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Abstract: Exploring impacts of urban expansion on ecosystem services has become a hot topic
for regional sustainable development, while analyzing the ecological effects of urban expansion
forms under different expansion intensities and city sizes is relatively rare. Therefore, taking a
typical urban agglomeration, Shanghai-Hangzhou Bay Urban Agglomeration, as a case study, this
study first analyzed the dynamics of urban expansion forms (leapfrogging, edge-expansion, and
infilling) and four critical ecosystem services (carbon sequestration, food supply, habitat quality, and
soil retention) in three periods from 1990 to 2019. The multiple linear regression model and zonal
statistics analysis model were used to quantitatively identify the impacts of urban expansion forms
on ecosystem services, taking into account different expansion intensities and city sizes. The results
showed that the urban expansion trend in the study area experienced a morphological change from
integration to diffusion and then to integration in 1990–2019; edge-expansion was the dominant
expansion form. Food supply decreased continuously while other ecosystem services had fluctuating
changes, and they all had spatial heterogeneity. The leapfrogging, edge-expansion, and infilling
all had negative impacts on ecosystem services, and among them, the edge-expansion intensity
had the highest influence degree in the early expansion, and the leapfrogging intensity occupied
the dominant position in all influences with the expansion of urban scales. For different city sizes,
the impact of edge-expansion in large-scale cities was greater than in small-scale cities in the early
expansion, and the impact of leapfrogging in large-scale cities exceeded the edge-expansion in the
subsequent expansion. These findings will help further understand the influential mechanisms
between urban expansion and ecosystem services and provide a scientific basis for formulating
reasonable urban planning.

Keywords: urban expansion forms; ecosystem services; response relationship; Shanghai-Hangzhou
Bay urban agglomeration

1. Introduction

As the basis for improving the well-being of mankind and achieving sustainable
development [1], ecosystem services (ESs) refer to natural conditions and utilities providing
life supporting products and services by ecosystems and ecological processes that sustain
anthropic life [2,3]. The changes in ESs are the most intuitive reflection of the impacts
of anthropic activities on the ecological environment and directly or indirectly affect
ecosystem functions, patterns, and processes [4,5]. Thus, ESs can be applied to assess the
potentiality of regional ecosystems for human services and explore the changes in the
ecological environment caused by human activities. Increased human activity intensity
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makes natural patches show a significantly and highly dispersed characteristic, which
affects the functions and structures of ecosystems and results in the reduction of ESs [6].
Therefore, the assessment of ESs is important for the protection and improvement of
ecological environment.

Urban expansion, an intuitive manifestation of urban development, is a land use
change process that promotes the conversion of natural and semi-natural land into urban
impervious surfaces [7,8]. With the population increase and economic development, the
rapid urban expansion process has become one of the most prominent features of global
development [9]. In China, many cities have experienced rapid growth and progressively
formed urban agglomerations since the 1970s, e.g., the Yangtze River Delta Urban Ag-
glomeration, the Pearl River Delta Urban Agglomeration, and the Beijing-Tianjin-Hebei
Urban Agglomeration [10,11]. However, urban expansion areas, among the most active
areas for human activities, are proved to bring the rapid transformations from ecosystems
dominated by natural factors to urban ecosystems at an all-time speed and scale [12,13] and
to trigger considerable changes in ESs [14,15]. The contradiction between human activities
and ESs becomes particularly prominent in areas with rapid urban expansion. In regional
development research, the impact of urban expansion on ESs has become the critical focus
of scholars worldwide. Simultaneously, urban expansion has different expansion forms,
including leapfrogging, edge-expansion, and infilling [16]. Different expansion forms
make the urban structures develop with a trend of diffusion or compactness, causing dis-
tinct influences on the landscape patches connectivity [17]. In this process, the disordered
distribution structures of urban construction land caused by urban expansion will oc-
cupy large amounts of ecological and agricultural land, reduce ecosystem service values,
and ultimately be detrimental to the ecosystem health [18]. Especially in China, urban
agglomerations are not only areas with the fastest urban expansion speed, but also areas
with highly sensitive ecological environment. These urban agglomerations concentrate
more than 3/4 of the Chinese pollution output, and their environmental pollution and
resource degradation are very serious [19], which hinders the sustainable development
of ecological environment. Therefore, studying the impact of urban expansion forms in
urban agglomerations on ESs is of great significance to regional sustainable development.

Urban expansion dramatically changes the population size, economic structure, road
network density, and other factors, thereby seriously affecting the ecosystem health and
decreasing ESs [20–23]. Many scholars have widely discussed these processes and demon-
strated that urban expansion is the most crucial factor that results in various impacts on the
structures and functions of natural ecosystems at multi-perspectives [18,24–26]. On the one
hand, urban expansion brings about the large-scale population movement and pollutant
emission, and the accumulation of these effects seriously undermines the exchange and
connection of energy flow and material flow within the whole ecosystem [27]. When they
exceed the ecosystem carrying capacity, the health and sustainability of ecosystems will be
endangered and will finally result in ecological disasters [28,29]. On the other hand, urban
expansion increases the artificial surface ratio and leads to the reduction of ESs [30,31].
For instance, Xie et al. [32] used Pearson’s correlation coefficients and linear regressions to
quantify the impacts of urban expansion scales on the losses of ESs in Beijing and found
that the losses of food production that were caused by urban expansion were significant;
Xia et al. [33] investigated the relationships between urban size growth and the urban
carbon metabolism rate using panel data regression analysis in 13 cities in the Yangtze
River Delta of China and reported that a higher urban expansion scale had a larger neg-
ative impact on the urban carbon metabolism system per unit area of land use change;
and Chen et al. [34] integrated cellular automata with geographically weighted regression
in a model to study the spatially heterogeneous ES losses caused by urban expansion
scale in Chongqing. In addition, urban expansion causes changes in the urban form
characteristics and affects the interaction relationship between urban expansion and ESs.
Ouyang et al. [35] analyzed the impacts of urban land morphology on Particulate Matter 2.5
concentrations during 2000–2017 by using the geographically weighted regression model,
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which showed that a compact urban form was good for promoting air quality, reducing
CO2 emissions, and reliving the urban heat effect; and Peng et al. [36] applied linear regres-
sion and polynomial regression analysis to explore net primary productivity responses to
stages of urban expansion and found that a scattered urban form had a significant negative
impact on net primary productivity.

