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Abstract: Objects in satellite remote sensing image sequences often have large deformations, and the
stereo matching of this kind of image is so difficult that the matching rate generally drops. A disparity
refinement method is needed to correct and fill the disparity. A method for disparity refinement based
on the results of plane segmentation is proposed in this paper. The plane segmentation algorithm
includes two steps: Initial segmentation based on mean-shift and alpha-expansion-based energy
minimization. According to the results of plane segmentation and fitting, the disparity is refined
by filling missed matching regions and removing outliers. The experimental results showed that
the proposed plane segmentation method could not only accurately fit the plane in the presence of
noise but also approximate the surface by plane combination. After the proposed plane segmentation
method was applied to the disparity refinement of remote sensing images, many missed matches
were filled, and the elevation errors were reduced. This proved that the proposed algorithm was
effective. For difficult evaluations resulting from significant variations in remote sensing images of
different satellites, the edge matching rate and the edge matching map are proposed as new stereo
matching evaluation and analysis tools. Experiment results showed that they were easy to use,
intuitive, and effective.

Keywords: disparity refinement; three-dimensional reconstruction; remote sensing image

1. Introduction

Remote sensing technology has the advantages of a large detection range, fast data ac-
quisition, and few restricted conditions [1–3]. Three-dimensional (3D) reconstruction based
on remote sensing images has been widely applied in urban planning [4], geological sur-
veying [5], unmanned driving [6], and so on. Currently, the most commonly used method
for the 3D reconstruction of satellite remote sensing images is to obtain the disparity map
of the image pair using stereo matching, and the real geographic coordinates and elevation
are then calculated using the rational function model [7–13].

A stereo algorithm consists of four steps: cost computation matching, cost aggrega-
tion, disparity computation (optimization), and disparity refinement. Traditional stereo
matching methods usually utilize the low-level features of image patches around the pixel
to measure the dissimilarity. Local descriptors, such as absolute difference (AD), the sum of
squared difference (SSD), census transform [14], or their combination (AD-CENSUS) [15],
are often employed. For cost aggregation and disparity optimization, some global methods
treat disparity selection as a multi-label learning problem and optimize a corresponding
2D graph partitioning problem by graph cut [16] or belief propagation [17,18]. Semi-global
methods approximately solve the NP-hard 2D graph partitioning by factorizing it into
independent scanlines and leveraging dynamic programming to aggregate the matching
cost [19–22]. Compared with ordinary optical images, objects in satellite remote sensing
image sequences often have large deformations, and the stereo matching of this kind of
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image is so difficult that the matching rate generally drops. There is a greater need for the
disparity refinement method to correct and fill the disparity.

The traditional refinement step includes a left-right check [23,24], hole filling, and a
smoothing filter. Supikov proposed a method of decoupling the resolution of the solver grid
from the resolution of the disparity map, and holes are filled by amplification of the low-
resolution grid [25]. Jiao proposed a secondary disparity refinement. Small hole regions
are first filled by the most appropriate disparity in its neighborhood. Inconsistent regions
are filled by detecting and checking whether the edges of the disparity map coincide with
the boundaries of objects in the scene. These regions are filled by the modified OccWeight.
OccWeight matrix is calculated for each pixel q in a cross window of the pixel p to be
filled. The weight calculated by the color difference and the spatial distance indicates the
similarity between p and q. The filling disparity is that of the pixel with largest weight [26].
Huang proposed dual-path depth refinements using the cross-based support region by
referring texture features to correct the inaccurate disparities [27]. Their methods also use
two-phase refinement, which is different from the other method [26]. Yan et al. proposed
a disparity refinement method based on super-pixel segmentation and RANSAC plane
fitting. They first segmented the image into super-pixels, and then used the RANSAC to fit
each super-pixel plane. For the fitted super-pixels, the disparity refinement with occlusion
processing was implemented based on Markov random field [28,29].

Other disparity refinement methods are outlier detection and removal [30–33]. Qin im-
proved the matching accuracy of deep discontinuous areas by detecting matching lines [34].

The above method uses color, texture, and other features to calculate the similarity of
the hole pixels and the neighbor pixels with disparity. The similarity is used as a weight
to calculate the filling disparity. The disparity range of remote sensing images is large,
especially when there are tall buildings in them, and sometimes shear deformation exists
in the disparity maps. In such a case, pixels with the same color do not have the same
disparity, and these methods may be not suitable. Even if there is shear deformation, the
same planes in the left and right images still follow the affine transformation. Thus, the
planes should be fitted first and then the missed disparities could be filled according to the
plane affine equations, which will provide more promising results.

There are many planes in urban remote sensing images. Some studies using ‘Patch-
Match’ have considered plane constraints [35–37]. These methods estimated the plane
using sparse matching in advance, and then the plane constraints were then incorporated
into the cost function. Hou et al. extended ‘PatchMatch’ into an integrated depth map
reconstruction method that combined camera parameters and used it in the multi-view
depth map reconstruction of aerial remote sensing images. In their study the intrinsic
parameter matrix, rotation and translation matrix of the camera were used in plane model.
These parameter matrices are similar with ordinary images [38]. However, for satellite
remote sensing images the real 3D coordinates are calculated based on rational polynomial
coefficient model which is completely different from ordinary images. Their method cannot
be used in the 3D reconstruction of the satellite images.

Planes estimated based on sparse matching are not accurate enough. To solve this
problem, based on the initial disparity estimation, we used a plane segmentation method
to estimate accurate planes, and the disparity was then refined according to plane equa-
tions. Plane segmentation methods are divided into four categories, which are those
based on region growth, model fitting, feature clustering, and the global energy func-
tion [39]. Region growth-based methods are not robust to noise, varying point densities, or
occlusion [40,41].

In the model fitting methods, although the reported random sample consensus
(RANSAC) [42] and Hough transform (HT) [43] approaches work very well for 3D plane
segmentation on point clouds with low levels of noise and clutter, these algorithms still
have some disadvantages [39]. Running RANSAC sequentially to detect multiple planes is
widely known to be sub-optimal since the inaccuracies in detecting the first planes will
heavily affect the subsequent planes [44]. Despite the popularity and efficiency of feature
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clustering-based methods, they have difficulty in neighborhood definition and are sensitive
to noise and outliers [45]. The energy optimization-based methods are more robust to high
levels of noise and clutter compared with the other methods [46]. However, these methods
are computationally expensive for plane segmentation [44] and depend heavily on the
adequacy of initial input.

Because there is a certain amount of noise in the disparity map, and some scattered
small areas are separated by missed matching pixels, most of plane segmentation methods
are not suitable for the application in this paper. We designed a fast initial segmentation
algorithm based on mean-shift that provides accurate input for energy minimization,
and it has certain robustness to noise and can approximate the surface through the planes.
The initial segmentation based on mean-shift and energy minimization constitutes the
plane segmentation algorithm in this paper. Based on this algorithm, the disparity is refined
according to the plane segmentation and fitting results. After that, missed matching areas
are filled and noise pixels are removed to improve the stereo matching effect. We combined
the energy optimization with the super-pixel segmentation method. There were few planes
involved, and the alpha-expansion algorithm can achieve fast energy minimization [47].

