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Abstract: Extracting water-bodies accurately is a great challenge from very high resolution (VHR)
remote sensing imagery. The boundaries of a water body are commonly hard to identify due to the
complex spectral mixtures caused by aquatic vegetation, distinct lake/river colors, silts near the
bank, shadows from the surrounding tall plants, and so on. The diversity and semantic information
of features need to be increased for a better extraction of water-bodies from VHR remote sensing
images. In this paper, we address these problems by designing a novel multi-feature extraction
and combination module. This module consists of three feature extraction sub-modules based on
spatial and channel correlations in feature maps at each scale, which extract the complete target
information from the local space, larger space, and between-channel relationship to achieve a rich
feature representation. Simultaneously, to better predict the fine contours of water-bodies, we adopt
a multi-scale prediction fusion module. Besides, to solve the semantic inconsistency of feature
fusion between the encoding stage and the decoding stage, we apply an encoder-decoder semantic
feature fusion module to promote fusion effects. We carry out extensive experiments in VHR
aerial and satellite imagery respectively. The result shows that our method achieves state-of-the-art
segmentation performance, surpassing the classic and recent methods. Moreover, our proposed
method is robust in challenging water-body extraction scenarios.

Keywords: water-body segmentation; multi-feature extraction and combination; aerial and satellite
imagery; fully convolutional network

1. Introduction

Water-body extraction is of great significance in water resources monitoring, natural
disaster assessment and environmental protection [1–3]. These applications rely on the
quantification of the water-body change. Accurately obtaining water-body segmentation
from remote sensing images is an important mission for monitoring water body changes. In
this paper, our aim is to accurately delineate water-bodies in complicated and challenging
scenarios from very high resolution (VHR) remote sensing imagery. Instruments onboard
satellites and aerial vehicles provide remote sensing imagery that covers large-scale water
surface on Earth. As shown in Figure 1, the contours of water-body in VHR remote
sensing images are often unclear. Such degradations are typically caused by aquatic
vegetation blocking, silts/boats near the bank and shadows from the surrounding tall
plants. The distinct colors are commonly caused by imaging conditions, water quality
and microorganisms. Hence, it is a great challenge to extract the outline of water-bodies
accurately in complex scenes from VHR remote sensing imagery.
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Traditionally, the existing methods of extracting water-bodies from remote sensing 
images mainly focus on the spectral characteristics of each band and the manually de-
signed features, such as band threshold-based methods [4], supervised classification-
based methods [5], water and vegetation indices-based methods [6], and spectral relation-
ship-based methods [7]. However, these methods pay little attention to the spatial infor-
mation (i.e., shape, size, texture, edge, shadow, and context semantics) of the water-bodies, 
which significantly affects the classification accuracy. For massive remote sensing images, 
the drawbacks of traditional methods additionally include their low degree of automation. 
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(b) 

Figure 1. Some typical water-body samples (a) in VHR aerial images and (b) Gaofen2 (GF2) satellite images 

Convolutional neural network (CNN) has shown remarkable performance in image 
classification, target detection and semantic segmentation [8–13], creditable to the strong 
feature representation ability of CNN. Long et al. [8] first proposed the fully convolutional 
network (FCN), which replaces the last fully connected layers with convolutional ones to 
achieve end-to-end semantic segmentation. Hereafter, FCNs in an end-to-end manner are 

Figure 1. Some typical water-body samples (a) in VHR aerial images and (b) Gaofen2 (GF2) satellite images

Traditionally, the existing methods of extracting water-bodies from remote sensing
images mainly focus on the spectral characteristics of each band and the manually designed
features, such as band threshold-based methods [4], supervised classification-based meth-
ods [5], water and vegetation indices-based methods [6], and spectral relationship-based
methods [7]. However, these methods pay little attention to the spatial information (i.e.,
shape, size, texture, edge, shadow, and context semantics) of the water-bodies, which
significantly affects the classification accuracy. For massive remote sensing images, the
drawbacks of traditional methods additionally include their low degree of automation.

Convolutional neural network (CNN) has shown remarkable performance in image
classification, target detection and semantic segmentation [8–13], creditable to the strong
feature representation ability of CNN. Long et al. [8] first proposed the fully convolutional
network (FCN), which replaces the last fully connected layers with convolutional ones
to achieve end-to-end semantic segmentation. Hereafter, FCNs in an end-to-end manner
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are widely applied and extensively developed, becoming a mainstream technology in
semantic segmentation and edge detection [12–18]. Ronneberger et al. [9] designed a
contracting path and a symmetric expanding path to merge different semantic features for
biomedical image segmentation. Lin et al. [10] made full use of the feature information
available in the down-sampling process and used long-distance residual connections to
achieve high-resolution prediction. Yu et al. [11] proposed an end-to-end deep semantic
edge learning architecture for category-aware semantic edge detection. Bertasius et al. [12]
presented a multi-scale bifurcated deep network, which exploited object-related features
as high-level cues for contour detection. Xie et al. [13] developed a novel convolutional
neural-network-based edge detection system by combining multi-scale and multi-level
visual responses.

