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Abstract: Object detection in remote sensing images (RSIs) is one of the basic tasks in the field of
remote sensing image automatic interpretation. In recent years, the deep object detection frameworks
of natural scene images (NSIs) have been introduced into object detection on RSIs, and the detection
performance has improved significantly because of the powerful feature representation. However,
there are still many challenges concerning the particularities of remote sensing objects. One of the
main challenges is the missed detection of small objects which have less than five percent of the
pixels of the big objects. Generally, the existing algorithms choose to deal with this problem by
multi-scale feature fusion based on a feature pyramid. However, the benefits of this strategy are
limited, considering that the location of small objects in the feature map will disappear when the
detection task is processed at the end of the network. In this study, we propose a subtask attention
network (StAN), which handles the detection task directly on the shallow layer of the network. First,
StAN contains one shared feature branch and two subtask attention branches of a semantic auxiliary
subtask and a detection subtask based on the multi-task attention network (MTAN). Second, the
detection branch uses only low-level features considering small objects. Third, the attention map
guidance mechanism is put forward to optimize the network for keeping the identification ability.
Fourth, the multi-dimensional sampling module (MdS), global multi-view channel weights (GMulW)
and target-guided pixel attention (TPA) are designed for further improvement of the detection
accuracy in complex scenes. The experimental results on the NWPU VHR-10 dataset and DOTA
dataset demonstrated that the proposed algorithm achieved the SOTA performance, and the missed
detection of small objects decreased. On the other hand, ablation experiments also proved the effects
of MdS, GMulW and TPA.

Keywords: remote sensing; object detection; deep learning; subtask; attention

1. Introduction

Object detection in remote sensing images (RSIs) [1] is always one of the research
hotspots of remote sensing technology. With the rapid development of remote sensing
technology [2–4], the quality of RSIs is constantly improved, and it is easier for researchers
to obtain. Remote sensing object detection has also played a more and more important role
in intelligent monitoring, urban planning, natural disaster assessment and other fields. In
the last ten years of research, many excellent algorithms have been proposed to handle
this task, mainly deep learning-based methods and traditional methods. These studies
have greatly promoted the development of remote sensing object detection technology and
brought considerable economic value in many application fields.

According to [1], the traditional methods of object detection in RSIs can be divided
into four main categories: template matching-based methods, knowledge-based methods,
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object-based image analysis (OBIA)-based methods and machine learning-based methods.
Template matching-based [5], knowledge-based [6] and OBIA-based [7] methods used to
be popular approaches, but they have received less attention since the machine learning
has become mainstream. Considering the existing machine learning-based detection
algorithms in RSIs, it is always treated as the classification task which contains two core
components: feature extractor and classifier. Almost all of the well-known artificial features
and classifiers have been introduced into the RSIs detection task. For example, histogram
of oriented gradient (HOG) [8,9], scale invariant feature transform (SIFT) [10] and steering
kernel [11] are adopted by many scholars; other features, such as Gabor feature [12],
gray-level co-occurrence matrix (GLCM) [13], bag of visual words (BoW) [13,14], etc.
are also getting a lot of attention. As for classifiers, support vector machine (SVM) and
its variants are the most commonly used ones [9,11,15,16]. In addition, other famous
classifiers have also been introduced into RSIs-based object detection, such as conditional
random field (CRF) [17–19], k-nearest neighbor (KNN) [20], expectation maximization
(EM) [21], AdaBoost [22], random forest [23], etc. Although the application of machine
learning technology has greatly promoted the development object detection in RSIs, these
algorithms usually handle only few categories and cannot cope with complex scenes due
to the limitations of artificial features.