For ordinary images, the stereo matching methods are evaluated using ground truth
disparity maps. There are no such disparity maps for remote sensing images, so the evalu-
ation must be performed by elevation maps. However, for satellite remote sensing images,
the elevation calculation is complicated, and different elevation calculation methods may
derive different results. For many images, corresponding elevation maps cannot be ob-
tained. Images from different satellites vary drastically, and the evaluation results for the
current satellite image may not be suitable to other satellite images. To solve this problem,
we propose a new evaluation measure, called the edge matching rate (EMR) and the edge
matching map (EMM). The performance of the matching methods can be evaluated to a
certain extent in the absence of disparity and elevation ground truth.

The rest of this paper is organized as follows: In Section 2, we describe our proposed
method including the framework, mean-shift-based plane segmentation, and disparity
refinement. In Section 3, EMR and EMM are presented and experimental results on ordinary
optical and remote sensing images prove that they are effective in evaluation and analysis
of the matching results. The mean-shift-based plane segmentation is then evaluated on
a standard dataset. Finally, results on disparity refinement are illustrated to demonstrate
the performance of our method. Section 4 provides our conclusions with some ideas for
further work.

2. Materials and Methods
2.1. Materials and Mainframe of Disparity Refinement

A. Materials

The main images used in this paper are two Worldview-1 remote sensing images.
The images acquired on 13 January 2017, and one image ranges from 77◦01′–77◦13′W,
38◦51′–38◦59′N. The other image ranges from 76◦59′–77◦14′W, 38◦50′–38◦59′N. The sizes
of two images are 35,180 × 26,072, 35,180 × 21,584, respectively. The Lidar image acquired
on 5 November 2015 (77◦01′–77◦04′W, 38◦52′–38◦55′N), was used as ground truth height
image in this study. And the size of Lidar image is 8192 × 8192. To test the correlation
between the EMR and the accuracy of disparity calculation, we used the standard stereo
image pair MiddEval3 provided by the Middlebury stereo matching algorithm test platform
to evaluate the algorithm. Twelve reference color image pairs were provided. To verify
the reliability of EMR and EMM on remote sensing images, using the S2P system, parts of
the above mentioned Worldview-1 images were divided into block images, and a total of
350 image blocks with a size of 494 × 464 were obtained.

B. Mainframe of disparity refinement

Our method mainly includes four steps as follows: (1) calculating the disparity based
on the More Global Matching (MGM) algorithm [18], (2) segmenting super-pixels based on
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the entropy rate algorithm [48], (3) segmenting planes based on mean-shift-based plane
segmentation, and (4) correcting the disparity based on planes. The specific process is
shown in Figure 1.

Figure 1. Flowchart of disparity refinement.

Because sometimes the illumination difference between the left and right images was
large, the linear contrast stretching method was used. The gray intervals of both left and
right images were expanded to [0, 1] to reduce the difference between the brightness of the
two images.

Semi-global matching (SGM) is the most used stereo matching algorithm [19–22].
The objects in the Worldview-1 images used in this paper have a large deformation.
Through the effect evaluation (see Section 3.1.2 for details), we found that the MGM
algorithm worked better than SGM in such images, so the MGM stereo matching algorithm
was selected for this study. Combined with super-pixel segmentation, plane segmenta-
tion can utilize color and texture information in an image while many super-pixel blobs
are themselves planes, which can improve the efficiency of the segmentation algorithm.
We chose a method based on the entropy rate that obtained more accurate super-pixel
edges. Therefore, our method first judges planes for super-pixels, and plane segmentation
is performed on non-planar super-pixels. After estimating all plane equations, the outliers
were removed for each plane according to the distances to the plane, and the missed
matching pixels were filled.
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2.2. Plane Segmentation Based on Mean-Shift and Energy Minimization

Because our plane segmentation is combined with super-pixel segmentation, the re-
quirements of the plane segmentation algorithm in this paper are different from other
algorithms, and there are few planes involved in one segmentation. The main requirements
of our algorithm are as follows. (1) It is required to have a strong anti-noise ability because
there is often a certain amount of noise in the stereo matching results. (2) It should be
able to approximate the curved surface by a combination of planes. (3) The speed should
not be slow. Because it is combined with other algorithms, a slow speed will cause low
algorithm efficiency.

Traditional fast algorithms are implemented either by region growing or square su-
pervoxel clustering. The region growing has a poor noise resistance ability, and square
supervoxel clustering is not suitable for approximating the curved surface. Our algo-
rithm is implemented in two steps. The first step is a fast initial segmentation based
on the mean-shift algorithm, and the second step is a precise segmentation based on
energy minimization.

2.2.1. Fast Initial Segmentation Based on an Adjusted Mean-Shift

A. The original Mean-Shift algorithm

Mean-shift is a non-parametric clustering algorithm based on density. The steps for
forming one category of mean-shift are given below.

1. Point C in the sample space is selected as the center of the sphere. A high-dimensional
sphere is formed with radius r, and all the points xi in the sphere are found. The high
dimensional sphere radius r is the main parameter of mean-shift algorithm and it is
determined by tests usually.

2. The mean value of all xi points is used as the new center of the sphere. If the difference
between the new sphere center and the previous sphere center is less than a threshold
T, then the algorithm exits this step and proceeds to Step 3; otherwise, it returns to
Step 1. In this paper threshold T is 0.01.

3. When the algorithm exits the above two steps, the points passed by the sphere all
belong to the same category.

These three steps obtain samples of one category. After removing these samples from
the total samples, Steps 1–3 are executed on the remaining samples, and all the categories
will then be gradually obtained.

B. Plane segmentation algorithm based on mean-shift

The mean-shift clustering algorithm is highly suitable for plane segmentation because
of the fast speed and because the number of categories do not need to be defined in
advance. The key steps of plane segmentation are the same as the original algorithm,
but the following adjustments are required:

1. Plane fitting in clustering

The original mean-shift clustering method can be regarded as the moving process
of the hypersphere. In plane segmentation, clustering is a moving process of the circle.
According to the original deduction, the fastest moving direction is obtained by the mean
of the samples in the circle. The first difference between our method and the original
algorithm is that, before calculating the sample mean, it must be determined whether the
current circle is a plane. If it is a plane, then the circle continues moving.

2. Using the mean value of newly added points as the center of the next circle

Mean-shift clustering assumes that the point with the highest density is the cluster
center. However, data points are approximately uniformly distributed in plane segmenta-
tion, so there are many points with the same density. The original mean-shift algorithm
will stop prematurely at one of them. We adjusted the original algorithm from calculating
the mean value of all points within the circle to calculating the mean value of the newly
added points as the new center. In this way, the algorithm keeps moving until it meets
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a non-planar point (Figure 2). In one time clustering of circle movements, although the
entire plane may not be completely covered, the coverage area expands substantially in
comparison with the original algorithm, which significantly improves algorithm efficiency.
A new sample point is randomly picked from the uncovered dataset as the new center of
the circle, and it starts moving again. When the new center is taken from the remaining
points in the incompletely covered plane, a new cluster will be formed and merged with
the obtained co-planar category so that the entire plane can be covered.