Recently, deep learning-based water-body segmentation from remote sensing imagery
has attracted some attention and developments [14–18]. Yu et al. [14] pioneers at introduc-
ing a CNN-based method for water-body extraction from Landsat imagery by considering
both spectral and spatial information. However, this CNN-based method cut an image into
small tiles for pixel-level predictions, which introduced a lot of redundancy and is of low
efficiency. Miao et al. [15] proposed a restricted receptive field deconvolution network to
extract water bodies from high-resolution remote sensing images. Li et al. [16] adopted
a typical FCN model to extract water bodies from VHR images and significantly outper-
formed the normalized difference water index (NDWI) based method, the support vector
machine (SVM) based method, and the sparsity model (SM) based method. However,
these two approaches didn’t consider the multi-scale information from different decoder
layers and the channel relationship of feature maps in the encoder, which incorporated
insufficient extraction of water bodies in complex scenes. Duan et al. [17] proposed a novel
multi-scale refinement network (MSR-Net) for water-body segmentation, which made full
use of the multi-scale features for more accurate segmentation. However, the MSR-Net
does not reuse high-level semantic information and the multi-scale module it possesses
does not consider channel relationships between feature maps. Guo et al. [18] adopted a
simple FCN-based method for water-body extraction and presented a multi-scale feature
extractor, including four dilated convolutions with different rates, which was deployed
on top of the encoders. This FCN-based method simply used the multi-scale information
of high-level semantic features, but did not extract complete features at other scales. It is
evident that current FCN-based water extraction studies emphasized feature extraction
and prediction optimization, but the room for further improvements is considerable. Fea-
ture fusion in the FCN-based method preferably combines high-semantic features and
features with precise locations, which facilitates water-body identification and the accurate
extraction of water-body edges. In this work, we design our method by considering three
aspects: feature extraction, prediction optimization, and the feature fusion of shallow and
deep layers.

How to design optimal multi-layer convolution structures to extract excellent features
from images has been widely studied in visual tasks. Simonyan and Zisserman [19] stacked
deep convolutional layers to enhance the feature representation, which has been proven to
be effective in large-scale image classification. He et al. [20] presented a residual learning
framework to further deepen networks to achieve better feature representation ability.
Huang et al. [21] established dense connections between the front layers and the back
layers to promote the reuse of features. These methods mainly utilize the convolution oper-
ation itself to learn layer-wise local feature representations and use pooling operations to
expand the receptive field. However, between-layer and local-global feature representation
ability may require to be further improved. Zhang et al. [22] proposed a split-attention
module to focus on the relationship between different feature groups to achieve better
feature extraction results. However, this approach mainly considered local information
and the between-channel relationship of the feature maps at each scale, but neglected
larger receptive fields information of feature maps. To fully extract water-body features in
complex scenes from VHR remote sensing imagery, we design a multi-feature extraction
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and combination module to extract rich features from both small and large receptive fields
and between-channel information to increase the feature representation ability.

Prediction optimization: To obtain more refined semantic segmentation results, es-
pecially better edges and boundaries, many researchers optimize the rough prediction
results [10,23–25]. Lin et al. [10] used long-distance residual connections for all multi-scale
features in the down-sampling process to achieve high-resolution prediction. Qin et al. [23]
designed an independent encoder-decoder, named residual refine module (RRM), to post-
process the semantic segmentation results. Yu et al. [24] proposed the refinement residual
block (RRB) to optimize the feature maps. Cheng et al. [25] designed a special-purpose
refine network via global and local refinement to optimize the rough prediction results.
However, most of these methods may introduce redundancy due to the repeated structural
design. In our method, based on the features extracted from our feature extraction module,
we propose a simple and effective multi-scale prediction optimization module to refine the
water-body predictions from different scales.

Feature fusion: In semantic segmentation, shallow features have accurate localization
while deep features consist advanced semantic information. The fusion of deep and shallow
features plays an important role in achieving high-precision semantic segmentation [9,26–28].
Ronneberger et al. [9] directly concatenated the shallow features and deep features to
fuse features. Liu et al. [27] designed a feature aggregation module, which used pooling
operations to learn features on multiple scales, and added them to obtain the integrated
result. Our previous work [28] promoted the fusion of different semantic spatial-temporal
features by learning the global information of 3D feature maps. And the way has been
proved effective in the fusion of complicated spatial-temporal features. In this study, we
extend the work by introducing a semantic feature fusion module between the encoder
and decoder in 2D water-body feature fusion to improve semantic inconsistency.