Recently, deep learning technology has attracted more attention. Breakthroughs have
been made in many computer vision tasks since the publication of AlexNet [24] because
the deep features have stronger representation ability than artificial features. Due to the
excellent performance of deep learning in NSIs object detection [25–27], deep learning
technology was introduced to remote sensing object detection in recent years and gradually
became the mainstream [28,29]. On the one hand, the deep features extracted by deep CNN
are used to describe the detected candidates for further classification in some machine
learning-based methods. Some algorithms adopt existing CNN architectures directly to
extract deep features of remote sensing objects. For example, a pre-trained AlexNet model is
used to extract the deep features of the area surrounding an oil tank, in which the output of
the first linear layer of the AlexNet is used as the extracted feature [30]. In literature [31], the
fully convolutional network was combined with Markov random field to detect an airplane.
More typically, the algorithms in [32] were proposed to handle multi-class remote sensing
object detection, which included four steps: candidate region generation, feature extraction,
classification and bounding box fine tuning, and the deep CNN was used in the second
step. Some other scholars took the special characteristics of RSIs into account. For example,
a new rotation-invariant constraint based on existing CNN architectures was proposed
in [33] to handle the problem that objects show a variety of orientations in RSIs. On the
other hand, the mature deep object detection frameworks of NSIs were also introduced
into remote sensing object detection, including both two-stage framework and one-stage
framework. The R-CNN series [25], which has a clear step of region proposal generation,
is representative of two-stage algorithms. There are many algorithms of remote sensing
object detection that are based on R-CNN [34–37]. These algorithms make improvements
regarding the orientation and scale variations of remote sensing objects, which mainly
focus on the region proposal network (RPN). As for the one-stage frameworks, the most
famous algorithms are the YOLO series [26] and SSD series [27]. There are also many
improved versions based on these two frameworks which aim to remote sensing objects,
such as YOLO-based methods [38,39] and SSD-based methods [40–42].

The SOTA remote sensing object detection algorithms are almost based on mature deep
object detection frameworks, including one-stage framework and two-stage framework.
As a rule of thumb, the two-stage framework is more time consuming than the one-stage
framework, both in training and application. Considering that remote sensing image
processing is usually faced with massive data, this paper mainly focuses on the one-
stage framework.

Although the application of deep learning technology has made great progress in RSIs
object detection, there are still many challenges due to the characteristics of RSIs and many
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studies trying to solve them [38–42]. One of the main challenges are the missing detection
and inaccurate location of small objects. Remote sensing images from the same source have
a fixed resolution, which leads to the objects in RSIs having the same size in comparison
with reality. Therefore, the size of the target in RSIs varies greatly, and the pixel number of
a small object may be less than five percent of that of a large object. To handle this problem,
existing algorithms mainly adopt the combination of hierarchical feature maps, such as
in [38]; however, the effect is limited.

To improve the ability of accurate detection of small objects, a novel model is proposed
based on a multi-task and attention mechanism, named subtask attention network (StAN).
First, we treat the detection task as a subtask and build a semantic auxiliary subtask,
both are performed in two attention branches based on the multi-task attention network
(MTAN) [43]. Second, the two subtasks share the deep feature from a shared feature branch,
but the branch of detection subtask directly predicts on low-level features because small
objects disappear in space on high-level feature maps as the map size decreases, which
reduces the detection accuracy of small objects. Third, the high-level attention map of
the semantic auxiliary branch is used to guide the detection branch to produce the final
result; namely, the attention map guidance mechanism. In addition, the semantic auxiliary
branch is trained by classification loss while the detection branch is trained just like YOLO
v3 [44]. Fourth, the multi-dimensional sampling module (MdS), global multi-view channel
weights (GMulW) and target-guided pixel attention (TPA) are proposed as gain modules
for further improvement of the detection accuracy in complex scenes, and integrated into
StAN. In the proposed StAN, we handle the detection task on shallow layers of the neural
network to avoid the disappearance of small objects on feature maps. On the other hand,
another subtask branch, which uses high-level semantic features, is also used to ensure the
overall detection accuracy. It is well known that deep semantic features are beneficial to
object classification. Moreover, the neural structures commonly used for classification tasks
do not fit to remote sensing objects. Thus, we design three gain modules based on some
successful instances from literature, and integrate these modules into the shared feature
branch for further improvement.

The main contributions of this paper can be summarized as follows:

(1) Contrary to the existing algorithms, which combine hierarchical feature maps, we
conduct object detection directly on the shallow features for the problem of low
detection precision of small objects and propose the StAN model. In addition, we use
high-level semantic features in a subtask branch and aid the object detection through
an attention map guidance mechanism.

(2) In order to further improve the overall detection accuracy in complex remote sensing
scenes, we propose the MdS, GMulW and TPA modules and integrate them into StAN.

(3) Through a large number of comparative experiments, we prove that the performance
of the proposed algorithm reaches the SOTA level, especially for small objects. The
effect of gain modules has also been demonstrated by ablation experiments.

The rest of this paper is organized as follows: Section 2 describes the details of the
proposed StAN model and the three gain modules. Section 3 introduces the datasets and
experiment settings. Section 4 shows the experimental results on the NWPU VHR-10
dataset and DOTA dataset which demonstrate the performance of the proposed algorithm
and the effect of gain modules. Section 5 makes a conclusion of this paper.