A series of movements of the circle in the algorithm is shown in Figure 2, where the
red circle is the cluster center of each time. If the mean value of all the points in the circle is
calculated as the new center according to the original algorithm, then the movement of
the circle will soon stop. Because it only calculates the mean value of newly added points,
the circle will keep moving and clustering until it meets a non-planar point, as shown in
Figure 2a. Although there are remaining points in the plane, they will be selected later and
then fitted, as shown in Figure 2b. After fitting, they will merge with the last category.

3. Pre-processing and post-processing

Pre-processing removes the points with large curvatures [33]. Points with large curva-
tures are generally not a plane point. Therefore, the curvature of all the points is initially
calculated and the points with large curvatures are removed to avoid their interference
with plane fitting. They are then stored in the non-planar point set.

Post-processing deals with non-planar points. For each point category, label numbers
around the point are extracted. After calculating errors of the point to all neighboring
category planes according to Equation (3), this point will be classified into the category
with the smallest error.

Compared with the original algorithm, two temporary point sets are used. One is the
visited plane point set, which is called the previous point set. The other is a new point
set calculated according to the current mean value, called the current point set. When the
mean shifts, if the current point set is a plane and belongs to the same plane as the previous
point set, then the current point set will be merged into the previous point set. Centered
on the mean of the current point set, the new points in the circle are extracted as the new
current point set. Otherwise, the previous point set is labeled as a new category. The initial
plane segmentation algorithm is described in detail in Algorithm 1.

Figure 2. Circle moving process(the red circle is the mean value point): (a) First clustering.
(b) Second clustering.
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Algorithm 1: Initial plane segmentation.
input :point set Ω, Circle radius rt, Plane error threshold et, Density threshold st, Curvature threshold ct
output :The segmentation label set L of the point set Ω

1 Calculate the curvature of each point of Ω and save points with curvature larger than ct into the non-planar
point set Ω0; Ω1 ← Ω← Ω0;

2 while Ω1 6= ∅ do
3 Center of the previous point set C0 ← 0; (All zero vector);
4 The previous point set P0 6= ∅;
5 Plane sign of the previous point set C0 ← 0;
6 Take the first point in Ω1, P ∈ Ω1, Center of current point set C1 ← p;
7 Plane sign of current point set f1 ← 0;
8 while Ω1 6= ∅ do
9 if f1 = 1 then

10 P0 ← P1;P1 ← ∅ ; f0 ← f1 ;//Assign the current point set to the previous point set;
11 end
12 P1 ← {p | dist(p, C1) < rt};//Search for all newly added points p whose distance to C1 is less than , and

save them into the current point set;
13 if |P1| < 5 then
14 //If the number of points in is less than 5, it is hard to form a plane;
15 Ω0 ← Ω0 ∪ P1; Ω1 ← Ω1 − P1; break; // P1 is merged into the outlier set;
16 end
17 C0 ← C1;//The center of the current point set is assigned to the center of previous set;
18 f1= jdugePlane(P1); //Judge if P1 is a plane;
19 C1 ← mean(P1) ; //The mean of the current point set is the circle center;
20 if f1 = 1 then
21 //If the current point set P1 is a plane;
22 if f0 = 1 then
23 //If the previous point set P0 is a plane;
24 if jdugeMerge(P0, P1,et,st) then
25 //If P0 and P1 belongs to a same plane;
26 P0 ← P0 ∪ P1; // P1 merges into P0;
27 else
28 L =addLabel(P0,L,et,st);
29 P0 ← ∅ //P0 is added to label set L
30 end
31 Ω1 ← Ω1 − P1;//Remove visited points from Ω1;
32 end
33 else
34 L = addLabel(P0, L,et,st); P0 ← ∅ // P0 is added to mark set L and cleared;
35 Ω0 ← Ω0 ∪ P1; P1 ← ∅ // is added to the outlier set Ω0 and cleared;
36 break;
37 end
38 end
39 //while
40 end
41 //while
42 fillIsoPt(L, Ω0);//Fill non-planar point;
43 return;
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1 function f = jdugePlane(P,et,st) // Judge the plane function
input :point set P, Plane error threshold et Density threshold st
output : f, f = 1 refers to P is a plane, f = 0 refers to P is not a plane

2 Use least squares method to fit P to plane;
3 Calculate the ratio of the number of points with an error less than et to the total number of points, denoted as d;

(Error calculation is according to Equation (3));
4 if d ≥ st then
5 f = 1;
6 else
7 f = 0;
8 end
9 return;

10 function f = jdugeMerge(P0, P1,et,st) //Plane fusion function
input :point set P0, P1, Plane error threshold et Density threshold st

11 output : f, f = 1 refers to merge, f = 0 refers to not merge
12 Judge whether P0 and P1 are adjacent;
13 if not adjacent then
14 f = 0;
15 return;
16 else
17 Substitute P0 into the P1 equation to calculate the density of plane points d0 by et;
18 Substitute P1 into the P0 equation to calculate the density of plane points d1 by et;
19 if (d0 + d1)/2 ≥ st then
20 f = 1;
21 else
22 f = 0;
23 end
24 end
25 return;
26 function L = addLabel(P, L,et,st)//Add plane

input :point set P, Mark collection L, Current tag value l, Plane error threshold et, Density threshold st
output :Updated mark set L, Current tag value l

27 l = |L|; //Assign the number of labels in L to l;
28 for i = 1 to l do
29 f = jdugeMerge(P, Li,et,st);
30 if f then
31 Li ← Li ∪ P;
32 return;
33 end
34 end
35 l = l + 1;
36 Ll ← p;
37 return;
38 function L = fillIsoPt(L, Ω0)

input : Isolated point set Ω0, Mark collection L
output :Updated mark set L

39 while Ω0 6= ∅ do
40 for per pixel p ∈ Ω0 do
41 Calculate the label values of pixels around p and save them in set Q;
42 Calculate the errors of all marks of Q and take the mark l corresponding to the minimum error as the

mark of p, Ll = Ll ∪ {p};
43 Ω0 = Ω0 − {p}; //Remove p from Ω0;
44 end
45 end
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For plane fitting, RANSAC is the best, but the running time is too long. We use
double thresholds of the plane error and density to judge whether a point set is a plane.
In the current point set, the points whose errors are less than the plane error threshold are
regarded as the plane point. If the ratio of plane points is larger than the density threshold,
then the current point set will be judged to be a plane. The plane equation is estimated
from plane points based on the least squares method.

There is only one traverse of all the pixels in the non-planar point extraction part of
this algorithm. In the process of cluster forming, each new category is judged in terms of
whether it will be merged with the old categories, which is implemented using a double

loop of |L| × |L|. Therefore, the overall computational complexity is less than |L|
2
O(n).