To sum up, this study has three contributions:

1. We propose a rich feature extraction network for the extraction of water-bodies in
complex scenes from VHR remote sensing imagery. A novel multi-feature extraction
and combination module is designed to consider feature information from a small
receptive field and a large one, and between-channels. As a basic unit of the encoder,
this module fully extracts feature information at each scale.

2. We present a simple and effective multi-scale prediction optimization module to
achieve finer water-body segmentation by aggregating prediction results from differ-
ent scales.

3. An encoder-decoder semantic feature fusion module is designed to promote the
global consistency of feature representation between the encoder and decoder.

2. Methodology

In this section, we give the details of our proposed multi-feature extraction and
combination network (MECNet) for water-body segmentation from respectively aerial
and satellite Imagery. At first, we present our proposed MECNet architecture. Then, we
describe a multi-feature extraction and combination (MEC) module to attain richer and
more diverse features and more advanced semantic information. Subsequently, to better
predict the fine contour of the water-body, we design a multi-scale prediction fusion (MPF)
module to integrate the prediction results at three different scales. At last, we introduce
an encoder-decoder semantic feature fusion (DSFF) module to overcome the problem of
semantic inconsistency between encoder and decoder.

2.1. MECNet Architecture

The MECNet mainly consists of three modules. We firstly design a multi-feature
extraction and combination module to obtain richer and more diverse features in the
encoding stage. The proposed MEC module consists of three different feature extraction
sub-modules to model the spatial and channel relationships between feature maps. These
sub-modules are (1) a local feature extraction sub-module, (2) a larger receptive-field feature
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extraction sub-module, and (3) a between-channel feature extraction sub-module. To solve
the semantic inconsistency of features from the encoding stage and the decoding stage,
an encoder-decoder semantic feature fusion module is established. A simple multi-scale
prediction fusion module uses the prediction results from three different scales as input to
obtain super fine water-body segmentation contours.

Figure 2 provides an overview of the proposed MECNet, which has an encoder-
decoder architecture [9,26,29]. The encoding stage is designed as a bottom-up structure [19].
Four times of max-pooling operations with a stride of two are operated after applying the
MEC module for feature extraction. In the decoding stage, the feature maps are sequentially
up-sampled up to the size of the original image with a bilinear up-sampling operation with
a stride of two. The DSFF module is employed to fuse different features from the encoding
and decoding stages at the same scale, whereas the MPF module is used to accurately
predict the segmentation map of the water-body.
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Figure 2. An overview of our proposed Multi-feature Extraction and Combination Network (MECNet). MECNet has three
modules: Multi-feature Extraction and Combination (MEC), encoder and Decoder Semantic Feature Fusion (DSFF), and
Multi-scale Prediction Fusion (MPF).

2.2. Multi-Feature Extraction and Combination Module

The MEC module is composed of three sub-modules, namely a local feature extraction
sub-module (LFE), a longer receptive-field feature extraction sub-module (LRFE) and a
feature extraction sub-module for between-channel feature enhancement (CFE). The LFE
and LRFE sub-modules are based on the spatial relations of feature maps (i.e., from different
receptive-field scenes), and the CFE sub-module is designed to obtain extra rich feature
information by modeling the relationships between channels of feature maps.

The LFE sub-module, as shown in Figure 3b, is designed to learn feature maps
recording local information. Specifically, we perform a 3×3 convolution with a batch
normalization (BN) and a sigmoid function to learn the weight map of local features, and
the weight map is multiplied by the input. And then, this result is added to the input as
the final output of current layer.
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Figure 3. The details of multi-feature extraction and combination module. (a) The MEC (Multi-feature Extraction and Com-
bination) module consists of (b) a Local Feature Extraction (LFE) sub-module, (c) a between-channel feature enhancement
module (CFE) and a longer receptive-field feature extraction sub-module (LRFE): (d) DCAC (Densely Connected Atrous
Convolutions, and (e) JCC (Joint Conv7-S4-Conv3-S1, for the longer receptive field feature extraction.