2. Methodology

The proposed algorithm is based on the multi-task and attention mechanism which
refer to MTAN framework [43]. On the other hand, our object detection mechanism is
based on the one-stage framework YOLO v3, which has no extraction process of region
proposals [44]. The overall architecture of the proposed StAN is shown in Figure 1. The
implementation details of the proposed algorithm are covered in the remaining part of this
section. First, we introduce some brief basic information about the MTAN framework and
YOLO v3 framework for understanding of the proposed algorithm. Second, we illustrate
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the overall framework of the proposed StAN and describe the details of each part. Third,
we detail the MdS, GMulW and TPA modules and integrate them into StAN, which is then
named StAN-Gain.
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Figure 1. The overall architecture of the proposed StAN model.

2.1. Preliminaries
2.1.1. Multi-Task Attention Network (MTAN)

The MTAN framework is a commonly used multi-task framework which allows
training task-specific attentions [43]. The overall architecture of MTAN is shown in Figure 2;
it consists of a shared network and several subtask branches. The shared network provides
shared global features to each task, while the soft-attention module forms subtask branches
that handle their own task. In literature [43], authors introduced this multi-task framework
by semantic segmentation and depth estimation, in which the shared network was a SegNet
because both subtasks were pixel-level prediction tasks. However, for our study, we build
two subtasks: semantic auxiliary subtask and detection subtask, which are quite different
from the subtasks in [43]. We adopt ResNet [45] as the backbone of our shared feature
network (Figure 1). In addition, the subtasks of our model are not independent of each
other, and the semantic auxiliary branch provides auxiliary information for the detection
branch by an attention map guidance mechanism. More implementation details of the
StAN model are described in the following sections.
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2.1.2. YOLO v3

YOLO v3 [44] is one of the one-stage detection algorithms. In contrast to the two-stage
detection algorithms that propose object candidates first, the YOLO v3 algorithm assumes
that the objects may exist at every position in the image. First, the YOLO v3 algorithm
generates nine anchor sizes through k-means clustering on the ground-truth bounding
boxes of the training data. The nine anchor sizes are then used as bounding box priors to
handle the location prediction during detection. Second, a full convolution neural network
(FCN) is used to extract deep features. Third, the nine anchors are divided into three
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groups corresponding to three prediction modules after the FCN. The outputs of each
prediction module are m channel score maps, which means that we can obtain m scores
for each location. In the original design, m = 3× (class_cnt + 4 + 1), in which 3 means
the anchor count and 4 corresponds to the bounding box offset, while 1 means objectness
prediction that is used to judge whether here is an object. According to the m scores, for
each location in the output map, it can be determined whether there is an object, and the
bounding box can be calculated by offset and anchor priors. In addition, the bounding box
will be mapped to the original image as the final location prediction.

Considering the detection task in the proposed StAN model, we adopt the detection
strategy of YOLO v3. First, nine anchor sizes are obtained from the training dataset,
exactly like what YOLO v3 does. Second, deep features are extracted by the shared feature
network of the StAN model. Third, the prediction operate is performed by the detection
branch of the StAN model. In contrast to YOLO v3, the anchors of our algorithm are
not divided into three groups for simplicity. Thus, the count of output score maps is
m = 9× (class_cnt + 4 + 1) in our model.

2.2. Subtask Attention Network

In the architecture of StAN (illustrated in detail in Figure 3), ResNet [45] is adopted
to extract shared features for our detection task. The semantic auxiliary branch contains
seven attention blocks, which provide two predictions of object classification in different
depth, and the first prediction integrates the prediction information from the higher one.
As for the detection branch, which contains four attention blocks based on low-level
features, it also provides two predictions for final detection results and adopts the same
integration strategy as the semantic auxiliary branch. In addition, the attention map
guidance mechanism is applied for the detection branch, in which both outputs of the
semantic auxiliary branch are used to guide the detection subtask. The details of the
architectures of Res block, pre_block and attention block are shown in Figure 4. For
the Res block, we adopt a simple form containing one 1× 1 convolution layer and one
3× 3 convolution layer, and the pre_block contains three 1× 1 convolution layers and
two 3× 3 convolution layers, in which m = anchor_cnt× (class_cnt + 1) for classification
and m = anchor_cnt× (class_cnt + 4 + 1) for detection. The anchors are obtained just as
YOLO v3 [44] and anchor_cnt is set to 9. Moreover, the 1 corresponds to the background
and the 4 means parameters of bounding box. As for the attention block, the task-specific
attention module from [43] is adopted here but the places of r and e are switched. The
features of the previous block are fused with other features before input, so it is necessary
to further mine features through a 3× 3 convolutional layer before generating a mask. In
addition, the input 2 may be a shared feature or the output of pre_block, and the pooling
layer will be removed if the attention block takes the output of pre_block as input.
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In order to drive a model training, the loss function consists of four parts correspond-
ing to four outputs of two subtask branches. The loss functions of the same subtask branch
are identical, so we describe the loss function form only to consider different subtasks. For
the whole StAN model, the loss function is formulated as follows:

Ltotal(X, T1:N) =
N

∑
k=1

λkLk(X, Tk) (1)

In which X means input image and Tk means ground-truth of subtask k. For the
proposed StAN model, N equals to 2, which corresponds to a semantic auxiliary subtask
and a detection subtask. Furthermore, λ1 is set to 1.52, while λ2 is set to 5.48, which
aims to balance the loss value of the two subtasks. When we define the one-hot label
of ground-truth as p and prediction as p̂, then the loss of semantic auxiliary subtask is
as follows:

Ltask1 = −∑
i

∑
c∈class

pi(c) log p̂i(c) (2)

Which is the standard cross entropy loss. As for the detection subtask, the loss function
contains Lcls and Lreg that correspond to the object classification and the bounding box
regression, which is:

Ltask2 = (1− µ)Lcls(p, p̂) + µLreg
(
t, t̂
)

(3)

In the formulation (3), p and p̂ mean the ground-truth and prediction of object category,
while t and t̂ correspond to the object location, and µ is set to 0.5 here. The Lcls(p, p̂) is
cross entropy loss like in Formulation (2), and Lreg

(
t, t̂
)

is defined as follows:

Lreg
(
t̂, t
)
= ∑

i

(
ti
x − t̂i

x

)2
+
(

ti
y − t̂i

y

)2
+

(√
ti
w −

√
t̂i
w

)2
+

(√
ti
h −

√
t̂i
h

)2
(4)

Which is the L2 loss of four bounding box parameters, x, y, w, h. The width and height
of the bounding box are treated by square root with reference to YOLO [26].

2.3. Gain Modules for StAN Enhancement

The ResNet is designed for NSIs classification, which does not consider the character-
istics of remote sensing objects, such as the variety of direction and size. To further improve
the overall detection accuracy of the StAN model, three gain modules are proposed and
integrated into the shared feature network of the StAN, including multi-dimensional sam-
pling module (MdS), global multi-view channel weights (GMulW) and target-guided pixel
attention module (TPA). The MdS is designed for multi-scale features extraction. Another
two modules are based on attention mechanism. The attention mechanism has been intro-
duced into remote sensing object detection in recent years by many scholars [46–49]. In
contract to existing algorithms, which use single type attention, several attention modules
are embedded into our model. First, the attention module in subtask branches can learn
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task-related features by applying a soft attention mask to the features from the shared
network. Second, the GMulW module brings both channel and spatial attentions. Third,
the TPA module focuses on pixel-level attention which is obtained by supervised learning.
The integration of different level attentions is more conducive to the complex remote
sensing object detection task. The enhancement version of StAN is denoted as StAN-Enh
and the details of these modules are described as follows.

2.3.1. Multi-Dimensional Sampling Module

Considering a drastic change in the size of an object, it is reasonable to use a multi-
dimensional convolution kernel to extract the object features. Inspired by the inception
module [50], we designed the MdS module (Figure 5). In the MdS module, dilated convo-
lution [51] can obtain a larger view field, while depthwise separable convolution [52] can
focus on a single channel of feature maps. In addition, the global average pooling passes
global information to the next layer. To integrate the MdS module into the StAN model,
we replace the Res block and its following pooling layer with the architecture in Figure 6.
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2.3.2. Global Multi-View Channel Weights Module

The GMulW module is integrated into the Res block (Figure 7), in which F̃ = F×Mc×Ms,
and the operator means element-wise multiplication. The Mc and Ms refer to outputs
of the multi-view attention module and spatial attention module, which are detailed in
Figure 8.
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The design of GMulW is inspired by the CBAM module [53], which constructs channel
and spatial attention at the same time. In literature [54], the EAM module is designed
for remote sensing scene classification, which is also based on the CBAM but the method
of combining two kinds of pooling features is different. However, the channel attention
module of both CBAM and EAM adopts maximal pooling to generate attention, and this
directly compresses each channel to a single value. Such an operation results in the loss
of much important information, and it is sensitive to noise with a large value. We replace
the maximal pooling with the sparsity sensitive channel weighting module [55], which
generates the channel weighting based on the sparsity of feature maps. In addition, the
merge operation between different branches of the channel attention module is changed to
be consistent with spatial attention, which means a concatenate operation. As for spatial
attention, we keep the same form as CBAM. Furthermore, the parallel arrangement of
attention modules is adopted in the GMulW. In fact, the channel-first order is slightly better
according to [53], but it is not what we care about because the arrangement of attention
modules has little effect.

