 input features for the RF model using the training set
(D6). (S2: Sentinel-2. P2: PALSAR-2).
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Figure 10 shows the feature contributions for each LCZ class for the RF model trained
by all features (the D6 dataset). Land cover LCZ types exhibited more variability across
input features than built LCZ types. In general, the same trends appeared in the feature
importance for the RF model (Figure 9) and in the feature contributions for each LCZ
class (Figure 10). For instance, S2_B12 was a beneficial feature for most of the LCZ classes.
However, the contributions of a feature to each LCZ class differed to varying degrees.
For example, compared with built LCZ types, the HV polarization band made a higher
contribution to land cover LCZ types, especially LCZs A (dense trees), G (water), and E
(bare rock or paved). As shown in Figure 10, there was no significant difference between
each feature for LCZs 4 (open high-rise), 5 (open mid-rise), and 6 (open low-rise).

Figure 10. Mean of feature contributions for each LCZ class for the RF model using the training set (D6).

As shown in Figures 9 and 10, the combinations of features with low importance
and contributions for LCZ classification did not have high classification accuracies. For
the D3 and D4 datasets, except for P2_HV_GLCM_Mean and P2_HH_GLCM_Mean, the
importance and contributions of the remaining features were not high, and therefore, their
classification accuracies were not high. The importance and contributions of the 12 features
of Sentinel-2 were relatively high, explaining the good classification accuracy achieved by
using only Sentinel-2 imagery (the D1 dataset).

4.4. Relationships between LCZs and Nighttime LST

As shown in Figure 11a–b, high nighttime LSTs were dominant mainly in urban
areas and water bodies. The fact that the global Moran’s I index for all grid cells was 0.78
(p < 0.001) indicated a strong positive spatial autocorrelation for LST. The LST of both LCZ
A (dense trees) and LCZ D (low plants) was clustered mostly as low-low, whereas the LST
of LCZs G (water), E (bare rock or paved), and built LCZ types (LCZs 2–6, 8, and 10) was
clustered mostly as high-high (Figure 11c).
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Figure 11. (a) Spatial distribution of nighttime LSTs in Nanchang. (b) Cluster and outlier map for
nighttime LST. (c) Number of grid cells for each cluster/outlier type. (d) Nighttime LSTs for each LCZ
class. The violin density plot displays the probability density of the LST data, with a boxplot of the
mean (hollow circle), median (center horizontal line), interquartile range (black rectangle), and upper
and lower whiskers (vertical lines between upper and lower horizontal lines). (e) Pairwise multiple
comparison results of the Kruskal–Wallis one-way ANOVA test and median test, respectively. Blank
cells indicate pairs of LCZs with significantly different LSTs (p < 0.001).

As shown in Figure 11d, different LST variations within a single LCZ class were
observed. In general, there were large differences in nighttime LSTs between LCZ classes,
especially between land cover LCZ types. The nighttime LST was generally higher for the
built LCZ types than for the land cover LCZ types. Residential buildings (LCZs 2–6) had
higher nighttime LSTs than nonresidential buildings (LCZs 8 and 10), except for LCZ 3
(compact low-rise). Both Kruskal–Wallis one-way ANOVA test and median tests showed
statistically significant differences (p < 0.001). Overall, there were statistically significant
LST differences for most LCZ classes (Figure 11e).

5. Discussion
5.1. LCZ Classification Using Sentinel-2 Imagery and PALSAR-2 Data

The fact that the accuracies of the LCZ map obtained by the D6 dataset were acceptable
for further studies (as expected) revealed the potential of combining optical and SAR data
for LCZ classification in urban areas. The LCZ classification using only PALSAR-2 was not
satisfactory, especially for land cover LCZ types, such as those exhibiting many LCZ G
(water) in the D3 dataset and LCZ E-bare rock or paved (stripes) in the D4 dataset. This
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reveals the limitations of using only SAR data for land cover classification in complex
urban and peri-urban environments [10,15,66]. Comparing the LCZ classification maps
obtained from the four datasets (D1, D2, D5, and D6), we found that the basic patterns
of these LCZ maps were generally similar. It can be concluded that optical data are still
dominant in LCZ classification compared to SAR data [10].