The LRFE sub-module uses a larger receptive field structure. There are two implemen-
tation ways: one is to use densely connected atrous convolutions (DCAC), while the other
is through pooling operations or convolution with strides. Figure 3d, e shows the structure
of these two methods respectively. For an atrous convolutional layer with dilate rate of d
and kernel size of K, its receptive field size (RFS) is equal to

RFS1 = K + (K− 1)× (d− 1) (1)

Stacking convolutional layers can obtain a larger receptive field. For two convolutional
layers with receptive field sizes of R1 and R2, the stacked receptive field size is

RFS2 = R1 + R2 − 1 (2)

Using pooling or strides can also obtain a larger receptive field. Since the pooling
operation will directly lose local information, we choose convolution with strides. Suppose
we have two consecutive convolution layers, the first convolution layer with filter kernel
K1 and stride size S1, and the second convolutional layer with filter kernel K2 and stride
size S2, the receptive field size is:

RFS3 = K1 + (K2 − 1)× S1 (3)

In order to choose a more suitable LRFE module, we analyze these two structures in
detail. We design three densely connected structures and call them DCAC-large1, DCAC-
large2, and DCAC-small. The detailed structures are shown in Table 1. DCAC-large1 and
DCAC-large2 have the same receptive field size on each layer, through using fixed kernel
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size and larger and more dilated rate, and adopting different kernel size and lower dilated
rate. And DCAC-small only has a smaller receptive field in the first and second layers
than the former two. For the second structure, we design a convolution with kernel size
7 and stride 4, and follows a 3×3 convolution with kernel size 3 and stride 1, and then
up-samples to the size of the input. We name this joint structure JCC.

Table 1. The various longer receptive-field feature extraction (LRFE) sub-modules designed in this
study. Layeri represents the i-th layer of the encoder (i belongs to (1, 2, 3, 4, 5)), RFS indicates the
receptive field size relative to the input.

DCAC-Large1 DCAC-Large2

Layeri Kernel Size Dilated Rate RFS Kernel Size Dilated Rate RFS

layer1 3 (3, 6, 12, 18, 24) 131 7 (3, 6, 12) 129
layer2 3 (3, 6, 12, 18) 82 5 (3, 6, 12) 87
layer3 3 (3, 6, 12) 45 3 (3, 6, 12) 45
layer4 3 (1, 3, 6) 23 3 (1, 3, 6) 23
layer5 3 (1, 2, 3) 15 3 (1, 2, 3) 15

DCAC-Small JCC

Layeri Kernel Size Dilated Rate RFS Kernel Size Dilated Rate RFS

layer1 3 (3, 6, 12) 45 7, 3 (1) 15
layer2 3 (3, 6, 12) 45 7, 3 (1) 15
layer3 3 (3, 6, 12) 45 7, 3 (1) 15
layer4 3 (1, 3, 6) 23 7, 3 (1) 15
layer5 3 (1, 2, 3) 15 7, 3 (1) 15

We emphasize the between-channel relationships, and designed a between-Channel
Feature Enhancement (CFE) module to learn this relationship (Figure 3c). We firstly use the
global pooling operation to get global information of the feature maps, and adopt the full
connection to learn the relationship among the values to obtain weights between channels.
The weights reflect the relative importance between the channels. Then, they are multiplied
with the input channel-wisely and the multiplication result is added to the input.

We design a parallel and a cascade (Figure 4) way to combine the submodules of the
MEC. Each feature extraction sub-module in parallel will independently extract features
without relying on other intermediate processing results. In the cascade way, the LRFE sub-
module further learns the extracted results of LFE sub-module, and the CFE sub-module
utilizes the features obtained by the LRFE sub-module, which will acquire features of larger
receptive fields step-wise. Notice that the two combinations are identical in terms of the
parameters and computational complexity.
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2.3. Multi-Scale Prediction Fusion Module

Multi-scale prediction is proved effective in semantic segmentation [10,30,31]. In
order to better predict the fine contours of water-bodies, we adopt a simple multi-scale
prediction fusion module (MPF, Figure 5). The MPF module optimizes the prediction
results of three scales in decoding stage. We first up-sample the third-last and second-last
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encoder layers to the original image size and concatenate them with the last prediction
result. Then, we perform a 1 × 1 convolution with BN and ReLU to increase the number of
channels, and respectively use 3 × 3, 5×5, and 7 × 7 convolution with BN and a sigmoid
function to learn multi-scale weight information. The weights contain important signals
from different receptive fields of the concatenated results, which are multiplied respectively
by the weights. Ultimately, we concatenate these results and use a 3 × 3 convolution kernel
with BN and 1 × 1 convolution to obtain the final prediction result.Remote Sens. 2021, 03, x 8 of 19 
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2.4. Encoder-Decoder Semantic Features Fusion Module