2.3.3. Target-Guided Pixel Attention Module

The TPA module is designed based on the MDA-net in SCRDet algorithm [56], which
is an attention mechanism based on supervised learning. The supervised pixel attention is
helpful to detect small and disorderly objects by suppressing noise and highlighting object
features, which is suitable for remote sensing object detection. However, the MDA-net
estimates both foreground and background attention scores which may interfere with each
other because they are mutually exclusive. Therefore, we only retain the estimate of the
foreground attention (Figure 9).
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To train the TPA module, the pixel-wise softmax cross-entropy loss function is cal-
culated between both foreground and background attention scores and the binary map
generated from ground-truth, which is formulated as follows:

Lattention = − λ3

hw
(1− pij)

θ
2

∑
c

αc

h

∑
i

w

∑
j

tij log pij (5)

where pij refers to attention score and tij corresponds to a pixel in the binary map. The λ3
is set to 0.58, which corresponds to the subtask loss weights λ1 and λ2. In order to balance
the contributions of the positive and negative pixels, α is set to 0.25 for background pixels.
The factor θ is set to 2 here to adjust the contribution of hard pixels and easy pixels.

3. Dataset and Experimental Settings
3.1. Dataset Description

To verify the performance of the proposed algorithm, we selected the NWPU VHR-
10 [57] and DOTA [58] datasets for experiments. The NWPU VHR-10 dataset contains
10 categories of labeled objects from 800 images cropped out from the Google Earth and
Vaihingen datasets. In the experiment, the dataset is divided into a training set, verification
set and test set according to the ratio of 3:1:1, which is the same as that in literature [59].
DOTA consists of 2806 aerial images and contains 15 categories of labeled objects. The
size of the aerial images is from 800 × 800 pixels to 4000 × 4000 pixels, and the images
contain a variety of objects of different scales, orientations and shapes. The DOTA dataset
is divided into a training set, verification set and test set according to the ratio of 4:1:1. In
addition, the horizontal bounding box is selected as a location ground-truth.

3.2. Evaluation Indicator

Just like most object detection algorithms, the average precision (AP) and mean AP
(mAP) are selected here to evaluate the proposed algorithm. The AP calculates the average
value of precision when the recall value changes from 0 to 1, which is also known as
the area under the PRC. As for mAP, it calculates the mean value of AP over all object
categories. These two evaluation indicators are defined as follows:

AP =
∫ 1

0
P(R)dR (6)

mAP =
1

Ncls

Ncls

∑
i=1

APi (7)

To calculate the selected AP and mAP, we need to use four evaluation components
from the confusion matrix in Table 1 to calculate the precision and recall as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Table 1. The Confusion matrix.

Predict

Actual
0 1

0 true negative (TN) false negative (FN)

1 false positive (FP) true positive (TP)
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Considering the object detection scene, if the intersection over union (IoU) between
the detected bounding box and the truth bounding box is greater than 0.5 and the category
prediction of this bounding box equals to its ground-truth, then this detection result is
approved as TP. Detected bounding boxes other than TP are approved as FP. The missed
detection objects are considered as FN. As for the TN, it is not meaningful for an object
detection task. In addition, no more than one detected bounding box is taken as TP when
there are several detected bounding boxes meeting the IoU threshold, and he other detected
bounding boxes are considered as FP.

Moreover, we calculate the average IoU between the detection bounding box and the
corresponding ground-truth to evaluate the location accuracy.

3.3. Baseline Method

On the NWPU VHR-10 dataset, the performance of the proposed algorithm is com-
pared with both traditional algorithms and deep learning algorithms, which include
SSCBoW [60], COPD [15], transferred CNN [57], RICNN [57], RP-Faster R-CNN [61],
SSD512 [27], DSOD300 [62], deformable R-FCN [59], Faster R-CNN [63], PSB [64], SAP-
Net [65] and deformable faster R-CNN [66]. As for the DOTA dataset, only several deep
algorithms are selected for comparison, including SSD [27], YOLO v2 [67], R-FCN [68],
YOLO v3 [44], R-DFPN [69], RRPN [61,70] and RoI Transformer [71], ICN [72]. In addition,
the result of YOLO v3 [44] and results from [73] are selected for comparison, to verify the
performance of location accuracy of the proposed algorithm.