Compared to the study of La et al. [16] that combined Sentinel-2 with full-polarized
PALSAR-2, this study introduced textural features derived from Sentinel-2 and dual-
polarized PALSAR-2 but did not consider the contribution of polarimetric parameters.
When fully polarimetric SAR data are available, adding various types of information
obtained by polarimetric target decomposition methods to the classification will help to
improve classification accuracy [16,67]. However, the fully polarimetric data are not always
available due to its limited swath width [21]. As an alternative, our results showed the
attractiveness of dual-polarized SAR data for LCZ classification. In addition, we showed
the advantages of a majority rule-based grid-cells process in generating LCZ maps with
generalized urban patterns.

For the D6 dataset, there are still limitations in the separability between LCZ classes
with similar spectral characteristics, such as LCZs B and C; LCZ E (bare rock or paved) and
built LCZ types; and LCZs 8 (large low-rise) and 10 (heavy industry). These problems can
be solved by adding more discriminatory data in the classification or by improving classifi-
cation algorithms. The information on building height is beneficial for the discrimination
between built LCZ types. Further research on combining height data with other datasets
for LCZ classification will be required in the future. It has been shown that the inclusion
of LiDAR data in the classification can assist in urban land cover classification [68,69].
Moreover, deep learning methods, such as convolutional neural networks, have recently
shown promising performance in LCZ classification [19,70].

Considering that the inherent speckle noise in SAR data makes individual pixels
unreliable, the textural features from SAR data can provide attractive information [15].
However, there is a need to further investigate the effect of textural features from both
optical and SAR data on LCZ classification. It is important to select the optimal combination
of textural features for LCZ classification. Because various combinations of different bands,
window sizes, and texture measures will produce many textural features, using these
massive features may lead to the curse of dimensionality and reduce the accuracy in the
classification using a finite-sized training set [71].

5.2. Implications of the Grid-Cell-Based Method

For the nearest neighbor resampling, the difference between the LCZ maps obtained
before and after classification was small, which illustrates the applicability of resampling
before classification, as implemented by the WUDAPT method [8]. The effect of the
different resampling rules on the LCZ maps is more significant than whether the resampling
is implemented before or after classification. As the postprocessing approach for categorical
data, the LCZ map obtained by the majority resampling was not as homogeneous as those
obtained by the majority rule-based grid-cells method, which may be limited by the built-in
default filter window in ArcGIS software.

5.3. Assessment of Interpretability of Features

The significant importance and contribution of features can be explained by the good
representation of those features in the characteristics of LCZ classes [11,12]. Not all of
the features were equally beneficial to the LCZ classification for the RF models. The fact
that the overall importance of the PALSAR-2 derived features was not as prominent as
the Sentinel-2 derived features was probably due to the inconsistent dates of PALSAR-2
data and Sentinel-2 imagery. The seasonal variation of vegetation may make polarimetric
features contribute little to identifying these changing ground objects. For PALSAR-2 dual-
polarization data, the HV polarization band is more conducive to land cover classification
than the HH polarization band, which may be due to the unique scattering information
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about ground objects provided by cross-polarization [15,25]. Our study also indicated that
the GLCM textural features have limited ability in land cover classification. This limited
ability may reflect the spatial resolution of Sentinel-2 MSI imagery and PALSAR-2 data.
This problem will probably be resolved with the improvement of spatial resolution [72].

The fact that most features performed better in land cover LCZ types than built
LCZ types indicated that there were still limitations in discriminating built LCZ types for
these features. Interestingly, band 1 (coastal aerosol) made a significant contribution to
LCZs 8 (large low-rise) and 10 (heavy industry); and band 9 (water vapor) contributed
significantly to LCZs 2 (compact mid-rise), D (low plants), and 6 (open low-rise). These
results showed that both band 1 (dedicated for aerosol retrieval) and band 9 (dedicated
for water vapor correction) in Sentinel-2 imagery were beneficial for LCZ classification,
despite their relatively low spatial resolution (60 m). In addition, for LCZ 5 (open mid-rise),
S2_GLCM_Mean made the highest contribution. This observation highlights the fact that
features that are generally unimportant for the model may be important for a specific
class [37].