To solve the problem of semantic inconsistency in feature fusion at the decoding stage,
we apply the DSFF module (Figure 6), which extends the 3D channel attention module
proposed in our previous work [28]. The DSFF is designed for 2D tensors, firstly performs
1 × 1 convolution with BN and ReLU to reduce the channel number of the concatenated
feature maps at the same scale from the encoding stage and the decoding stage to half.
Then, the global context is generated from the concatenated features by the global pooling
and is followed by 1 × 1 convolution with BN and ReLU, and 1 × 1 convolution with
a Sigmoid function. It is used as a guide for the fusion of different semantic features,
which automatically learns semantic connections between the channels of feature maps.
The global context information is multiplied with and added to the concatenated features.
Finally, 3 × 3 convolutions with BN and a ReLU are applied to the obtained feature maps.
The DSFF module is deployed on different scale features in the decoding stage to achieve
efficient fusion of different semantic features.
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2.5. The Total Loss Function

The training of deep neural networks become more difficult as the depth of the
network increases [20]. In order to train our proposed model more efficiently, we introduce
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a simple and effective output layer at each scale in the decoding stage and impose loss
constraints between its result and ground truth. The output layer consists of a 1 × 1
convolution layer and an up-sampling layer, of which the number of output feature map
of the convolution layer is set to 1, and we use bilinear up-sampling. The cross-entropy
function L is employed, and the total loss function is as follows:

Ltotal = αL f inal + β
5

∑
i=1

Li (4)

where α and β are the weights for the final prediction results and the sum of the prediction
results at each scale in the decoding stage. We set both α and β to 0.5 in our training stage.
Following Equation (4), Lfinal denotes the loss between ground truth and the output of the
MPF module and L(i) indicates the loss between ground truth and the prediction result of
the i-th (i = 1, 2, 3, 4, 5) layer in the decoding stage.

2.6. Implementation Details

We implemented our method using the Pytorch deep learning framework [32]. Con-
sidering the limited storage of the GPU, we cropped the original images into patches that
measure 512 × 512 pixels with an overlap ratio of 0.5 to eliminate the boundary effects.
For a fair comparison between our and other methods, we used the He initialization [33]
to initialize our model and other methods in our work and train them without using any
pre-trained weights. With the two larger datasets introduced in Section 3.1, we can compre-
hensively test model learning and generalization abilities. We applied random left-right
and top-bottom flipping, Gaussian blur, and HSV transformation to argument the data. We
set batch-size to 4 and adopted the Adam (adaptive moment estimation) optimizer [34]
and set the learning rate to 1e-4 and the number of epochs to 32 in all experiments.

3. Results and Analysis
3.1. Water-Body Dataset

To evaluate our proposed method, we carried out comprehensive experiments in
aerial and GF2 (Gaofen2) senses satellite imagery. The aerial images were captured in the
Changxing area of Zhejiang Province, China, in 2018. And the dataset has a total of 83
images, from which 63 and 20 are used for training and testing (Figure 1a). The size of
each aerial image is 4994 × 4994 pixels, with the ground resolution 0.2 m and three bands
(red, green, and blue). From the aerial imagery, it can be observed that there are weeds
and silt on both sides of some water-bodies, which makes the delineation of water-bodies
more challenging. Moreover, shadows are casted on some water-bodies at the proximity
of relatively high ground objects. In addition, there are other types of water-bodies for
different applications, such as farmland, fish ponds, etc. The GF2 imagery contains 66 RGB
images with a size of 6667 × 6667 pixels and 0.5m ground resolution, of which 48 are used
for training and 18 for testing. The images were captured by sensors onboard the GF2
satellite in Jiande, Zhejiang Province, China, in 2018. The edge of the water-bodies is more
clearly identifiable from the GF2 satellite images compared to the aerial imagery (Figure 1b).
The aerial imagery has been preprocessed with aerial triangulation and ortho-rectification,
and the GF2 data has been preprocessed with the quick atmospheric correction (QUAC)
method [35] and geometrical rectification. We used the same settings for splitting the
training and test sets of the two datasets: 10% of the training set was randomly selected for
model validation and cropped to a size of 512 × 512 without overlap. Then, the training
set was cropped to the same size with an overlap rate of 0.5. The test set was cropped to
512 × 512 without overlap. We measured a number of different water-body area ratios per
tile in the two datasets. The distribution maps of the training and test sets for the number
of different area ratio of water-bodies are shown in Figure 7a,b.
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3.2. Evaluation Metrics

To compare results quantitatively, we used three evaluation indexes: Precision, Recall,
and intersection on union (IoU). They are defined as:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

IoU =
TP

TP + FP + FN
(7)

where TP, FP, and FN are the number of true positives, false positives and false negatives,
respectively. The precision index describes the accuracy of the prediction of the model and
the recall index reflects the recall rate of the water-body, while the IoU is the ratio between
the intersection of the pixels of water-bodies detected by the algorithm and the positive
pixels and the result of their union. We chose IoU as the main evaluation index.