3.4. Implementation Details

The proposed algorithm was implemented by Pytorch framework and executed on a
windows computer with AMD Ryzen 7 2700 3.2 GHz Eight-Core Processor and GeForce
GTX 1080 GPU with 8 GB memory, CUDA 9.0, cuDNN 9.0.

The parameters of our models were initialized by the Kaiming strategy [74]. The
models were trained end-to-end by using the Adam [75] algorithm as an optimizer, where
the learning rate was fixed to 0.0001 and the default values were adopted for other Adam
hyper-parameters. The hyper-parameters in the loss function are mentioned above. In
addition, the batch size is set to 8 for both datasets considering the limitation of the
GPU memory.

During training, all the images were scaled to 608 × 608 and the RandomChoice
operate was applied to each image for preprocessing. The adopted data augment strategies
included: random mirror flips, random rotation (θ ∈

[
−12

◦
, 12

◦]
), random shift (trans-

lation range was 20 px), random Gaussian blur (σ2 ∈ [0.5, 1.0]), random adjustment of
exposure and saturation (1.0 ∼ 1.5 times of original image).

4. Results

We trained both the proposed StAN and StAN-Enh models on the NWPU VHR-10 and
DOTA datasets. Some of the test results of the StAN model on the NWPU VHR-10 dataset
are shown in the Figure 10, while the results of the StAN-Enh model on both datasets are
shown in Figure 11. As the figures show, the proposed algorithm can detect most objects,
no matter if large or small. Moreover, we show some results of YOLO v3 and the proposed
StAN in Figure 12 for comparison. The results show that the performance in small object
detection of the proposed StAN is perceptibly improved. Below, we quantitatively compare
the proposed algorithm and the baseline methods and present an ablation experiment on
the proposed gain modules.
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4.1. Quantitative Comparison on NWPU VHR-10 Dataset

To prove the effectiveness of the proposed StAN model, we compare it with 11 existing
algorithms on the NWPU VHR-10 dataset, in which SSCBoW and COPD are machine
learning methods, while the other ones are based on deep learning technology. The nine
deep learning-based methods include both SSD-based one-stage algorithms [27,62] and R-
CNN-based two-stage algorithms [61,63–65]. These deep learning-based methods represent
the SOTA in recent years. The AP values of each category and the mAP value are shown
in Table 2, in which PL means plane, SH means ship, ST means storage tank, BD means
baseball diamond, TC means tennis court, BC means basketball court, GT means ground
track field, HA means harbor, BR means bridge and VE means vehicle. Of note, the values
in Table 2 are magnified 100 times. As the results show, the proposed StAN and StAN-Enh
achieve the SOTA performance. The mAP value of the StAN model is about 7% lower than
the one of SAPNet, because the SAPNet adopts a series of special structures for multi-scale
feature fusion, while the shared feature network of the StAN model just contains a basic
residual structure. As for the enhancement version with the gain modules, its mAP value
is only 0.3% lower than the one of SAPNet. Considering different categories of the NWPU
VHR-10 dataset, the storage tank and vehicle are the two categories of small objects. For the
storage tank, both StAN and StAN-Enh achieve the best performance and the AP values
are significantly higher than with other algorithms. For the smallest vehicle, StAN-Enh
performs much better than the other algorithms, for example, the AP value of StAN-Enh is
8.7% higher than the one of SAPNet, which performs best at comparison algorithms. Such
results show the success in small object detection based on our strategy that handles the
detection task in low-level features. On the other hand, the proposed StAN-Enh performs
worse on big objects compared to SAPNet. There are two possible reasons for such results.
First, the multilayer RPNs of SAPNet can generate candidate boxes that are more favorable
to the larger objects. Second, the nine anchors of our algorithms are obtained through
k-means clustering on the ground-truth bounding boxes of the training data, and the
proportion of small objects is higher than the one of large objects in the training set, which
causes the anchor priors to favor small size.

Table 2. Results of the Proposed Models and Other Baseline Methods on NWPU VHR-10.