2.2.2. Precise Segmentation Based on Energy Minimization

After the initial segmentation, there are several inaccurate edges or non-merged planes,
which must be improved by precise segmentation implemented by energy minimization.
The definition of the energy function is the same as in the literature [31]. The energy
function is given in Equation (1).

E(l) =

datacost︷ ︸︸ ︷
∑
p∈L

ndist
(

p, Flp

)
+

smoothcost︷︸︸︷
∑

pq∈N
δ
(
lp, lq

)
+

labelcost︷ ︸︸ ︷
hL · |L| (1)

ndist
(

p, Flp

)
= −ln

 1√
2π∆d

· exp

−dist
(

p, Flp

)
2∆d2

 (2)

dist
(

p, Flp

)
=

alp xp + blp yp + clp zp + d2
lp√

alp + b2
lp
+ c2

lp

(3)

δ
(
lp, lq

)
=

{
0 lp = lq
1 lp 6= lq

(4)

Here, l denotes the pixel category label and lp is the label of the pixel p, L = {L1, L2, ...}
is the label category set, Flp is the plane corresponding to the lp category, N represents the
pixel neighborhood, hL is the constant coefficient corresponding to the label cost, |L| is the
number of labels, and 2∆d is the inliers range threshold.

The data cost is the sum of the normalized error (i.e., distance) from each point p to the
plane Flp . The smoothing cost penalizes the inconsistency of the labels in the neighborhood,
and the Potts model (Equation (4)) is chosen here. The label cost punishes redundant
planes, and its goal is to alleviate the over-segmentation problem. The alpha-expansion
algorithm is used as the energy function minimization method [39], which is implemented
using a loop of |L|. Therefore, the overall computational complexity is less than |L|O(n).

2.3. Disparity Plane Fitting and Disparity Refinement

The distance in Equation (3) is a 3D plane distance. In the disparity calculation, the
disparity τ changes only by the x coordinate. Assuming that (x1, y1)(x2, y2) is the corre-
sponding point in the left and right images, then, in the images after epipolar rectification,
y1 = y2 · x2, and the disparity is calculated by Equation (5).

x2 = ax1 + by1 + c, τ = x2 − x1. (5)

Equation (5) is converted to ax1 + by1 − x2 + c = 0 , which is still a plane equation.
Here, (x1, y1, x2) corresponds to (x, y, z) in the 3D space, but the coefficient of z is −1.
The plane coefficients are (a, b,−1, c), which can be calculated by Equation (3). After the
disparity plane is fitted, outlier removal and missed matching area filling should be
performed. Outlier removal calculates the error of each pixel in the plane according to
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Equation (5), that is, the distance to the plane. When the error is larger than the inlier point
threshold, it belongs to the outlier, and its disparity will be corrected according to the plane
equation. Before filling the disparity, category labels should be assigned to the missing
matching pixels, in which there are two cases. In the first case, a super-pixel is a plane
and the missing matching pixels in it are filled according to the plane equation. In the
second case, a super pixel includes multiple planes and each missed pixel in it belongs
to the closest plane. The specific implementation is to cyclically perform a single pixel
dilating operation on each plane until there is no missing matching pixel in the super pixel.
The pixels first touched by a plane belong to this plane and the label is filled in the label
image. It would not be modified later. After all the missed pixels in the super pixel are
labeled, their x2 coordinates and disparities are calculated according to Equation (5).

Compared with interpolation methods [25–27], the proposed algorithm first per-
forms plane segmentation and fitting and corrects the disparity according to plane model,
which will obtain more accurately disparity refinement results.

Compared with the method using plane fitting [28], they have just performed a single
plane fitting to each super-pixel, which is the single plane fitting based method. Our al-
gorithm first performs single-plane fitting on plane super-pixels also, and then performs
plane segmentation on non-plane super-pixels. More planes are fitted than the single plane
fitting based method. Since our plane segmentation algorithm has certain anti-noise per-
formance, and considering the time complexity, we did not use the RANSAC. Compared
with this type of method, the proposed method does not consider the smoothness with
neighboring pixels when filling the disparity. Developing disparity smoothing suitable for
remote sensing images is the future work on algorithm improvement.

3. Results
3.1. Edge Matching Rate and Edge Matching Map

Stereo matching of ordinary images is generally tested on the Middlebury stereo
matching test platform. Stereo matching results of remote sensing images are evaluated by
an elevation map. Compared with common images, the matching difficulty of different
remote sensing images varies significantly. Remote sensing images with different matching
difficulties cannot be compared to each other by an elevation map. In some cases, elevation
maps of the matching images cannot be obtained. To analyze stereo matching results
without the ground truth, the EMR and EMM were proposed. These are used as measures
of the matching effect.The Canny operator with default threshold ([0.0313, 0.0781]) is used
to obtain the edge maps. The EMR is the ratio of edge points to matching edge points in
another image, and it is calculated by Equation (6).

EMR =
nm

nt
(6)

Here, nt is the total number of edge points in the left image, and nm is the number
of edge points in the right image after adding disparity to the edge points of the left
image. Because the edges and textures contain most of the image information, the EMR can
represent the matching accuracy to a certain extent. Corresponding to the EMR, the EMM is
a color image, where the first channel is the edge of the right image, and the second channel
is the result of adding disparity to the edge of the left image. In an EMM, the yellow edge
pixels refer to the correct matches. If there are many red and green edges in it, it indicates
that the matching accuracy is poor. The matching effect is clear from the EMM.

3.1.1. Test on the Middlebury Dataset

The SGM, MGM, and Graphcut (GC) algorithms were used to match the Middlebury
images. The effect was evaluated by the EMR and EMM. The absolute difference between
the disparity and the ground truth was defined as the matching error. The pixels with
matching errors less than the threshold (the threshold was set to 1) were regarded as
correctly matched pixels. The rate of matched pixels to the total pixels was the matching



Remote Sens. 2021, 13, 1903 11 of 29

accuracy rate(MAR), which was used as the measurement. The EMMs of some images are
shown in Figure 3. The EMR and EMM results are exhibited in Table 1.

Figure 3. The EMMs of some images: (a) The left image of Motorcycle and Piano. (b) MGM. (c) SGM. (d) GC.
(e) Ground truth.
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As shown in Table 1, the average EMR of the SGM was as high as 81.6%. The EMRs
of MGM and GC were less than 45%. From the EMMs, SGM also had the best matching
effect. The average EMR of MGM was lower than that of GC. However, the EMM shows
that there were more complete and correct matching areas in the MGM results. Most of the
matching edges were correct matches, but there were more missing matches, so the EMR
was lower than GC. In the EMMs of GC, most of the edges were mismatched, and most of
the coincided edges were not correct. Although the EMR of GC was higher than MGM,
the matching effect was poor. Therefore, the matching performance of MGM was better
than that of GC. Through EMR and EMM, it can be judged that the matching performance
order of the three algorithms is SGM, MGM, and GC, and the evaluation results of MAR is
the same.