3.3. Water-Body Segmentation Results

We compared the application of our MECNet on aerial and satellite imagery with
five classic and recent methods for general semantic segmentation, which were U-Net [9],
RefineNet [10], DeeplabV3+ [26], DANet [36], and CascadePSP [25]. Model performance
was compared between their accuracy metrics and through visual interpretation.
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3.3.1. The Aerial Imagery

Table 2 shows that our method achieves state-of-the-art accuracy. Our MECNet
outperformed the second-best method DANet 2.74% in IoU and 4.32% in recall, which
indicated that our method had sufficient advantages in detecting water-bodies and could
inspect more complex water samples. However, our model obtained 1.02% lower in
precision compared to the DANet. The reason might be that our method recognized some
non-water pixels on the edge of water-bodies as water-body pixels. Among methods with
similar structures, our MECNet far surpassed U-Net and its variant RefineNet with 5.06%
and 4.43% in IoU, which further demonstrated the effectiveness of the three modules we
proposed. In addition, our method improved by 3.64% in IoU compared with the latest
CascadePSP for target contour optimization. Notably, CascadePSP used the prediction
results of DeeplabV3+ as input, aiming to optimize the water-body contour extraction.

Table 2. The accuracy metrics of ours and other empirical networks using aerial imagery. The bold
format indicates the best results for each network in each evaluation metric.

Method Backbone Precision Recall IOU

U-Net - 0.9076 0.9374 0.8558
RefineNet resnet101 0.8741 0.9844 0.8621

DeeplabV3+ resnet101 0.9140 0.9417 0.8650
DANet resnet101 0.9259 0.9456 0.8790

CascadePSP DeeplabV3+&resnet50 0.9203 0.9409 0.8700
MECNet (ours) - 0.9157 0.9888 0.9064

Figure 8 shows the prediction results of different methods. The prediction result
produced by our MECNet (Figure 8h) is the closest to the ground-truth (Figure 8b). U-Net
(Figure 8c) recognized the shadow as the water-body in the first row and has difficulties
in extracting complex edges in the last row as DeeplabV3+ (Figure 8e) and cascadePSP
(Figure 8h). In addition, DeeplabV3+, DANet (Figure 8g) and cascadePSP easily identified
some non-water bodies as water bodies in the first and second row. RefineNet (Figure 8d)
performed poorly in extracting curved water-bodies and moist farmlands, and was com-
monly interfered by surrounding non-water bodies. For water-body samples with boats
in the second row, the other methods are affected, while our method can identify clearer
water body boundaries without being confused by the boats.

3.3.2. The Satellite Imagery

The same experiment is applied to the Gaofen2 satellite imagery to further verify
the performance of our MECNet. Our proposed method still achieves the best accuracy
in IoU (Table 3). Our MECNet surpassed U-Net, RefineNet, DeeplabV3+, DANet and
CascadePSP in precision, recall and IoU, except that DANet was slightly better and U-Net
was 1.26% higher in terms of recall. Figure 1 shows that the outline of water-bodies in
satellite imagery is clearer and simpler than that in aerial imagery, which may be the
reason why U-Net, a lightweight and straightforward network structure, could achieve
better results than RefineNet and DANet. U-Net was 0.96% and 0.48% higher than the two
methods respectively in IoU.
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Figure 8. Qualitative comparisons with other empirical networks on the aerial imagery. (a) Images. (b) Ground-truth.
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Table 3. Numerical comparisons with other empirical networks on the VHR satellite imagery. The
bold format indicates the best results for each network in each evaluation metric.

Method Backbone Precision Recall IOU

U-Net - 0.9119 0.9756 0.8916
RefineNet resnet101 0.9176 0.9578 0.8820

DeeplabV3+ resnet101 0.9379 0.9582 0.9010
DANet resnet101 0.9156 0.9658 0.8868

CascadePSP DeeplabV3+&resnet50 0.9378 0.9586 0.9013
MECNet (ours) - 0.9408 0.9630 0.9080
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Figure 9 shows the results of some representative water-body segmentations. The
water-body contour predicted by our MECNet (Figure 9h) was closest to the ground truth.
Some small and special water-body samples, such as small canals and paddy fields in
the first and third rows, which were missed out or detected with high errors by other
methods, were detected better by our MECNet. Meanwhile, our method clearly identified
the complex water-body boundary from the first to third lines. For the meandering water
flow, as shown in the fifth row of Figure 9, our method extracted the shadow and inaccurate
water-body edges much better compared to the RefineNet and DANet. In a large water
area, our method, DeepplabV3+, and CascadePSP could resist the influence of ripples or
waves while U-Net, RefineNet, and DANet were affected by them, as shown in the sixth
line. However, DeepplabV3+ and CascadePSP easily misrecognized shadows as seen from
the last line and was poor at identifying moist farmlands or swamps with small areas in
the third row.
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3.4. Ablation Studies

In this subsection, we first showed the effect of our proposed MECNet by fully analyz-
ing each part of our method on the performance. Then, we compared the performance of
differently designed LRFE sub-modules to find a suitable structure. Finally, we investigated
the effectiveness of each and combinations of the sub-modules of the MEC.