Method
AP for Each Target Category mAP (×100)

PL SH ST BD TC BC GT HA BR VE

SSCBoW [60] 50.61 50.84 33.37 43.49 0.33 14.96 10.07 58.33 12.49 33.61 30.81
COPD [15] 62.25 68.87 63.71 83.27 32.08 36.25 85.31 55.27 14.79 44.03 54.58

Transferred CNN [57] 66.10 56.90 84.30 81.60 35.00 45.90 80.00 62.00 42.30 42.90 59.70
RICNN [57] 88.35 77.34 85.27 88.12 40.83 58.45 86.73 68.60 61.51 71.10 72.63

R-P-Faster R-CNN [61] 90.40 75.00 44.40 89.90 79.00 77.60 87.70 79.10 68.20 73.20 76.50
SSD512 [27] 90.40 60.90 79.80 89.90 82.60 80.60 98.30 73.40 76.70 52.10 78.40

DSOD300 [62] 82.70 62.80 89.20 90.10 87.80 80.90 79.80 82.10 81.20 61.30 79.80
Deformable R-FCN [59] 87.30 81.40 63.60 90.40 81.60 74.10 90.30 75.30 71.40 75.50 79.10

Faster R-CNN [63] 94.60 82.30 65.32 95.50 81.90 89.70 92.40 72.40 57.50 77.80 80.90
PSB [64] 90.70 80.60 80.30 89.90 75.50 81.60 86.50 78.50 77.20 71.00 81.20

SAPNet [65] 97.80 87.60 67.20 94.80 99.50 99.50 95.90 96.80 68.00 85.10 89.20

StAN(Ours) 95.86 70.31 96.17 87.43 86.22 80.48 99.48 85.93 41.20 78.53 82.16
StAN-Enh(Ours) 94.80 79.10 98.20 96.70 89.10 89.60 93.50 91.00 62.70 93.80 88.9

In addition to the AP and MAP values, we calculated the average IoU of the StAN
model and compared it with the algorithms in [73]. As shown in Table 3, the proposed
StAN model achieves a higher location accuracy, which further proves the correctness of
the detection task on the shallow layer features. The F ↑ in Table 3 means the growth
value compared to baseline methods.
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Table 3. Location Accuracy of StAN and Other Baseline Methods on NWPU VHR-10.

Method Average IoU (%) F↑ (%)

YOLOv3 [73] 72.67 4.14
YOLOv3 –DAA [73] 73.83 2.98

MSENet [73] 73.70 3.11
MSENet-DAA [73] 74.34 2.47

StAN(Ours) 76.81

Table 4 shows the average running time of some comparison algorithms and our
model, in which the results of comparison algorithms are obtained from literatures [57,59].
The SSCBow and COPD are machine learning-based algorithms and tested on a PC with
two 2.8 GHz 6-core CPUs and 32 GB memory [57]. Other algorithms are deep learning-
based algorithms tested on the PC with NVIDIA GPUs. According to the result, our model
is faster than most comparison algorithms, no matter if machine learning-based algorithms
or deep learning-based ones. The deformable R-FCN obtains the best computation perfor-
mance and only needs an average of 0.201 s for each test image. However, considering
that GTX 1080 Ti improves overall performance by more than 30% over the GTX 1080, our
algorithm’s time cost is generally acceptable.

Table 4. Computation Time Comparisons between StAN and Some Baseline Methods.

SSCBow [60] COPD [15]
Transferred
CNN [57] RICNN [57] Deformable

R-FCN [59] StAN-Enh

Average running time
per image (second) 40.32 1.07 5.24 8.77 0.201 0.52

GPU / / GTX Titan X GTX Titan X GTX 1080 Ti GTX 1080

4.2. Quantitative Comparison on DOTA Dataset

Based on the DOTA dataset, we compared the proposed models with eight deep
learning-based algorithms. The mAP values of each algorithm are shown in Table 5, and
the values are magnified 100 times. F ↑ means the growth value of the proposed models
compared to the baseline methods. As shown in Table 5, the mAP value of the StAN model
is just below RoI Transformer and ICN. As for StAN-Enh, its mAP value is 2.15% lower
than the one of ICN. The proposed algorithm performs better on small objects but has
limitations on the large objects, as can be seen in Table 2. The DOTA dataset contains more
categories of large objects, such as a tennis court, soccer ball field and ground track field.
Therefore, the mAP value is more reflective of the performance of detecting large objects,
which may be a partial reason why the mAP value of the proposed StAN-Enh is lower.
In addition, the ICN are two-stage detection algorithms and our proposed models have
exceeded all the one-stage algorithms used for comparison.