In summary, many studies and practices have focused on the impacts of urban expansion
on ESs and found causal relationships between urban growth and ES degradation [32–36].
They provide practice foundations and references for healthy urban development and
regional ecological maintenance. However, most studies took the urban expansion area as a
whole to describe the relationship between urban expansion intensity and ESs, which might
ignore different urban expansion forms. Many studies have indicated that distinct urban
forms had significantly different effects on the ecological environment and ESs [14,18,36,37].
Thus, the lack of consideration of different expansion forms may reduce the understanding
of the interaction between urban expansion and ESs. Additionally, most studies took the
study area as an overall sample object to analyze the impacts of urban expansion on ESs,
but different city sizes were not systematically considered. Because of the differences in
the socioeconomic development status and related policy implementations [14,38], the
results for different city sizes might be biased, but in recent studies, the influence of urban
expansion forms on ESs in different cities is still poorly understood.

In view of the above considerations, this study took the Shanghai-Hangzhou Bay
Urban Agglomeration (SHB), a typical urban agglomeration, as the study area. The goal
of this study was to revel the impact of urban expansion forms on ESs under different
expansion intensities and different urban sizes in urban agglomerations. Specifically, this
study comprised three steps: (1) to identify spatiotemporal variations of urban expansion
forms and ESs in SHB; (2) to explore whether the relationships between urban expansion
forms and ESs change with expansion intensity of urban expansion forms; (3) to analyze
the impacts of various urban expansion forms on ESs in different cities. The purposes of
this study were to provide a deep understanding of the relationship between different
urban expansion forms and ESs and to find a scientific path to maintain the sustainable
development of urban ecosystems.

2. Materials and Methods
2.1. Study Area

The SHB, ranging from 118◦21′ E to 122◦16′ E and 28◦51′ N to 31◦53′ N, is located on
the eastern coast of China and the lower reaches of the Yangtze River Basin, consisting of
one core megacity, Shanghai, and five other cities (Hangzhou, Jiaxing, Shaoxing, Ningbo,
and Huzhou) in Zhejiang Province (Figure 1). All boundaries were derived from the
Standard Map Service System of the Ministry of Natural Resources of China in 2019
(http://bzdt.ch.mnr.gov.cn). SHB has many landform types, including plains, hills, basins,
and plateaus. The elevation is higher in the west and lower in the east, and the annual
rainfall is 1460 mm, while the average annual temperature is approximately 16 ◦C. In 1930s,
the prototype of the urban agglomeration in SHB had already taken shape, and in recent
decades, China’s reformation and opening up has made it an important growth pole for
socioeconomic development in the Yangtze River Delta region. Especially after China’s
reform and opening up, the proposal of a series of regional development strategies has
significantly expanded the regional urban scales and accelerated the urban expansion pace.
At the end of 2015, the total area of SHB had exceeded 50,000 km2, with a total population
exceeding 38 million, and the regional GDP was $769 million (USD). It is no doubt that
SHB is one of the most important components of the world-class urban agglomeration
in the Yangtze River Delta and one of the regions with the highest urbanization level in
China. However, in recent years, with the population booming and economic inflation,
rapid and large-scale urban expansion in SHB has resulted in fundamental changes in
the function and structure of natural ecosystems, which in turn seriously threatens the
sustainable development [39,40].

http://bzdt.ch.mnr.gov.cn
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Figure 1. Location of the study area.

2.2. Data Source and Processing

In this study, Landsat 5 TM data with 30 m spatial resolution for 1990, 2000, and 2010,
and Landsat 8 OLI data with 15 m spatial resolution for 2019 were used. All images were
from June and July, collected from the GeospatialData Cloud of the Chinese Academy
of Sciences (http://www.gscloud.cn). Based on ENVI 5.3 software, all remote sensing
images were treated in advance by radiometric calibration and atmospheric correction to
meet the requirements of our study. The Radiometric Calibration tool was used for the
radiometric calibration, and the FLAASH Atmospheric Correction tool was applied for the
atmospheric correction. All images that we obtained underwent geometric correction and
were georeferenced, so we did not do these two steps.

Additionally, we obtained socioeconomic and ecological environment data for 1990,
2000, 2010, and 2019 from relevant government departments and resource data websites.
For example, the socioeconomic data and grain production data were collected from the
Zhejiang Provincial Bureau of Statistics and the Shanghai Bureau of Statistics; the cropland
quality data were collected from the Zhejiang Provincial Department of Agriculture and
the Shanghai Agriculture Bureau; the meteorological data were obtained from the Chinese
meteorological data network (http://data.cma.cn), and they were interpolated through the
inverse distance weighted method; and the soil type data were obtained from the Chinese
Soil Database (http://vdb3.soil.csdb.cn).

The spatial geographic grid was proved to be an effective approach that could seamlessly
link multi-scale geographical information to solve the problem of different data formats [11].
Thus, in order to accurately analyze the impact processes between urban expansion forms
and ESs, we divided the study area into geographic grid cells of 1 km × 1 km.

The framework of our study is shown in Figure 2.

2.3. Mapping Land Use Cover

Based on the ENVI 5.3 software, the random forest (RF) classifier was used for land
use cover classification in this study. RF is a machine learning method that can effectively
process a large number of input indicators and provided fast and reliable classification
results [41]. Compared with other remote sensing classifiers, the training speed of the RF
classifier is faster and not prone to over-fitting [42]. Therefore, in current studies, the RF
classifier is widely used in the map of land use cover [41,43,44].

http://www.gscloud.cn
http://data.cma.cn
http://vdb3.soil.csdb.cn
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2.3.1. Reference Dataset for Samples

Samples have a crucial impact on classification results [43]. Selecting representative
samples for model training and accuracy evaluation of the RF classifier is an important
prerequisite for ensuring the accuracy of land use cover. In this study, based on remote
sensing images, referencing the sample point selection method of Zhang et al. [41], and
combined with the Natural Resources Survey Map and the Google Image Map, 200 samples
of each land use type were randomly selected via human–computer interactive extraction
of remote sensing information for each year. The land use types were cropland, forestland,
grassland, urban construction land, rural settlement, water bodies, and unutilized land.

Additionally, we randomly assigned a value from 0 to 1 for all samples. If a sample was
less than 0.7, it was used as the training sample, otherwise it was the verification sample.

2.3.2. Remote Sensing Image Features and Classifier Parameters

To ensure the information contained in remote sensing images could be fully detected,
we comprehensively considered various features as the training parameters of RF classifier,
including the spectral characteristics of remote sensing images and the terrain features. For
spectral characteristics, in addition to spectral bands of Landsat data (i.e., blue, green, red,
near infrared, shortwave infrared 1, and shortwave infrared 2), the normalized difference
vegetation index (NDVI) [45] and the enhancement vegetable index (EVI) [46] were used
to distinguish vegetation from other land use types; the normalized difference build index
(NDBI) [47] was applied to assist the monitoring of urban construction land and rural
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settlement; and the normalized difference water index (NDWI) [48] was used to detect
water bodies. Simultaneously, topography greatly impacts the distribution of different land
use types [49]. Therefore, we calculated the elevation and slope using DEM.