3.4.1. MECNet Components

In our proposed MECNet, the MEC module is designed to enhance the feature rep-
resentation ability at each scale. The MPF module is utilized at the final stage of decoder
to fully integrate the results of multi-scale prediction for the fine extraction of water-body
contour. And the DSFF is adopted to solve the semantic inconsistency of feature fusion
between the encoder and the decoder. In order to verify the performance of our pro-
posed modules, we conducted extensive experiments with different settings (Table 4). We
analyzed our methods from quantitative and qualitative perspectives.

Table 4. Our MECNet improve the performance of water-body segmentation on the VHR aerial
imagery dataset. Parameters and FLOPs mean the parameters and floating-point operations per
method. ‘M’: million, ‘B’: Billion.

Method Parameter (M) Flops (B) IoU

FCN-8s 15.31 81.00 0.8399
FCN + MEC 26.11 105.59 0.8930
MEC + MPF 35.46 254.29 0.8974

MEC + MPF + DSFF (MECNet) 30.07 185.58 0.9064

Our MECNet achieved significant improvements compared to FCN (Table 4). “FCN +
MEC” indicates that the MEC module is only used to replace the convolution layer of the
encoding stage in FCN. The “FCN + MEC” improved IoU by 5.31% compared to using FCN
alone. From the fourth and fifth lines in Figure 10, it can be observed that the FCN confused
some farmland with water-bodies, while an FCN with the MEC module overcomes this
challenge. In addition, using the MEC facilitates the identification of edge features from
complex water-bodies. These mean the MEC module can obtain more spatial information
and enhance the consistency between water and non-water bodies. The MEC with the
MPF, which is based on FCN with the MEC module, uses a decoder similar to the U-Net [9]
and utilizes the MPF module for multi-scale prediction. Compared with FCN and FCN
with the MEC, the design of the MPF module brought 5.75% and 0.44% improvement in
IoU respectively, which demonstrated the effectiveness of the MPF. The first and four lines
of Figure 10 shows that MEC with the MPF is capable of discriminating shadows. The
introduction of the DSFF module further improves the performance of our method. The
use of the DSFF module improved the IoU by 0.9% with fewer parameters and FLOPs.
It can be seen from the last line of Figure 10 that the DSFF module contributes to a little
improvement in the extraction of complex water edges.
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To understand the contribution of different modules we proposed in the accurate
extraction of the water-bodies, we visualized the feature maps at the last layer of the
decoder. We sequentially visualized the feature maps of the backbone FCN, “FCN + MEC”,
“MEC + MPF”, and “MEC + MPF + DSFF”, by taking the maximum response to the water
body features at each spatial location, as shown in Figure 11.

The backbone FCN has shown to be weak to distinct shadows (Figure 10, first and
third rows). It could be observed from Figure 11 that the FCN yielded a greater error
response for the shaded features. The introduction of MEC module identified the edges
of the water-body better. It also boosted the identification of aquatic plants, silt-obscured
water bodies and watered farmland. Introducing the extra MPF leads to a more accurate
delineation of water body edges, if we compare (d) and (e) in Figure 11. Finally, an extra
feature map fusion technique (DSFF) facilitates a more robust water detection, as can be
noticed in the last column of Figure 11.
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3.4.2. LRFE Sub-Module

To design and choose a suitable LRFE sub-module, we conducted extensive exper-
iments with FCN as the baseline. Table 5 shows the differences in performance of our
designed LRFE sub-modules in VHR aerial imagery. The three methods, i.e., FCN+DCAC-
large1, FCN+DCAC-large2 and FCN+DCAC-small (the different structures of LRFE have
been listed in Table 1), obtain similar accuracy, but FCN+DCAC-large2 has twice FLOPs
compared to others because this model has the largest number of parameters. FCN with
DCAC-small has a smaller receptive field than the others, but its accuracy is almost the
same as that of the other two DCAC models, which reveals that remote features has less
effects on the extraction of water information. FCN with JCC is close to the accuracy of
the DCAC model in IoU. Although the parameters of its model were relatively large, it
has only 55.29 GFLOPs. Considering the limited hardware resources, we use JCC in the
LRFE module.
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Table 5. The performance of differently designed LRFE sub-modules in VHR aerial imagery.