Table 5. Results of StAN and Other Baseline Methods on DOTA.

Method mAP(×100) F↑ (StAN) F↑ (StAN-Enh)

SSD [27] 10.94 51.46 59.36
YOLOv2 [67] 39.20 23.20 31.10
R-FCN [68] 47.24 15.16 23.06

YOLOv3 [44] 60.0 2.4 10.30
R-DFPN [69] 60.67 1.73 9.63
RRPN [70] 61.01 1.39 9.29

RoI Transformer [71] 69.56 −7.16 0.74
ICN [72] 72.45 −10.05 −2.15

StAN (Ours) 62.4
StAN-Enh (Ours) 70.30
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We also calculated the average IoU of the StAN based on the DOTA dataset and
compared it with YOLO v3. According to the result, our detection algorithm has a better
location accuracy (Table 6).

Table 6. Location Accuracy of StAN and YOLO v3 on DOTA.

Method Average IoU (%) J ↑(%)

YOLOv3 [44] 68.00 3.23
StAN (Ours) 71.23

4.3. Ablation Experiment

In this Subsection, we show the results of the ablation experiment proving the effective-
ness of the proposed gain modules. The results on the NWPU VHR-10 dataset are shown
in Tables 7 and 8, and results on the DOTA dataset in Tables 9 and 10. The results show
that all the gain modules can bring performance improvements of both detection ability
and location accuracy. The TPA module, especially, makes the best improvement, because
it is based on supervised learning, which can effectively suppress the background noise.

Table 7. Ablation Experiment on NWPU VHR-10.

Method mAP (×100)

StAN 82.16
StAN + MdS 83.0

StAN + MdS + GMulW 85.6
StAN + MdS + GMulW + TPA 88.9

Table 8. Ablation Experiment of Location Accuracy on NWPU VHR-10.

Method Average IoU (%)

StAN 76.80
StAN + MdS 76.87

StAN + MdS + GMulW 76.92
StAN + MdS + GMulW + TPA 76.96

Table 9. Ablation Experiment on DOTA.

Method mAP (×100)

StAN 62.40
StAN + MdS + GMulW 64.70

StAN + MdS + GMulW + TPA 70.30

Table 10. Ablation Experiment of Location Accuracy on DOTA.

Method Average IoU (%)

StAN 71.23
StAN + MdS + GMulW 71.31

StAN + MdS + GMulW + TPA 71.40

5. Conclusions

In this paper, the StAN model, designed based on the multi-task framework MTAN,
is proposed to improve the missing detection of small objects in remote sensing object
detection task. The StAN contains one shared feature branch and two subtask attention
branches of a semantic auxiliary subtask and a detection subtask. In contrast to the general
strategy of existing algorithms, such as SAPNet and ICN which handle the drastic scale
variation by multi-scale feature fusion, the detection subtask uses only low-level features
considering small objects. Then the semantic auxiliary branch here is used to keep the
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identification ability by the attention map guidance mechanism, which benefits from the
high-level semantic features. Furthermore, three gain modules are proposed to make
further improvement; namely, MdS, GMulW and TPA. These modules are integrated into
the StAN model which is then named StAN-Enh. The results of experiments on two
common datasets demonstrate that the proposed StAN and StAN-Enh achieve the SOTA
performance. Although the mAP of our model is slightly lower than the one of SAPNet
and ICN, the ability of small object detection is significantly improved. On the other hand,
the calculation of the average IoU proves that the handle detection task on a shallow layer
of a deep network is beneficial to accurate location.

Although the proposed algorithm performs well on small objects, it has some limita-
tions on large objects. The reason for this may be that we adopt the same anchor setting
as YOLO v3, which is unable to cope with such a drastic scale change. In the future work,
we will try to combine the proposed algorithm with the two-stage detection framework
which uses a region proposal network (RPN) to generate candidate boxes rather than an
anchor. The challenge is in the control of the increase of time consumption. Moreover, the
feature pyramid-based multi-scale feature fusion will be considered in the RPN design to
improve the processing performance of multi-scale objects, which was demonstrated to
be effective by both SAPNet and ICN. On the other hand, the two-stage frameworks are
generally more time consuming than the one-stage frameworks. However, our one-stage
model has worse time efficiency than the two-stage deformable R-FCN that takes a deeper
ResNet as a backbone. The efficiency optimization of the gain modules and the subtask
branch is therefore one of our future goals.
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