Combined with the related studies [41–44], the number of decision trees was set as
200, and default values were used for other parameters in the RF classifier.

2.3.3. Classification Accuracy Verification

The accuracy of land use cover mapping was assessed by the confusion matrix based
on the validation samples for each period. The overall accuracy (OA), producer’s accuracy
(PA), user’s accuracy (UA), and Kappa [50] were calculated for land use types, and these
accuracy indices were showed in Table 1. OA in 1990, 2000, 2010, and 2019 was 85.71%,
86.67%, 86.19%, and 89.05%, respectively, and Kappa in 1990, 2000, 2010, and 2019 was
0.83, 0.84, 0.84, and 0.87, respectively. These indices indicated the results of land use cover
mapping was satisfactory and met the needs of the research.

Table 1. Accuracy indices for the reclassified classes in the four periods.

Year Land Use Type PA (%) UA (%) OA (%) Kappa

1990

Cropland 81.08% 83.33%

85.71% 0.83

Forestland 83.67% 85.42%
Grassland 80.00% 83.33%

Urban construction land 89.66% 92.86%
Rural settlement 84.62% 81.48%

Waters 88.46% 92.00%
Unutilized land 78.26% 81.82%

2000

Cropland 81.25% 83.87%

86.67% 0.84

Forestland 81.58% 81.58%
Grassland 80.00% 82.76%

Urban construction land 91.43% 94.12%
Rural settlement 89.29% 86.21%

Waters 91.67% 100.00%
Unutilized land 88.00% 81.48%

2010

Cropland 80.00% 82.76%

86.19% 0.84

Forestland 82.05% 84.21%
Grassland 77.78% 81.46%

Urban construction land 91.67% 94.29%
Rural settlement 80.65% 83.33%

Waters 92.59% 96.15%
Unutilized land 87.50% 80.77%

2019

Cropland 82.76% 85.71%

89.05% 0.87

Forestland 89.29% 86.21%
Grassland 87.50% 84.00%

Urban construction land 97.50% 95.12%
Rural settlement 82.76% 85.71%

Waters 93.33% 100.00%
Unutilized land 81.25% 83.87%

Based on the division results of land use types, the spatial distributions of urban
growth in SHB from 1990 to 2019 were obtained and served as an important basis for this
study (Figure 3).
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Figure 3. Spatial distributions of urban growth in SHB from 1990 to 2019: 1 Shanghai; 2 Hangzhou;
3 Ningbo; 4 Jiaxing; 5 Shaoxing; 6 Huzhou (the same below).

2.4. Mapping Urban Expansion Forms
2.4.1. Urban Expansion Index

Urban expansion is regarded as the most evident expression of land cover change. In
this study, we used the landscape expansion index (LEI) to assess the urban expansion
situations in SHB. LEI can identify the spatial expansion form of urban land by determining
the spatial position relationship between existing urban land and new urban land [16,51],
and it can be calculated by the landscape expansion model. Compared with the method
that reflects the characteristics of urban land expansion in time series, LEI provides a more
intuitive way of spatial expression, which can characterize the spatial process of urban
land expansion [36]. It is calculated by the buffer area of the expanded plaque, and the
equation is as follows:

LEI =
A0

A0 + Av
× 100 (1)

where A0 is the overlapping area between the buffer zone of the expanded patches and the
original patches, Av is the intersection between the buffer zone and the original patches.
The value of LEI lies within [0,100].

2.4.2. Classification of Urban Expansion Forms

Generally, the spatial expansion form of new urban land in a certain period can be
divided into three categories: infilling, edge-expansion, and leapfrogging [51]. Among
them, infilling indicates that urban expansion occurs in the internal blank area of the
existing urban land; edge-expansion indicates the new urban areas extend outward along
the edge of existing urban land; and leapfrogging indicates the new urban areas developed
independently and without overlapping with any existing urban land [16]. The existence
modes of these urban expansion forms are shown in Figure 4.

These urban expansion forms can be divided by LEI, and the classification criteria
are fixed [16,36,51]. Based on previous studies, when LEI is 0, the expansion form is
leapfrogging; when LEI is within (0, 50], the expansion form is edge-expansion; and when
LEI is within (50,100], the expansion form is infilling.
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Figure 4. Existence modes of infilling, edge-expansion, and leapfrogging.

2.4.3. Analysis of Urban Expansion Intensity

According to the definition of land use change intensity from land cover data, the
urban expansion rate was used to analyze the urban expansion intensity in this study,
which was defined as the trend of impervious area fraction (IAF) from 1978 to 2014 [52,53].
Furthermore, in order to more clearly explore the change state of urban expansion intensity
in SHB, we focused on calculating the IAF for each geographic grid cell. The IAF is
calculated as follows:

IAF =
SUi

Sgrid
(2)

where SUi is the area of the i-th urban expansion type in a geographic grid cell, Sgrid is the
area of a geographic grid cell. The value of IAF is within [0,100], a higher IAF indicates a
higher urban expansion intensity in a specific grid.

The natural breaks method was used to divide the IAF of the three urban expansion
forms into four levels: I, II, III, and IV. The higher the level, the stronger the intensity. This
method can effectively prevent human subjectivity and classify similar values based on data
distribution. However, we found that the natural breakpoint values in the three periods
were slightly different in any expansion form, which might make the results incomparable.
Therefore, to compare the structural changes and spatial changes of expansion intensity for
the same urban expansion form, we adjusted the natural breakpoint values of IAF for the
three urban expansion forms by using the arithmetic mean method and used the integers
close to all of them as thresholds (Table 2).

Table 2. The modified breakpoint values and natural breakpoint values for classifying the levels of urban expansion intensity.

Urban Expansion Form Type Modified Value
Natural Breakpoint Value

1990–2000 2000–2010 2010–2019

Leapfrogging
First breakpoint 8.00 7.28 9.10 7.90

Second breakpoint 23.00 19.60 29.27 22.13
Third breakpoint 49.00 48.70 52.81 45.56

Edge-expansion
First breakpoint 12.00 10.56 12.03 12.72

Second breakpoint 37.00 34.02 36.41 40.48
Third breakpoint 68.00 64.46 66.80 74.12

Infilling
First breakpoint 6.00 5.41 5.78 6.70

Second breakpoint 21.00 19.78 19.56 22.89
Third breakpoint 43.00 42.36 39.58 48.17
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2.5. Quantifying Ecosystem Services
2.5.1. Selection of Ecosystem Service Types

Firstly, ES types that could be evaluated in this study should have the following
characteristics: available models were used to quantify and map them, and basic data were
easily obtained. Simultaneously, the specific selection of ESs types is critical to accurately
characterize the status of the regional important ecosystems. Therefore, combining the
regional ecosystem characteristics, the ecological environment statuses, and the relevant
research in this region [39,54,55], our study focused on four ESs that were considered
important and typical to SHB: carbon sequestration (CS), food supply (FS), habitat quality
(HQ), and soil retention (SR).