Method Parameters (M) FLOPs(G) IoU

FCN 15.31 81.10 0.8399
FCN+DCAC-large1 12.88 140.96 0.8801
FCN+DCAC-large2 13.39 248.30 0.8841
FCN+DCAC-small 12.70 106.57 0.8823

FCN+JCC 19.08 55.29 0.8816

3.4.3. MEC Module

Based on the observation in Section 2.2, we first separately analyzed the performance
of LFE, LRFE and CFE. Then we considered the effects of the two-by-two combinations
of these three modules. Finally, we studied the performance of their combination and the
impact of different combination ways.

As shown in Table 6, we first implemented FCN using the LFE sub-module, and the
IoU increased from 83.99% to 84.78%. The IoU of FCN with the LRFE was 4.17% higher
than the baseline. This illustrates that learning features from larger receptive field scenes
is more advantageous than learning from local receptive fields, which may be a more
important component of spatial feature extraction. FCN using CFE had an increase of
4.36% in the IOU compared to the baseline, which revealed that more robust features
could be obtained by learning the relationships between feature map channels. FCN with
the CFE was slightly higher than FCN using LRFE, which implied that learning channel
information was more effective than learning spatial information in feature extraction.
Furthermore, we examined the performance of the two-by-two combinations of three
sub-modules, including the combinations of LFE and LRFE, LFE and CFE, and LRFE and
CFE. These three different combinations had similar performance, as shown in Table 6. The
combination of LFE and LRFE was slightly better than their respective combination with
CFE. The reason may be that both LFE and LRFE are based on spatial relationships, while
the combination of LFE and CFE, and the combination of LRFE and CFE are combinations
based on different relationships. Finally, we investigated two ways of combination among
these three sub-modules (Figure 4). The MEC module used a parallel mode was better than
a cascade mode in the performance, corresponding to a 0.2% increase. Therefore, we used
MEC modules in a parallel mode.

Table 6. Detailed performance of MEC module with different settings. ‘(C)’ means the MEC module
adopts a cascade way for the three sub-modules. ‘(P)’ means the MEC module uses a parallel way for
the three sub-modules.

Method LFE LRFE CFE IoU

FCN 0.8399
FCN

√
0.8478

FCN
√

0.8816
FCN

√
0.8835

FCN
√ √

0.8857
FCN

√ √
0.8851

FCN
√ √

0.8855
FCN (C)

√ √ √
0.8910

FCN (P)
√ √ √

0.8930

4. Discussion

The boundary of water-bodies in VHR remote sensing imagery is irregular, unclear
and complex involving in various scenes. In view of these difficulties, our proposed MEC
module adopts three different feature extraction sub-modules to obtain more comprehen-
sive and richer information based on the spatial and channel correlation of feature maps at
each scale, compared with other methods mentioned in this paper. Our method is also ap-
plicable to other application scenarios, such as semantic segmentation and object detection.
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To obtain both high pixel classification accuracy and accurate location, a simple multi-
scale prediction fusion (MPF) module is designed to make full use of the prior knowledge,
benefiting from our proposed MEC module which provides rich and advanced water-body
features in complex remote sensing imagery. This simple and effective design is much
more efficient than designing a complex network independently, such as cascadePSP, and
will have more advantages in practical application.

We designed a semantic feature fusion module (DSFF) to improve the semantic consis-
tency between the encoder and decoder. This structure not only proved to be effective in
crop classification, but is also effective in water-body segmentation in VHR remote sensing
imagery. However, this design pays more attention to the global information of feature
maps, ignoring the influence of the spatial relationship between feature maps. This will be
a focus in our future works.

5. Conclusions

In this study, we innovate based on the encoding–decoding structure to improve fine
water-body contour extraction from VHR remote sensing images, including aerial images
and satellite images. Three modules are crucial in our method: (1) an MEC module, for
automatically extracting richer and more diverse features in the encoding stage and obtain
more advanced semantic information for feature fusion in the decoding stage; (2) an MPF
module, which attains the fine contour of the water-bodies; (3) a DSFF module, which
solves the problem of semantic inconsistency of feature fusion between the encoding stage
and the decoding stage. We carried out experiments on VHR aerial and satellite imagery,
respectively, and the experiments show that our method achieves state-of-the-art accuracy
as well as the best robustness in challenging scenarios. This novel design module for feature
extraction can be applied to other application scenarios, such as semantic segmentation
and object detection.
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