Table 1. Matching results of MiddEval3.

MGM SGM GC Ground Truth

Image Name EMR MAR EMR MAR EMR MAR EMR

Adirondack 50.4% 19.7% 83.1% 25.4% 50.9% 16.2% 64.5%
ArtL 9.4% 2.2% 58.8% 9.7% 39.0% 0 53.2%

Jadeplant 18.5% 1.6% 82.6% 19.2% 48.5% 12.1% 54.9%
Motorcycle 52.9% 24.7% 86.0% 45.1% 49.0% 8.5% 63.7%

Piano 51.5% 17.3% 86.4% 28.4% 49.7% 4.7% 67.4%
Pipes 34.0% 8.1% 75.7% 31.2% 37.3% 5.4% 49.3%

Playroom 38.4% 11.9% 81.9% 18.5% 41.5% 1.7% 55.5%
Playtable 48.3% 11.2% 86.5% 37.7% 40.6% 6.1% 53.3%
Recycle 38.9% 12.7% 82.6% 38.1% 47.8% 21.2% 62.1%
Shelves 57.4% 14.9% 89.2% 25.1% 34.9% 0.1% 66.7%
Teddy 58.6% 34.5% 84.6% 51.4% 50.2% 13.5% 69.0%

Vintage 30.2% 3.1% 81.6% 9.2% 29.4% 1.3% 46.3%
Mean 40.7% 13.5% 81.6% 28.2% 43.2% 7.6% 58.8%

Through the EMMs, we found some wrong matches in the ground truth images,
as shown in Figure 4. There were also some errors in other ground truth disparity images
in this dataset. These images were found by comparing the EMR of the SGM with that of
the ground truth and observing the EMM. Therefore, the EMR of SGM was higher than
that of ground truth, which is a correct evaluation.

From EMM we found that most of the matching results of MAR over 10% were
relatively fine, and there were many correct matching edges in them. A small number of
matching results with MAR less than 10% are tolerable. From Table 1, when MAR results
are more than 50% EMR are usually above 10%, and many correct matching edges can be
found by observing EMM. It can be concluded that the EMR threshold for good matching
should be 50%.

However, the matching results with EMR above 50% did not show the trend of MAR
strict increasing or decreasing with EMR, which may be caused by two reasons. First,
there are some errors in the Ground truth results, and these errors will cause some MAR
deviations. Second, EMR has a little ambiguity because the matched edges cannot be
completely guaranteed to be the correct matched edges. A matching effect with 51% EMR
may be as same as that with 53% EMR. But for the same image, when the EMR difference
is obvious, the higher the EMR, the better the matching effect. This can be proved by
comparing the EMR and EMM images of Motorcycle and Piano images in Figure 3. Due to
some errors in Ground truth disparity maps, we cannot use MAR to explain the EMR trend,
which can only be illustrated by EMM.

The EMR values of MGM, Ground truth and SGM are at 50%, 60% and 80% level
respectively, and from their EMM images it can be found that the matching effects are
consistent with EMR trend. In Figure 3, we used rectangular boxes to represent the regions
in which the results of MGM, SGM were significantly better or worse than ground truth.
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The regions in dark blue boxes were obviously worse, the light blue regions were obviously
better. To avoid visual confusion, there was no box on the ground truth images. First,
(b) MGM and (e) ground truth in Figure 3 were compared. In Motorcycle EMMs, there were
five regions in which MGM was worse than ground truth, and there were three regions
in which MGM was better than the ground truth. In the Piano EMMs, there were six
worse regions and two better regions. In short, in the MGM results, there were more worse
regions and they were larger than better regions. Then (c) SGM and (e) ground truth in
Figure 3 were compared. Since SGM’s EMR was nearly 20% higher than Ground truth,
its advantages were more obvious. The two images included respectively five and four
regions in which SGM was significantly better than ground truth, and there were almost no
significantly worse region. This trend also exists in other images with large EMR greater
than 50%. Therefore, when EMR is greater than 50% EMR can reflect the matching effect to
a certain extent.

From the analysis of the matching edge effect, the main factor affecting the accuracy of
EMR is the incorrect matching edge, which are caused by that the wrong disparity makes
the edges in one image coincide with incorrect edges in another image. As shown in the
two EMM images of GC in Figure 3c. This causes that EMR below 50% cannot be used
alone to measure the matching effect.

Combining the results of EMR, EMM, and MAR shows that, when the EMR is more
than 50%, the higher the EMR is, the better the matching performance is. When the EMR
is below 50%, it needs to judge the effect by observing the completeness of the matching
edge in the EMM.

Figure 4. Wrong matches in the ground truth images: (a) The left part of the Adirondack image and playroom image.
(b) The ground truth. (c) The SGM algorithm. (d) The error part of the ground truth. (e) The SGM corresponding to the
matching graph.

3.1.2. Test on Remote Sensing Images

We verified the reliability of the EMR and EMM using remote sensing images. Some of
the images and EMMs are shown in Figure 5. The EMR and elevation error of these block
images are given in Table 2.

From the remote sensing image example, the difference between the left image and the
right image was large. For example, only the roofs of the buildings can be seen in the left
image in the first row of Figure 5. The side walls of the buildings can be seen in the right
image, where there is a large deformation between image pairs due to different positions.
If the building is taller, then the deformation will be larger, and matching is much more
difficult than in ordinary images. In remote sensing images, the matching effect of the GC
algorithm was very poor, so we used the MGM and SGM algorithms for comparison.
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Figure 5. Edge matching map of remote sensing images: (a) Left image. (b) Right image. (c) The MGM algorithm. (d) The
SGM algorithm.

From the EMR, the MGM was like SGM, and both were about 45%. In the EMMs,
MGM had good integrity and few errors, especially for the roof part with a rich texture.
However, MGM had a considerable part of missing matches. Most of these missing matches
were in the shadow parts of low-texture and low-gray-scale areas, in which matching is
very difficult. The EMR of SGM was not low, and the matching edges were not as complete
as MGM. Moreover, there were many wrong matches in the EMM of SGM. For the stereo
matching algorithms, the matching results at the locations of edges and rich textures
will affect the matching of neighbor pixels with consistent gray values, so a wrongly
matched edge may mean a small, incorrectly matching area. Therefore, the matching
errors of SGM will be larger than MGM. The elevation error in Table 2 supports this
conclusion. The average EMR and elevation error of all block images are shown in Table 3.
The conclusions reached by the EMM analysis were correct. In summary, in this kind of
remote sensing image with large deformation, MGM is better than SGM.
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Table 2. The EMR of the block images in Figure 5.

Number EMR of MGM Elevation Error EMR of SGM Elevation Error

1 44.2% 5.27 42.1% 8.98
2 46.7% 3.69 47.2% 5.44
3 44.8% 4.87 41.3% 10.32
4 45.1% 4.82 48.6% 5.58

Mean 45.3% 4.66 44.8% 7.58

Table 3. The average EMR and elevation error of all the block images.