2.5.2. Calculation of Ecosystem Services
Carbon Sequestration

CS is very important to the terrestrial carbon cycle, and it is the ability that the
ecosystem has to absorb oxygen and release carbon dioxide. CS was chosen because it
affects a wide variety of regulating services. Net primary production (NPP) was used as a
proxy for CS, and it is an important factor for determining ecosystem carbon sources/sinks
and regulating ecological processes [56]. Hence, we estimated CS of our study area based
on NPP, which is mainly summarized in the following equation:

CS = α× β×∑ NPP (3)

where α is the proportion of carbon in carbon dioxide, which is 27.27%; β is the carbon
dioxide for every 1 g of dry matter in vegetation, which is 1.63 g [56]. NPP was calculated
by using CASA model according to Wang et al. [13].

Food Supply

FS is crucial for food security and urban sustainability, and it is the ability that the
ecosystem has to produce food and related products. In general, FS can be represented by
the total grain output [57]. Because the total grain output is the statistical data, FS obtained
represents the planar element results, and FS cannot be calculated for each grid in the study
area. The results obtained by relying on the total grain output alone cannot meet our need
to accurately assess the impact of urban expansion forms on FS. Some studies have shown
a significant linear correlation between grain output and NDVI [57–59], and the researchers
obtained the spatial distribution of FS through the combination of NDVI and CSum.

In this study, the grain output related to cropland was equally assigned to cropland in
every county and then combined with the NDVI of cropland in each county to calculate FS
for each grid in SHB. The equation is as follows:

FS =
NDVIi

NDVIsum
× Csum (4)

where NDVIi is the NDVI of the i-th grid, NDVIsum is the sum of the NDVI of cropland in
each county, Csum is the total grain output in each county.

Habitat Quality

HQ plays an essential role in organism dispersal among habitat patches and, thus,
in conserving biodiversity, and it is the ability that the ecosystem has to provide suitable
conditions for biological survival [60]. Considering the same habitat has different abilities
to provide ESs for species in different regions, the vegetation coverage was used as an
expression of habitat productivity to assess HQ [61], and the equation is:

HQ = Q1 + Q2 (5)
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where Q1 is the NDVI, Q2 is the value of HQ assessed by the InVEST model [62,63], which
uses a half saturation curve equation to calculate the HQ score:

Q2 = Hxj × (1−
Dz

xj

Dz
xj + kz ) (6)

where Hxj is the habitat suitability score of landscape type j in grid cell x; k is a half
saturation constant, which is customized according to the resolution of the data resource; z
is a scale constant that reflects spatial heterogeneity; Dxj indicates the total threat level in
grid cell x with landscape type j, and the equation is:

Dxj =
R

∑
r=1

Yr

∑
y=1

(wr/
R

∑
r=1

wr)ryirxy AxSjr (7)

where R is the number of threat factors; Yr is the set of grid cells on r’s raster map; wr is
the impact weight of threat factor r; Ax is the accessible grid x; Sjr indicates the relative
sensitivity of landscape type j to threat factor r—the value is 0–1; irxy is the impact distance
of threat factor r, which can be divided into linear or exponential function of distance from
threats to habitats [49].

Identifying threats to habitats is a key issue for the assessment of HQ in the InVEST
model. According to the actual local situation and some other studies [55,61], cropland,
urban construction land, rural settlement, airports and port land areas, railways, and
main roads were taken as threat factors. Simultaneously, combined with our previous
research [61], the related coefficients of these threat factors were set (Table 3).

Table 3. The threat factors and related coefficients.

Threat Factor dr_max (km) Weight wr Distance-Decay Function

Cropland 5 0.5 Exponential
Urban construction land 12 1 Exponential

Rural settlement 7 0.8 Exponential
Airport and port land 10 0.8 Exponential

Railway 9 0.8 Linear
Main road 10 1 Linear

In addition, the habitat suitability scores of nine land use types were determined by
referencing the InVEST user guide [62] and a previous study [64]. The habitat suitability
of forestland was defined as 1 due to the persistence of individuals and groups of organ-
isms [64]. For others, water bodies, grassland, cropland, and other land use types, values
were 0.9, 0.8, 0.6, and 0, respectively.

Soil Retention

SR is an important regulating ecosystem service, especially under conditions of urban
population growth and increasing areas of gray infrastructure in China, and it is the ability
that each plot in the ecosystem has to maintain soil. Areas of land with high SR have the
capacity to alleviate a series of ecological disasters caused by human over-development,
such as floods and mudslides. The revised universal soil loss equation model (RUSLE) [65]
can be used to measure SR, and the equation is as follows:

SR = RKLS−USLE = R× K× LS− R× K× LS× C× P (8)

where RKLS is the potential for soil loss, USLE is the annual soil loss; R is the rainfall
erosion factor, K is the soil erodibility factor, LS is the slope length and steepness factor, C
is the cover and management factor, P is the conservation practice factor. The calculation
method of each coefficient is presented in Asadolahi [65].
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2.6. Analysis of Interactive Coercing Relationships
2.6.1. Multiple Linear Regression Model

Based on the analysis of the dynamics of the expansion intensity for different urban
expansion forms and ESs in SHB from 1990 to 2019, the relationship between the expansion
intensity of different expansion forms and ESs was shown by using the multiple linear
regression (MLR) model, which is the most commonly used model for analyzing the linear
relationship between two or more variables [61]. In this study, the changes of four ESs in
1990–2000, 2000–2010, and 2010–2019 were selected as the dependent variables, and the
expansion intensities of various urban expansion forms were chosen as the independent
variables. The MLR model can be expressed as follows:

yi = β0 +
i

∑
k=1

βkxk + ε (9)

where yi is the change value of ESs, xk is the expansion intensity of different expansion
forms, k is the total number of spatial units involved in the analysis, ε is the random
error term that follows an independent normal distribution with a mean of 0, β0 is the
constant term estimate, and βk is the k-th regression parameter, which is a function of
geographic location.

2.6.2. Zonal Statistics Analysis Model

According to the Chinese city level classification standard, all cities in SHB were
divided into four levels: mega-scale city (Shanghai), large-scale city (Hangzhou), medium-
scale city (Ningbo, Jiaxing, and Shaoxin), and small-scale city (Huzhou). The higher the
urban level, the larger the urban size.