It is worth noting that there were many features that have very low permutation
importance (Figure 9b), probably because of the correlation between features. When fea-
tures are correlated, permutating one feature has little impact on the model’s performance
because it can obtain the same information from the correlated features. In the future, it
will be necessary to evaluate additional features to provide more information on how to
allow LCZ classes to be better differentiated. In addition, it is also important to analyze the
correlation in the features extracted from the remote sensing data.

5.4. LST Differentiation of LCZs

In general terms, the fact that there were statistically significant nighttime LST dif-
ferences between most LCZs indicated that different LCZ classes exhibited thermal en-
vironments associated with their surface characteristics [4,49]. For example, built LCZ
types (LCZs 2–6, 8, and 10) and LCZ E (bare rock or paved) were clustered as high-high on
nighttime LST (Figure 11c), probably because of the thermal properties of impervious sur-
faces [45]. Compared to other land cover LCZ types, LCZs E and G (water) had relatively
high nighttime LSTs, probably because they cool off more slowly during nighttime. The fact
that LCZ A (dense trees) had lower nighttime LSTs than LCZ BC (scattered trees with bush
and scrub) indicates that aggregated vegetation cools better than dispersed vegetation [73].
The fact that the nighttime LSTs of LCZ D (low plants) were lower than that of LCZ A was
probably because dense trees have greater shading coverage that influences the penetration
of solar radiation [74]. For buildings located in urban areas with the same heights, open
buildings had lower nighttime LSTs than compact buildings. The former may benefit from
the surrounding vegetation and good ventilation [75].

However, the fact that the nighttime LSTs of several LCZ classes were not significantly
different statistically from other classes may have been related to the influence of local
or regional climate [43]. In addition, the intra-LCZ variability of nighttime LST revealed
the potential effects of heterogeneous surrounding environments [76]. For example, the
nighttime LSTs of both LCZs 3 (compact low-rise) and BC were generally higher in urban
areas than in rural areas. Similarly, LCZ F (Bare soil or sand) was warmer near water
than near dense trees during nighttime. Buildings surrounded by large areas of vegetation
tended to have lower nighttime LSTs than buildings surrounded by a small amount of
vegetation.

Furthermore, several issues need to be further explored in studies of LSTs or surface
urban heat islands using LCZ maps, including seasonal changes in LCZs, the effects of
multitemporal (day and night), seasonal, and thermal anisotropy on LST variations [42,43].
Considering that it is not the focus of this study, we only used two dates of LST data in
summer to analyze the relationship between LCZ and nighttime LST. Many studies have
shown LST differences within LCZs using many dates of LST data [38,40,42,43]. Therefore,
the applicability of the inclusion of thermal remote sensing images from different sensors
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(e.g., Landsat and ASTER) over multiple periods in LCZ classification can be investigated in
the future. However, this could potentially lead to methodological bias in LST analysis [44].

6. Conclusions

The combination of Sentinel-2 MSI imagery and dual-polarized (HH + HV) PALSAR-2
data was found to be promising and beneficial for LCZ mapping. The quantitative analysis
of input features based on the RF classifier showed that in LCZ classification, band 12-
SWIR 2 is crucial for Sentinel-2 imagery, whereas the HV polarization is important for
dual-polarized PALSAR-2 data. By using the feature contribution approach based on
decision paths, each input feature was found to contribute differently to LCZ classes. These
different contributions may not be detected by a standard feature importance analysis.
Through this class-based analysis of feature contributions, it is possible to reveal the
effective features in distinguishing different LCZ classes. In addition, our comparative
results showed that the grid-cell-based method produced more homogeneous LCZ maps
than the usual resampling methods.

Spatial analysis of LCZs and summer nighttime LST showed that high LSTs were con-
centrated mostly in the built LCZ types, LCZ E, and LCZ G, whereas low LSTs were mostly
concentrated in LCZs A and D. Statistical analysis showed that the summer nighttime LST
differences between most LCZ classes were statistically significant, but this phenomenon
needs to be further investigated using more dates of thermal remote sensing images. Con-
sidering the thermal differentiation within LCZs, the effect of thermal remote sensing data
in LCZ classification can also be further explored.

This study provided insights into the performance of RF classifiers in LCZ mapping
and feature assessment that could contribute to future LCZ mapping. In addition, this
study highlighted the potential of the LCZ map and the grid-cell-based method for urban
climate research that could contribute to a better understanding of the impact of urban
morphology defined by LCZs on local climatic conditions.
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