EMR of MGM Elevation Error EMR of SGM Elevation Error

Value 42.1% 4.25 40.2% 7.17

3.1.3. Summary

According to the analysis of the above results, edge and texture locations with rich
edge points contain the main information of an image, so edge matching can determine
the matching effect of the entire image. According to Sections 3.1.1 and 3.1.2, the matching
effect through EMR and EMM in the absence of ground truth disparity can be analyzed.
When the EMR is more than 50%, it can be used to evaluate the matching effect. The higher
the EMR is, the more accurate the matching result is. When the EMR is less than 50%,
some matching edges may coincide by accident and match the wrong edge pixels. In this
situation, the matching effect can be judged by analyzing the matching completeness of
areas and the number of wrong matches in EMM. Both EMR and EMM are suitable in
either ordinary or remote sensing images. Furthermore, they can find errors in ground
truth disparity.

Since the coincident edge is not directly equal to the correct match, both EMR and
EMM also have shortcomings. Compared with measures, such as MAR and mean absolute
error, the EMR is something fuzzy, and thus it cannot measure the small differences
between matching results, and it is not a precise evaluation measurement. Nevertheless,
EMR and EMM are still easy-to-use, widely applicable, intuitive, and effective measure
and analysis tools.

3.2. Plane Segmentation

Our plane segmentation algorithm was evaluated using a plane segmentation dataset,
which was then compared with the Plane Extraction Using Agglomerative Hierarchical
Clustering (PEAC) algorithm [49].

3.2.1. Evaluation Dataset and Measures

The plane segmentation dataset SegComp was chosen as an evaluation dataset [39].
Thirty relatively complex point cloud images were selected from the dataset_test part.
These included most of the planes and several curved surfaces. In addition to SegComp,
we created a small dataset including three point clouds, that is, a semi-octahedron (half of
an octahedron, which was used for algorithm demonstration and anti-noise experiments),
Gaussian curved surfaces„ and decreasing sine curved surfaces. The semi-octahedron was
generated by defining the vertex of each face. Equations of the Gaussian curved surface
and the decreasing sine curved surface are given in Equations (7) and (8), as follows:

z = h · exp
(
− x2 + y2

r2

)
(7)

z =
h · sin

√
x2 + y2√

x2 + y2
(8)
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where the values of h and r were 150 and 90, respectively, and x and y ranged from −r
to r (in Equation (7)). The value of h was 50, and x and y ranged from −8 to 8, with a 0.1
interval (in Equation (8)).

For a plane segmentation algorithm, segmentation results are usually evaluated
through measures such as the correct segmentation rate and direction deviation. Because
our plane segmentation algorithm was used for disparity filling, we used fitting error as the
evaluation measure. First, the planes were fitted based on plane segmentation algorithm,
and the equation coefficients of each plane were calculated. The average distance from the
points to its plane was then calculated according to Equation (3) as the error to evaluate
the algorithms.

3.2.2. Plane Fitting Effect

Our plane segmentation algorithm mainly included two parameters. After estimating
the plane equation of the point set, the plane error threshold was used to judge whether a
single data point was a plane point, and the density threshold was used to judge whether
the point set was a plane. For plane images, Gaussian noise with a mean value of 0,
a variance of 0.01, and an amplitude scale factor of 0.03 was added. No noise was added
in the curved surface images. The correlation between the two thresholds and fitting
error was calculated and the two values that minimized the fitting error were selected as
thresholds. The error threshold was 0.3, and the density threshold was 0.8. The default
parameters were used for the PEAC algorithm. The plane segmentation results of some
examples are shown in Figure 6.

Both our algorithm and the PEAC algorithm could accurately segment the plane,
but they made some mistakes at edge locations, as shown in Figure 6. For the curved surface,
our algorithm fitted more finely than the PEAC algorithm. For the two SegComp examples
(Rows 3 and 4), the lower half of the background was a curved surface (a), which was
segmented into a plane using the PEAC algorithm (the red area in (b)). Our algorithm
segmented the surface into different planes, which were smooth (Row 3 of (c)). According to
the labeled images of the SegComp images, the results of PEAC segmentation were correct.
To reduce the fitting error, a curve face should be approximated by planes. There were
many objects in Row 4 of (a), so our algorithm segmented it into more planes than Row 3.
From the area in the box, its width was consistent with the same region in the image of the
third row. The curved surfaces of the segmented planes of our algorithm were smoother
than the PEAC. We calculated the plane fitting errors of different algorithms, which are
shown in Table 4. The error of our algorithm was lower than that of the PEAC algorithm.
The reason for this may be that internal parameters of PEAC were adjusted more suitable
for label images of the SegComp dataset.

Table 4. Plane segmentation error and estimated plane number.

Error Number

PEAC Mean-Shift PEAC Mean-Shift Ground Truth

Self-built dataset 3.21 0.20
SegComp 1.13 0.13 4 + 10 = 14 10 + 20 = 30 6 + 20 = 26
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Figure 6. The plane fitting effects of different algorithms: (a) Point cloud image. (b) The PEAC algorithm. (c) The proposed
algorithm (the first line is the Gaussian curved surface, the second line is the decreasing sine curved surface, and the third
line represents the two examples of SegComp).

According to ground truth images in Figure 7, there are 6 planes in Figure 6(a3) and
20 planes in Figure 6(a4). The estimated plane numbers shew in Table 4. The PEAC
algorithm estimated 4 and 10 planes respectively, which was under-segmented. Our
algorithm estimated 30 planes in total. For Figure 6(a3,a4), 5 planes and 15 planes were
correctly segmented respectively. For Figure 6(a4) plane 15–18 were segmented into one
plane. Although the results of our algorithm were over-segmented to a certain degree,
the number of correct planes was more than that of PEAC, which proved the effectiveness
of our algorithm on the other hand.
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Figure 7. The labeled ground truth: (a) The ground truth of Figure 6(a3). (b) The ground truth of Figure 6(a4).

3.2.3. Anti-Noise Performance Analysis

To verify the anti-noise performance of our algorithm, ‘salt‘ and Gaussian noise were
added into the plane images (semi-octahedron and SegComp dataset). The density of
the ‘salt‘ noise ranged from 0.05 to 1, with a 0.05 interval, and the amplitude scale factor
ranged from 0.001 to 0.08. The mean value of Gaussian noise was 0. Its variance ranged
from 0.01 to 0.15, with a 0.02 interval, and the amplitude scale factor ranged from 0.005 to
0.07. The noise amplitude was the result of the amplitude scale factor multiplied by the
maximum height of the point cloud. For example, the maximum height of the SegComp
dataset was 4600. When the amplitude scale factor was 0.01, the maximum amplitude of
the noise was 46. Therefore, the amplitude scale factor represented the intensity of the noise.
For zero-mean Gaussian noise, the greater the variance was, the greater the noise density
was. Thus, the variance represented the noise density. After adding noise, the point clouds
were segmented, and the maximum noise amplitude and density parameters to obtain
correct segmentation were recorded and are shown in Figure 8. Correct segmentation
means that the results after adding noise were the same as those before adding noise.