In this study, the zonal statistics analysis (ZSA) model was selected to explore the
impact of urban expansion forms on ESs in different cities. The ZSA model is based on the
partition statistical functions, takes the classification areas of one data set as the statistical
units to count the unit values at the corresponding position in another data set, and can
intuitively reflect the development of another attribute in a classification area [15]. In this
model, the changes of four ESs were taken as the statistical objects, and the geographic grid
cells of various urban expansion forms in different cities were taken as the statistical zones.

3. Results
3.1. Spatiotemporal Variation of Urban Expansion Forms
3.1.1. Growth Change of Urban Expansion Forms

Figure 5 shows the compositions of urban expansion forms for different cities in
SHB. The results showed that the dominant form of urban expansion was edge-expansion
from 1990 to 2019, and the proportion of leapfrogging experienced a substantial increase
in the process of urban growth. In detail, in 1990–2000, edge-expansion was the domi-
nant form of urban expansion, reflecting that the urban structure was inseparable in this
period; in 2000–2010, the area and patch proportion of leapfrogging demonstrated an
upward trend, especially in Ningbo, Jiaxing, and Huzhou, it surpassed the proportion
of the edge-expansion; and in the last period, the edge-expansion once again dominated
the urban expansion direction. These changes indicated that the urban expansion trend
in SHB experienced a morphological change from integration to diffusion, and finally
to integration.
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Figure 6 clearly describs the spatial evolution processes of various urban expansion
forms among three neighboring periods for these newly developed urban land patches. In
1990–2000, the leapfrogging, edge-expansion, and infilling could be found in the whole
area, and their changes in Shanghai, Hangzhou, Jiaxing, and Ningbo were the most obvious.
Among of them, edge-expansion was the main expansion form and was mainly distributed
in the center, east, and northeast. Furthermore, many urban land patches in the infilling
were largely within the core of the northeastern municipal district (i.e., Shanghai). In 2000–
2010, the edge-expansion had many distributions and occurred around the existing urban
land, and the main distribution areas were similar to the previous stage. Simultaneously,
many considerable urban land patches in the leapfrogging appeared on the east coast, the
northeast coast, and the north plain, but they mainly showed distribution patterns with a
dominant number of small-sized patches. In 2010–2019, the edge-expansion scale around
the existing urban land greatly increased in the center and northeast, nd the scope of the
leapfrogging patches also increased in the core areas of the socioeconomic development in
the whole of SHB (i.e., Shanghai and Hangzhou).

3.1.2. Intensity Change of Urban Expansion Forms

Based on the calculation of IAF for SHB from 1990–2000, 2000–2010, and 2010–2019, the
expansion intensities of various urban expansion forms were obtained. The results showed
that the I level of expansion intensity was the dominant interval, and the proportion of I
was higher than 60% in the whole period. However, the various intensity levels of different
expansion forms changed significantly with the expansion of urban scales (Table 4 and
Figure 7). For the leapfrogging, the proportion for II, III, and IV kept increasing, and II
increased the most, which was 10.63%, followed by III; for the edge-expansion, different
intensity levels had different development trends, among which IV kept increasing, which
increased by 4.23% from 1990 to 2019; and for the infilling, the proportion of I increased
continuously in the whole period, but other levels had the opposite trend.
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Table 4. The proportion of urban expansion intensity levels for different urban expansion forms from
1990 to 2019 (%).

Urban Expansion Form Type Time Interval
Urban Expansion Intensity Level

I II III IV

Leapfrogging
1990–2000 80.84 14.36 3.27 1.53
2000–2010 63.77 24.06 8.71 3.46
2010–2019 60.36 24.99 9.02 5.63

Edge-expansion
1990–2000 77.52 11.47 7.00 4.01
2000–2010 71.49 13.11 8.49 6.91
2010–2019 78.16 8.12 5.48 8.24

Infilling
1990–2000 77.78 13.94 5.55 2.73
2000–2010 93.74 3.27 1.64 1.35
2010–2019 94.73 3.05 1.49 0.73

In terms of the spatial distribution of expansion intensity, the high intensity area of
leapfrogging was mainly distributed in the northeast in 1990–2000, and there were a con-
siderable number of growth points in the central region in 2000–2010, but the distribution
area greatly shrunk after 2010. The northeast of SHB had always been the distribution area
of the high intensity area for the edge-expansion, which gradually expanded year by year,
and the central and east of SHB exhibited numerous high-intensity areas after 2000. The
high intensity area of the infilling was mainly distributed in the northeast during the whole
period, and after 2000, there were sporadic growth points in the central and east, but their
scopes were limited.
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3.2. Spatiotemporal Variation of Ecosystem Services
3.2.1. Temporal Variation of Ecosystem Services

In the temporal changes of ESs, the maximum annual average change rates of CS, FS,
HQ, and SR in 1990–2000, 2010–2019, 2000–2010, and 2010–2019 were −2.16%, −3.38%,
−0.42%, and−3.22%, respectively (Table 5). In terms of different cities, CS in Shanghai expe-
rienced the greatest decrease from 1990 to 2019, which was −19.54%; the maximum change
rate of FS in 1990–2000 was in Huzhou, in 2000–2010 was in Jiaxing, and in 2010–2019, was
in Hangzhou, which was −29.82%, −40.87%, and −50.42%, respectively; HQ in Hangzhou,
Huzhou, Ningbo, and Shaoxing increased in 1990–2000, but all cities showed downward
trends in the latter two periods (among them, Shanghai dropped consistently the most, i.e.,
−16.15% and−11.13% respectively), and the greatest change in SR in 1990–2000, 2000–2010,
and 2010–2019 was distributed separately in Shanghai, Jiaxing, and Hangzhou, i.e., 13.02%,
25.31%, and −42.34%, respectively.

Table 5. Change rates of ESs in SHB from 1990 to 2019 (%).