Figure 8. Anti-noise performance parameters: (a) ‘Salt’ noise parameters. (b) Gaussian noise parameters.

The horizontal axis represents the noise density, and the vertical axis represents
the noise intensity. The curves of our algorithm were all above the PEAC algorithm
(Figure 8a,b), which indicates that our algorithm could withstand a higher noise intensity
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than the PEAC algorithm at the same density. The ‘salt‘ noise with a density of 0.2 and
an amplitude scale factor of 0.05 was added to plane clouds, and the fitting effect of our
algorithm and the PEAC algorithm is shown in Figure 9. Our algorithm could segment
the planes correctly, while the PEAC algorithm result had partial errors. Based on the
experimental results in Sections 3.2.1 and 3.2.2, the proposed algorithm accurately achieved
plane segmentation and surface approximation while possessing some noise-resistance
ability. The plane segmentation effects in disparity refinement are described in Section 3.3.

Figure 9. The plane fitting effect after adding noise: (a) The point cloud image after adding noise. (b) The PEAC algorithm
result. (c) The mean-shift result.

3.3. Disparity Refinement
3.3.1. Plane Segmentation Result

The MGM algorithm was used to obtain the disparity map on the block images
obtained in Section 3.1.2. First, the left image was segmented into super-pixels. Combining
super-pixel results with the disparity map, planes were segmented according to the process
described in Section 2.1.

The circle radius of the mean-shift was 5. The plane error threshold and density
threshold were respectively 1.6 and 0.5, and the inlier point threshold was 6. The threshold
determination process is as follows:

We selected five images for determining the thresholds. First the error and density
thresholds were determined. The initial error threshold was 0.8 and the density threshold
is 0.7. Then plane segmentation was performed and plane segmentation images like
Figure 10c were generated. Then we checked whether plane super-pixels were all estimated
as planes. If there were under-estimated plane super-pixels we increased the error threshold
or reduced the density threshold till the estimated number of plane super-pixels was closest
to the true number. In our experimental images, there were 1020 plane super-pixels in total.
Table 5 listed the plane super-pixel numbers estimated by different threshold combinations.
The closest total plane number 1014 was obtained when the error threshold value was
1.6 and the density threshold was 0.5. When the thresholds were 1.7 and 0.5, the estimated
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number of planes was 1031, which means that some non-planes were estimated as planes.
Therefore the error threshold and the density threshold were selected 1.7 and 0.5.

Figure 10. Plane fitting results of remote sensing images: (a) The left images. (b) The disparity images. (c) The plane
segmentation images (The first line corresponds to example 1 and the second line to example 2).

Table 5. The number of plane super-pixels estimated using different error thresholds and
density thresholds.

Density Threshold
Error Threshold 0.8 1.0 1.2 1.4 1.5 1.6 1.7 1.8

0.7 647 712 778 809 826 844 879 883
0.6 730 800 861 883 905 931 953 970
0.5 795 874 962 970 988 1014 1031 1040

After determining the error and density threshold, the bandwidth threshold is es-
timated by calculating the average error of the plane fitting (Plane fitting results were
like images in Figure 11b). Since the plane segmentation was performed on super-pixels,
the bandwidth range was as small as [3–7] and it was easy to determine. Table 6 showed
the determination of bandwidth and inlier point threshold. In Table 6, the first column was
the bandwidth, and the second column was the plane fitting error. The bandwidth 5 corre-
sponded to the smallest fitting error, so the bandwidth threshold was chosen to be 5. Finally
the inlier point threshold was estimated by calculating the height error after the disparity
refinement. After the above three thresholds were determined, the disparity refinement can
be performed, then the inlier point threshold can be obtained by calculating the elevation
error. When the threshold was 6, the elevation error was the smallest, so 6 was selected as
the interior point error threshold.
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Figure 11. Segmentation results of some super-pixels in Block Image 1: (a) 3D maps of super-pixel disparity. (b) 3D maps of
segmented planes. (c) Segmented label images. (d) Segmented label images after filling missed matching. (e) Segmented
edge images (Columns 1–3 correspond to the three super-pixels in the rectangles in the first image of Figure 10c).

Table 6. Determination of Bandwidth threshold and inlier point threshold.

Bandwidth Plane Fitting Error Inlier Point Threshold Elevation Error

3 3.86 5 4.25
4 3.60 6 4.18
5 3.51 7 4.26
6 3.78 8 4.37
7 4.15 9 4.57

The plane segmentation results of two pairs of images are shown in Figure 10. Figure 10b
are disparity maps, where the first channel is the original super-pixel segmentation result,
and the disparity was used as the second channel. The first channel of the plane segmen-
tation image in Figure 10c was a binary plane image in which the plane pixel gray value
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was 255 and the other pixel value was 0. The second channel was the original super-pixel
boundary image. The super-pixel boundary after plane segmentation was the third channel.
In such an image, the pure red super-pixel indicated that the whole blob was a plane. If a
super-pixel contained a blue or purple boundary, then it indicated that it was segmented
into several planes further.

Figures 11 and 12 have similar content. Among them, (a) includes 3D figures of the
super-pixel points to be segmented. Its x, y, and z axes correspond to the x-coordinate
and y-coordinate of the left image and the x-coordinate of the right image, respectively.
The x-coordinate of the right image increased with the growth of the x-coordinate in the
left image, so the plane was always upward. In these figures, the small red circles are the
mean-shift centers. The 3D figure of plane fitting results is shown in (b). Different colors
represent different segmented planes, and the colors were randomly generated. Here,
(c) includes the labeling figures of plane segmentation, in which the missed matching
pixels are green. There were a few non-planar points that were unsegmented, shown in
blue color. The remaining colors that were randomly generated represent the labels of
the plane segmentation. The colors in (c) are different than the colors in (b). In addition,
(d) contains the results of expanding the segmentation regions, while the missed matching
and non-planar points are filled in (c). The colors of (c) and (d) correspond to each
other because the same plane is shown in the same color. The boundary images of the
plane segmentation are in (e), and these were obtained from the rectangles in Figure 10c.
As can be seen in Figures 11b and 12b, the missed matching pixels divide the disparity
map into many fragment regions that were fitted and segmented into planes. The planes
expanded outward to form relatively uniform blobs, covering the missed matching area
(Figures 11d and 12d).

There are many planes in urban remote sensing images, so many planes were fitted
in these images. The plane segmentation results of several super-pixels are shown in
Figures 11 and 12. The three columns in Figure 11 correspond to the three super-pixels in
the labeled rectangles in the first row of images in Figure 10c, and Figure 12 corresponds to
the second row of images in Figure 10c.

3.3.2. Disparity Refinement and Three-Dimensional Reconstruction

In Figure 13, Example 1 and Example 2 correspond to the first- and second-row images
in Figure 10. The outlier removal effect is shown in Figure 13a. Here, the inliers are red
points, and the outliers are blue points. Figure 13b,c are disparity maps that have the
same channels as those in Figure 10b. The third channel is the missed matching pixels,
so the brighter the green color is, the larger the disparity is. The blue area is the missed
matching pixels. The 3D point cloud images before and after filling the disparity are shown
in Figure 13d,e. As a supplement to Figure 13. Figure 14 is correspond to the boxes in
Figure 13b,c. Figure 15 is correspond to the boxes in Figure 13d,e.
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Figure 12. Segmentation results of some super-pixels in Block Image 2: (a) 3D maps of super-pixel disparity. (b) 3D maps of
segmented planes. (c) Segmented label images. (d) Segmented label images after filling missed matching. (e) Segmented
edge images (Columns 1–3 correspond to the three super-pixels in the rectangles in the first image of Figure 10c).
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Figure 13. The results of disparity refinement: (a1) Outlier removal effect of Example 1. (a2) Outlier
removal effect of Example 2. (b1) Original disparity of Example 1. (b2) Disparity of Example 1 after
filling. (c1) Original disparity of Example 2. (c2) Disparity of Example 2 after filling. (d1) Original
point cloud of Example 1. (d2) Point cloud of Example 1 after filling. (e1) Original point cloud of
Example 2. (e2) Point cloud of Example 2 after filling.
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Figure 14. An enlarged view of the boxes in Figure 13: (a1) Box 1 in Figure 13(b1). (a2) Box 1 in
Figure 13(b2). (b1) Box 2 in Figure 13(b1). (b2) Box 2 in Figure 13(b2). (c1) Box 3 in Figure 13(b1).
(c2) Box 3 in Figure 13(b2). (d1) Box 1 in Figure 13(c1). (d2) Box 1 in Figure 13(c2). (e1) Box 2 in
Figure 13(c1). (e2) Box 2 in Figure 13(c2). (f1) Box 3 in Figure 13(c1). (f2) Box 3 in Figure 13(c2).

As shown, some outliers were removed after plane segmentation (Figure 13(a1,a2)).
By comparing Figure 14, it can be seen that the small missed regions were almost filled,
which greatly improved the matching effect. In Figure 13, three regions in boxes for each
example had the best filling effect. The regions in the boxes originally contained some
larger holes, and they were filled more completely than the other regions. Three regions
included a roof, ground, and area containing trees. This indicates that, in addition to the
roof and ground, places with many missed matching pixels, such as trees, were also filled
by approximately plane fitting. The elevation of the filled area was consistent with its
surroundings, indicating that most of the areas were correctly filled, as shown in Figure 15.
However, the large missed matching area could not be filled. Moreover, there were some
outliers in the missed matching area, which could not be removed. The elevation error
and missed matching rate before and after the disparity refinement are given in Table 7.
The disparity was filled using the Resolution Decoupling [25]. Its result is given in Table 7.

Table 7. Statistics of the elevation error and the missed matching rate.

Mean Standard Deviation Missed Matching Rate

Before disparity refinement 4.25 4.44 42.5%
After super-pixel plane fitting refinement 4.05 4.01 24.9%

After disparity refinement 4.13 4.06 28.4%
Resolution Decoupling 5.19 5.01 21.9%
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Figure 15. An enlarged view of the boxes in Figure 13: (a1) Box 1 in Figure 13(d1). (a2) Box 1 in
Figure 13(d2). (b1) Box 2 in Figure 13(d1). (b2) Box 2 in Figure 13(d2). (c1) Box 3 in Figure 13(d1).
(c2) Box 3 in Figure 13(d2). (d1) Box 1 in Figure 13(e1). (d2) Box 1 in Figure 13(e2). (e1) Box 2 in
Figure 13(e1). (e2) Box 2 in Figure 13(e2). (f1)Box 3 in Figure 13(e1). (f2) Box 3 in Figure 13(e2).

The proposed algorithm has two steps, the first step is super-pixel plane fitting,
the second step is Mean-shift based plane segmentation, and then the disparity is corrected.
Since there already exists super-pixel-based plane fitting methods, the plane segmentation
method is the novelty of this paper. The disparity refinement was performed both after
super-pixel plane fitting and Mean-shift based plane segmentation. The difference between
the results of the two steps was clarified. In our images, the average planar super-pixel
number in a block image was 203, and average 75 non-planar super-pixels were further
fitted by plane segmentation algorithm. The missed matching pixel rate filled by super-
pixel plane fitting was 24.9%. The average elevation error before disparity refinement was
4.05, and the standard deviation was 4.01.

After the overall disparity refinement, the missed matching rate decreased from 42.5%
to 28.4%, or by one-third, which effectively improved the missed matching phenomenon.
The average elevation error before disparity refinement was 4.25, and the standard devi-
ation was 4.44. After disparity refinement, the average elevation error was 4.13, and the
standard deviation was 4.06. These results indicated that the missed matching pixel rate
filled by plane segmentation was 3.5%. The elevation error is slightly higher than the first
step, which indicated that the error of plane segmentation was slightly higher than plane
fitting. Because further plane segmentation may encounter some difficult-to-fit fragments
it was more difficult. The overall elevation error was lower than that before refinement,
which means that the error of the plane segmentation algorithm was still at a low level.

Outlier removal usually reduces errors, although filling a great many of the missed
matching pixels may not necessarily reduce errors. The elevation error was slightly de-
creased, which shows the effectiveness of our outlier removal algorithm. In the case that
many missed matching pixels were filled, the elevation error still decreased. This indicates
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that our algorithm can accurately fit planes and fill correct disparity further. The error
standard deviation was also reduced, indicating that the outlier removal can shorten the
error distribution interval. The resolution decoupling method can also fill a large number
of missed matches. The missed matches were reduced by 1/2, but the error was increased
by 1 m, and the standard deviation is also improved. The accuracy is not as good as our
algorithm. In summary, the plane segmentation algorithm can further fill missed matching
pixels when the elevation error was still at a low level.

4. Discussion

A disparity refinement algorithm based on mean-shift plane segmentation is proposed
in this paper. Plane segmentation is performed on the initial stereo matching results
combined with super-pixel segmentation. Outliers are removed, and missed matching
regions are filled according to plane coefficients obtained by the plane segmentation
algorithm. Thereby, the stereo matching effect is improved. The effectiveness of the plane
segmentation algorithm was proved by comparing it with others on a standard plane
segmentation dataset. The experiment results show that our methods outperformed PEAC
in the presence of noise. On the basis of plane fitting, the proposed algorithm can segment
more planes and further fill missed matching pixels while maintaining a low level of error.
Besides disparity refinement, this method can also be applied to correct the optical flow
field. The limitation of this method is that it is dependent on the disparity accuracy and
is powerless if there are large disparity holes. These holes are mainly caused by shadows
and occlusion. Future work should improve the matching algorithm, eliminate the impact
of shadows and occlusion, and reduce missing pixels. Moreover, we proposed EMR and
EMM to analyze and evaluate the effect of stereo matching. Experiments on the stereo
matching dataset proved the effectiveness of EMR and EMM in the absence of ground
truth matching results.
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