City
CS FS HQ SR

1990–2000 2000–2010 2010–2019 1990–2000 2000–2010 2010–2019 1990–2000 2000–2010 2010–2019 1990–2000 2000–2010 2010–2019

Shanghai −19.44 −12.03 13.53 −28.43 −32.31 −11.67 −1.44 −16.15 −11.13 13.02 −0.85 7.96
Hangzhou −19.49 −1.38 21.67 −18.23 −34.93 −50.42 2.65 −1.85 −1.42 −2.58 20.07 −42.34

Jiaxing −14.51 −9.74 15.42 0.00 −40.87 −30.41 −0.07 −10.45 −5.99 −9.27 25.31 6.97
Huzhou −19.00 1.26 17.97 −29.82 −5.32 −42.52 2.16 −1.96 −2.42 −0.96 18.98 −22.06
Ningbo −22.09 −3.96 19.58 −28.57 −34.76 −23.03 1.41 −5.53 −1.60 8.57 4.54 −20.08

Shaoxing −22.20 2.03 22.73 −21.84 −19.57 −46.94 2.03 −2.35 −1.38 8.66 15.03 −32.65

3.2.2. Spatial Variation of Ecosystem Services

As shown in Figure 8, there were significance differences in the spatial distribution of
the change trend for the four ESs. (1) CS showed spatial heterogeneity with an increasing
trend from the northeast to the south and southwest (Figure 8a). In 1990–2000, the CS
in the whole SHB increased, while it presented a reduction around the urban land in the
northwest and central (especially in Shanghai and Hangzhou); in 2000–2010, the increased
areas were mainly distributed in the south and west (i.e., Shaoxing and Huzhou), while
the decreased areas were concentrated in Jiaxing and Shanghai in the northeast; and in
2010–2019, the increased areas were the same as in the previous stage, but the decreased
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areas were mainly distributed in Hangzhou, Huzhou, and Shanghai in the central and
northeast. (2) The high value areas of FS were mainly distributed in plain regions in
the central and northeast, with relatively low values in other regions (Figure 8b). In the
spatial change, the increased areas were extremely small from 1990 to 2019, which were
mainly distributed in coastal areas in the east and northeast, and the decreased areas
were mainly distributed in Jiaxing in the northeast and Shaoxing in the south, and Jiaxing
had the most obvious decrease in 2000–2010. (3) The high and low values of HQ were
spatially staggered, which had a downward trend from the southwest to the northeast
(Figure 8c). In the spatial change, the decreased regions far exceeded that of increased
regions, and the former were mainly distributed in Hangzhou in the central, Ningbo in the
east, and Shanghai in the northeast. (4) The spatial distribution differentiation of high and
low values for SR was the same as that for HQ (Figure 8d). In the spatial change, the areas
of increase and decrease were mainly distributed in the mountain and basin areas in the
south, southwest, and southeast. Among them, from 1990 to 2010, the increased areas were
concentrated in Hangzhou, Shaoxing, and Ningbo, and in 2010–2019, they were mainly
distributed in Ningbo.
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3.3. Correlations between Urban Expansion Forms and Ecosystem Services
3.3.1. Impact of Urban Expansion Intensity on ESs

The expansion intensity for various urban expansion forms influenced the changes of
ESs, but their influence degrees were not the same.
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We used Pearson correlation via SPSS 22.0 to conduct the correlation analysis between
expansion intensity of urban expansion forms and ESs. The results indicated that the
correlation coefficients in different periods all passed the significance test.

Therefore, to compare the impact degrees of expansion intensity for various urban
expansion forms that affected the changes in ESs, the MLR model was applied to quantify
the impact of expansion intensity of urban expansion forms on ESs. Tables 6–9 show the
variance analysis results of the MLR model in different time intervals. The fitting results of
the MLR model indicated the following characteristics: all regression coefficients passed
the 1% or 5% significant level test, and all VIF values were smaller than 7.5, showing
that there was no variable redundancy in the model, and there was no multiple linear
relationship among these urban expansion forms.

The results of the MLR model showed that the expansion intensities for the leapfrog-
ging, edge-expansion, and infilling all had significant negative impacts on ESs, but these
negative influences changed significantly with the development of the cities. (1) For CS,
before 2010, the increase in the edge-expansion intensity brought the most losses of CS,
and in 2010–2019, the increase of the leapfrogging intensity had the greatest impact on CS
(Table 6). (2) For FS, the edge-expansion intensity had the greatest negative impact, followed
by the leapfrogging intensity. The coefficients of the edge-expansion intensity experienced
fluctuating changes, which were −0.693 **, −0.718 **, and −0.479 ** (Table 7). (3) For HQ, in
1990–2000, the edge-expansion intensity had the greatest negative impact, and after 2000, the
greatest negative impact was produced by the leapfrogging intensity. Additionally, the nega-
tive impact of edge-expansion intensity gradually decreased, eventually reaching −0.258 **;
but the negative impact of leapfrogging intensity gradually increased, eventually reaching
−0.487 ** (Table 8). (4) For SR, the leapfrogging intensity had the greatest negative impact
in the whole period, and the coefficient gradually decreased in 1990–2000, 2000–2010, and
2010–2019, which was −0.487 **, −0.577 **, and −0.638 **, respectively (Table 9).

Table 6. The variance analysis results of the MLR model for the expansion intensity of urban expansion forms and the
change in CS in different time intervals.

Time Interval Urban Expansion Form
Indexes

Coefficient Std. Error t-Statistic VIF R2 R2 Adjusted

1990–2000
Leapfrogging −0.523 ** 0.084 −37.036 2.356

0.752 0.747Edge-expansion −0.732 ** 0.126 −3.370 1.759
Infilling −0.067 * 0.193 −6.581 3.213

2000–2010
Leapfrogging −0.559 ** 0.164 −23.895 1.998

0.775 0.772Edge-expansion −0.654 ** 0.089 −36.554 3.467
Infilling −0.281 ** 0.472 −5.949 1.265

2010–2019
Leapfrogging −0.549 ** 0.369 −24.882 1.659

0.757 0.741Edge-expansion −0.399 ** 0.082 −18.679 2.356
Infilling −0.176 ** 0.473 −12.901 1.147

Note: ** and * represent the passing of 1% and 5% significance levels, respectively.

Table 7. The variance analysis results of the MLR model for the expansion intensity of urban expansion forms and the
change in FS in different time intervals.

Time Interval Urban Expansion Form
Indexes

Coefficient Std. Error t-Statistic VIF R2 R2 Adjusted

1990–2000
Leapfrogging −0.532 ** 0.457 −4.235 1.989

0.875 0.847Edge-expansion −0.693 ** 0.095 −17.574 1.453
Infilling −0.283 ** 0.342 −3.409 2.658

2000–2010
Leapfrogging −0.567 ** 0.105 −23.615 2.659

0.761 0.753Edge-expansion −0.718 ** 0.057 −15.726 1.863
Infilling −0.181 ** 0.303 −3.888 3.549

2010–2019
Leapfrogging −0.311 ** 0.114 −4.264 2.351

0.796 0.791Edge-expansion −0.579 ** 0.025 −19.418 5.681
Infilling −0.226 ** 0.146 −2.717 1.768

Note: ** and * represent the passing of 1% and 5% significance levels, respectively.
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Table 8. The variance analysis results of the MLR model for the expansion intensity of urban expansion forms and the
change in HQ in different time intervals.

Time Interval Urban Expansion Form
Indexes

Coefficient Std. Error t-Statistic VIF R2 R2 Adjusted

1990–2000
Leapfrogging −0.389 ** 0.035 −13.725 1.847

0.672 0.659Edge-expansion −0.464 ** 0.024 −9.512 1.375
Infilling −0.165 ** 0.179 −6.757 4.269

2000–2010
Leapfrogging −0.433 ** 0.057 −27.964 1.357

0.731 0.718Edge-expansion −0.392 ** 0.131 −16.486 1.188
Infilling −0.245 ** 0.016 −7.410 2.019

2010–2019
Leapfrogging −0.487 ** 0.103 −17.084 2.086

0.826 0.809Edge-expansion −0.258 ** 0.023 −42.210 1.741
Infilling −0.346 ** 0.133 −6.121 1.057

Note: ** and * represent the passing of 1% and 5% significance levels, respectively.

Table 9. The variance analysis results of the MLR model for the expansion intensity of urban expansion forms and the
change in SR in different time intervals.

Time Interval Urban Expansion Form
Indexes

Coefficient Std. Error t-Statistic VIF R2 R2 Adjusted

1990–2000
Leapfrogging −0.487 ** 0.118 −11.181 4.073

0.773 0.758Edge-expansion −0.419 ** 0.089 −7.258 2.964
Infilling −0.042 * 0.142 −3.199 1.786

2000–2010
Leapfrogging −0.577 ** 0.330 −2.337 3.659

0.803 0.793Edge-expansion −0.392 ** 0.178 −11.714 1.178
Infilling −0.381 ** 0.947 −4.026 1.382

2010–2019
Leapfrogging −0.638 ** 0.902 −1.633 2.937

0.795 0.799Edge-expansion −0.258 ** 0.201 −12.801 5.005
Infilling −0.205 ** 0.156 −3.881 1.686

Note: ** and * represent the passing of 1% and 5% significance levels, respectively.

3.3.2. Impact of Urban Expansion Forms on ESs in Different Cities

The impact of urban expansion forms on ESs in different cities had regional differences
(Figure 9).

In the early expansion (1990–2000), the edge-expansion in Shanghai had the greatest
negative impact on CS, FS, and HQ, which was 672.60 kgC/km2, 137.12 kg/km2, and 0.25,
respectively, and the negative impact of the leapfrogging in Huzhou on SR was the greatest,
which was 44.27 t/km2. With the expansion of urban scales, the relationship between
urban expansion forms in different cities and ESs underwent tremendous transformations
after 2000. For CS, the negative influence of urban expansion forms decreased year by
year, and in 2010–2019, the greatest negative impact appeared in the leapfrogging, which
was 365.59 kg C/km2 in Sahaoxing. For FS, the edge-expansion always had the greatest
negative influence and appeared in Jiaxing. However, during the period 2000–2010 and
2010–2019, it first increased and then decreased and was 356.84 and 113.29 kg/km2 respec-
tively. For HQ, in 2000–2010, the edge-expansion in all cities had the greatest negative
impact; among them, Shanghai was the largest, which was 0.27, and in 2010–2019, the
greatest negative impact appeared in the edge-expansion in Huzhou, which was 0.24, but
for Shanghai and Hangzhou, the leapfrogging had the greatest effect, which was 0.20 and
0.22, respectively. For SR, the negative impact of various cities increased, and the greatest
influence appeared in the leapfrogging in Hangzhou.
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4. Discussion
4.1. The Relationship between Urban Expansion Forms and ESs

Urban expansion is one of the most intuitive manifestations of urbanization develop-
ment [66]. There is no doubt that the changes in ESs are closely related to urban expansion.
Urban expansion occupies a large amount of high-quality arable land and beautiful eco-
logical land [67–69], destroys the agricultural farming environment and natural ecological
environment, and affects the original stable landform type structure during the expansion
process [17]. Therefore, reveling the impact of urban expansion forms on ESs provides an
important basis to maintain the sustainable development of urban ecosystems.
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In this study, we deeply revealed the relationship between various urban expansion
forms and ESs and their specific influential mechanisms. The results showed that urban
expansion had negative effects on the original functions of the ecosystem to varying degrees,
but the losses of ESs resulting from the development of urban expansion forms may be
phased. In the early expansion, the closer to the original city, the greater potential for urban
construction [70]. However, because these areas are close to residential areas, there are many
human activities, which pose huge threats to the security and stability of the ecosystem
and cause ESs to decline [68]. Meanwhile, in the fringe areas of the cities, urban expansion
has also brought about a series of different influences, e.g., the rise of facility agriculture,
the agricultural non-point source pollution caused by the widespread use of chemical
fertilizers and pesticides, and the large amounts of industrial wastewater generated by the
rapid development of industry. They will cause the deterioration and imbalance of the
water and soil environment in the urban expansion regions [20,23]. Therefore, in general,
in the early expansion, the edge-expansion had the greatest negative impact on ESs.

After China’s reform and opening up, the speed of urban expansion in China has
increased rapidly, especially in urban agglomerations such as SHB [54,55]. The infilling
and edge-expansion have expanded the scope of the core area for each city, and the city
size has increased significantly. The process reverses the previous relationship between
urban expansion forms and ESs. The result is consistent with previous studies [30,71].
Compared to the large-scale urban zones, the small-scale urban zones had more significant
negative impacts on the most types of ESs, and the negative influences produced by various
expansion forms in the former showed a decrease trend year by year. Especially in SR,
this characteristic was very obvious. Calzolari’s study also demonstrated the unsealed
soils in the areas with concentrated development of construction land had higher SR
than in the areas with less urban development [72]. Thus, as shown in Tables 6, 8 and 9,
the negative impact of leapfrogging on ESs was greater than that of edge-expansion and
infilling. Simultaneously, for the large-scale urban zones, many studies indicated that with
the expansion of urban scales, urban land in this region experienced more greening than
in other sized cities through urban land use management and related land remediation
projects (e.g., the urban large garden construction), which improved the internal ecosystem
and enhanced the sustainability of urban development [6,36,73].

Additionally, we found that the edge-expansion always had the greatest negative
impact on FS, but this impact varied during the expansion stages. Due to the agglomer-
ation effect of resources in urban areas, there are many high-quality cropland resources
distributed around the cities [74]. However, a study found that obvious cropland losses
always emerged in cities with high administrative levels and large population sizes, and
the acceleration stage of croplands losses always appeared earlier in cities with high ad-
ministrative levels and a large city scale [75]. Thus, the greatest negative impact of urban
expansion first appeared in the large-scale and high-level cities. Compared to leapfrog-
ging and infilling, edge-expansion will inevitably occupy more high-quality cropland,
eventually leading to a large reduction in FS.

4.2. Implications for Ecological Environment Improvement in Urban Agglomerations

In the future development, the population’s demand for urban land will continue to
increase, and the urban scale will continue to show a trend of rapid expansion. Improving
the effectiveness of ES protection is conductive to achieve coordination between urban
expansion and the ecological environment. Therefore, it is indispensable to make targeted
recommendations in the context of new urbanization based on the impact mechanism of
urban expansion forms and ESs.

In the areas where the cropland has a high concentration and high quality, to reduce
the pressure of the loss of FS, the encroachment of urban areas on cropland should be
strictly controlled by restricting the amount and intensity of urban expansion. Then, under
the premise of rationally setting the urban expansion boundaries, urban expansion should
be dominated by leapfrogging and infilling. The edge-expansion should adopt the small-
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scale and refined development as the main direction of urban expansion, which will avoid
the occupation of high-quality cropland to the greatest extent. For the areas with high
internal density in the urban space and many external restrictions, integrating occupied
land and intensively using existing construction land will help maintain the ecosystem
stability [25], and replacing simple horizontal expansion with urban vertical development
is also an effective urban development method [76]. In addition, although the existing
studies have shown that the increase in the population density in the contiguous areas
where arable land is concentrated can effectively improve FS in the rural areas [77], in
urban agglomerations, the population density still needs to be controlled, which can reduce
the population’s demand for food and ease the pressure on FS [78].

In the areas with a good ecological environment, the sporadic distribution of urban
areas can interfere with the connectivity of ecological landscape types [72]. Many stud-
ies have found that the impact of urban form compactness on ecosystem health is very
evident in the process of urban development, and a compact and continuous urban form
can improve the stability of ecosystem structure and maintain the sustainable health of
ecosystems [61,79]. To maintain the stability of the ESs and improve the value of ESs,
edge-expansion and infilling should be the dominant urban expansion forms. It is ob-
vious that the land use types occupied by urban expansion in these regions are mainly
forestland, grassland, and a small amount of cropland. Protecting ecosystem types with
high ecosystem service value is one of the effective ways to improve ESs [80]. It is very
important to scientifically delineate the ecological protection red line areas and implement
strict protection. Existing studies have shown that in the urban expansion process, ESs
seem to have a greater negative impact on one-way land transfer rather than on two-way
land transfer [77]. Therefore, expanding the scope of “blue–green spaces” within cities is
also one of the effective ways to maintain and stabilize ESs [76]. It not only helps alleviate
the pressure of urban expansion on the regional ecosystem, but also protects the original
ecological state and the ecosystem integrity.

4.3. Limitation and Future Directions

Based on the exploration of the spatiotemporal dynamic evolution of urban expansion
forms and the relationship with ESs, this study revealed the impact process of urban
expansion on ESs. The research results can provide important information for ES improve-
ment and the urban development planning in various urban expansion regions, but still
have limitations.

As described in the previous content, urban expansion is a double-edged sword.
While it brings losses of ESs, it also has a positive effect on some ESs. For example, for FS,
as the rate of regional urbanization increases, the scope of facility agriculture will gradually
expand [81], and the factory production of agriculture will become the inevitable result
of the agricultural development in urban expansion areas [82]. These factors will result
in the increase in FS. However, the maximum remote sensing image resolution that can
be obtained by this research is 15 m, which cannot accurately divide cropland and facility
agricultural land. Moreover, because of the limitation of data access, we do not have the
necessary data to effectively evaluate the state of factory production of agriculture. In
future research, we will carry out more in-depth explorations in these aspects.

5. Conclusions

In recent years, revealing the impact of urban expansion on ecosystem has gradually
become a hot topic. However, analyzing their relationships from the perspective of different
urban expansion forms is very limited, which restricts the understanding of their influential
mechanisms. Therefore, using the Shanghai-Hangzhou Bay Urban Agglomeration as a case
study, based on the analysis of the spatiotemporal variations of urban expansion forms
and ecosystem services, this study explored the impact of urban expansion forms on four
critical ecosystem services under different expansion intensities and city sizes.
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The Shanghai-Hangzhou Bay Urban Agglomeration experienced a morphological
change from integration to diffusion, and finally to integration. In detail, the dominant
expansion form in 1990–2000 was edge-expansion; in 2000–2010, the proportion of leapfrog-
ging increased greatly, and it surpassed the proportion of edge-expansion in Ningbo,
Jiaxing, and Huzhou; and in 2010–2019, edge-expansion dominated the urban expansion
direction again. Simultaneously, the above-mentioned changes mainly occurred in the cen-
tral, east, and northeast. For four critical ecosystem services, food supply kept decreasing
in the whole periods, and its high value areas were mainly distributed in the central and
northeast. Carbon sequestration first deceased and then increased; habitat quality and
soil retention were the opposite of carbon sequestration, and their high value areas were
mainly distributed in the south and southwest.

The relationship between urban expansion forms and ecosystem services was com-
plicated. From the perspective of the impact of urban expansion intensity on ecosystem
services, the expansion intensities of the leapfrogging, edge-expansion, and infilling all had
significant negative impacts on ecosystem services, but their influence degrees changed
significantly with the expansion stages. For carbon sequestration and habitat quality, in
1990–2000, the edge-expansion intensity had the greatest influence degree, which gradually
declined after 2000. Meanwhile, the impact degree of leapfrogging intensity increased
year by year, and it dominated the impact of urban expansion on habitat quality after
2000 and carbon sequestration after 2010. For food supply, the edge-expansion intensity
had the greatest influence degree from 1990 to 2019, and the degree increased first and then
decreased. For soil retention, the impact of urban expansion was always dominated by the
leapfrogging intensity, but the influence degree gradually increased with the growth of
urban scales. In terms of the impact of urban expansion forms on ecosystem services in dif-
ferent cities, the impact of urban expansion varied with urban size. In the early expansion,
edge-expansion had the greatest negative influence on ecosystem services in most cities,
and compared with the small-scale cities, it had a greater impact on the large-scale cities.
With the expansion of urban scales, the negative impact of leapfrogging on ecosystem
services in the large-scale cities exceeded that of the edge-expansion. For food supply, the
edge-expansion always had the greatest negative impact in the cities with different sizes,
but the high influence zones gradually shifted from the large-scale cities to the small-scale
cities as the urban scales increased. The exploratory works carried out in this study could
also be used for studies of other urban agglomerations and rapid urbanization regions,
which are not only critical to realize urban sustainable development, but are also conducive
to improve the ecological environmental quality.
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