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Abstract: The interferometric synthetic aperture radar (InSAR) technique is widely adopted for
detecting and monitoring landslides, but its effectiveness is often degraded in mountainous terrains,
due to geometric distortions in the synthetic aperture radar (SAR) image input. To evaluate the
terrain effect on the applicability of InSAR in landslide monitoring, a variety of visibility evaluation
models have been developed, among which the R-index models are quite popular. In consideration
of the poor performance of the existing R-index models in the passive layover region, this study
presents an improved R-index model, in which a coefficient for improving the visibility evaluation in
the far passive layover regions is incorporated. To demonstrate the applicability of the improved
R-index model, the terrain visibility of SAR images in Fengjie, a county in the Three Gorges Reservoirs
region, China, is studied. The effectiveness of the improved R-index model is demonstrated through
comparing the visibility evaluation results with those obtained from the existing R-index models
and P-NG method. Further, the effects of the line-of-sight (LOS) parameters of SAR images and the
resolution of the digital elevation model (DEM) on the terrain visibility are discussed.

Keywords: InSAR; improved R-index model; terrain visibility; landslide monitoring

1. Introduction

Landslides are one of the most destructive and recurrent geohazards around the
world, causing huge economic losses and casualties every year [1]. The catastrophic Mud
Creek landslide, occurred on May 20, 2017 along the rugged coast of Big Sur, California,
USA, destroyed over 400 m of scenic California State Highway 1 [2]. The Baige landslide,
which took place on October 10, 2018 at the border between Sichuan Province and the
Tibet Autonomous Region in China, blocked the Jinsha River, with a direct economic loss
of 6.8 billion RMB [3]. The Jichang landslide, occurred on July 23, 2019 in Shuicheng
County (Guizhou Province, China), buried 27 buildings, with 42 fatalities and nine people
missing [4]. Hence, the effective detection and monitoring of landslides plays a vital role in
the risk reduction in the mountainous region.

Landslide activity, in most cases, can be assessed by detecting and monitoring the
deformations on the ground surface. The traditional means to measure landslide de-
formations include geomorphologic evidences and in-situ observation tools [5–8]. Field
investigations and in-situ observations with total stations, inclinometers, extensometers,
and global positioning systems (GPS) have high accuracy but can only acquire data from
discrete ground points. Thus, these traditional means are not very suitable for landslide
monitoring in large areas. Optical remote sensing allows rapid large-area monitoring of
landslide deformations through interpretation of ground surface features [9]. However, the
quality of the input optical images can be highly dependent upon the external conditions
(e.g., light, weather, and atmosphere); and, this technique can hardly detect the subtle
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deformation of slow-moving landslides. The interferometric synthetic aperture radar (In-
SAR) technique can address the aforementioned limitations, and could be adopted for the
landslide monitoring in a large area while detecting subtle ground deformations with high
precision [10].

Over the past two decades, the InSAR technique, particularly the time series InSAR,
has been successfully applied to a range of landslide monitoring and behavior analysis
studies [11,12]. The previous analyses illustrate that the InSAR technology not only can
help define the boundaries of landslides, but also has the capability of monitoring the
cumulative deformations of landslides over a long time period [13–16]. On the basis of
the time series of the displacement monitored with InSAR, the correlations between the
landslide displacement and the triggering factors (e.g., rainfall intensity, reservoir water
level, and earthquake magnitude) have been further studied [17–19].

Note that although the technique of InSAR has been extensively adopted for detecting
and monitoring landslides, its effectiveness can be degraded in mountainous terrains, due
to geometric distortions in the synthetic aperture radar (SAR) image input [20]. According
to the engineering practices in the Three Gorges Reservoirs region in China, where frequent
landslides have been reported over the past two decades [1], lots of the reported landslides
are located in the geometric distortion areas of SAR images and the direction application
of the InSAR technology to the monitoring of these landslides would be problematic. To
avoid this problem, SAR images with good visibility are usually selected, according to the
location of the monitoring area, in the landslide monitoring. To this end, a variety of terrain
visibility evaluation models, which can help identify the geometric distortions in the SAR
image, have been advanced [21–28].

Among the various visibility evaluation models, the R-index model proposed by Notti
et al. is relatively popular [22]. The R-index, which is calculated based on the cosine
of the angle between the local terrain surface and the radar beam, has been successfully
adopted to evaluate the impact of the local terrain on the visibility of SAR images at a
series sites [24,26,29,30]. It must be noted that the cosine value of this local angle could
only represent the geometric relationship between the local terrain and the SAR satellite;
whereas, the influence from the adjacent terrain, such as layover and shadow, cannot be
included, as detailed in Cigna et al. [26]. Thus, the R-index model could not be sufficient
to identify all geometric distortions [24,26,31]. In such a situation, a modified R-index
model was later developed in Cigna et al. [26] and Notti et al. [27], in which the layover
and shadow coefficients are incorporated. However, the far passive layover phenomenon
in the layover regions of SAR images may not be identified with the modified R-index
model [26,31]. To address this limitation of the modified R-index model, a coefficient,
which is based on the formation mechanism of the far passive layover phenomenon, is
established in this study for recognizing the far passive layover regions of SAR images,
and then an improved R-index model is developed through incorporating this coefficient
into the existing R-index models (in terms of the original and modified R-index models).

The rest of this paper is organized as follows. First, the formulation of the improved
R-index model is presented. Second, the terrain visibility of SAR images in Fengjie, a
county in the Three Gorges Reservoirs region, China where 1550 landslides have been
identified, is studied, and comparative analyses are conducted to depict the effectiveness
of the improved R-index model. Third, the effects of the line-of-sight (LOS) parameters (i.e.,
incidence angle and azimuth) of SAR images and the resolution of the digital elevation
model (DEM) on the terrain visibility are discussed. Finally, the concluding remarks
are provided.
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2. Formulation of the Improved R-Index Model

In this section, the geometric distortions in the SAR images and the formulation of
the existing R-index models are briefly introduced; then, the formulation of the improved
R-index model, along with that of the new coefficient for identifying the far passive layover
regions of SAR images, is presented.

2.1. The Geometric Distortions in SAR Images

Side-view imaging is often adopted to generate SAR images and the visibility of the
topographic surface to the SAR satellite sensor relies upon the acquisition direction of
the adopted satellite radar with respect to the imaged terrain [20,31,32]. According to the
geometric relationship between the orientation parameters of the satellite LOS (in terms of
incidence angle and azimuth) and the characteristics of the local terrain (in terms of slope
and aspect), three types of geometric distortions can be induced in the SAR images, as
shown in Figure 1.
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In the coverage area of the satellite SAR, the signals reflected from the flat terrain
are received by the radar and the topographic lengths are mapped in the SAR images
according to the cosine value of the angle (γ1) between the LOS of the satellite radar (A’B’)
and the terrain (AB) (see Figure 1a). For a slope dipping towards the satellite radar, when
the slope angle of the terrain (α) is smaller than the incidence angle of the satellite LOS
(θ) (i.e., 0 < α < θ), the cosine of the angle (γ1) between the LOS of the radar (B’C’) and
the terrain (BC) decreases with the terrain slope (α). Compared to the flat area (AB), the
mapped length (B’C’) of the slope area (BC) in the SAR image is compressed (see Figure 1a),
this phenomenon is called foreshortening. Whereas, when the terrain slope (α) is greater
than the incidence angle of the satellite LOS (θ) (i.e., α > θ), the signals reflected from the
top of the slope (e.g., point F) are received earlier (by the radar) than those reflected from
the bottom of the slope (e.g., point E), as shown in Figure 1b. Thus, the top of the slope is
mapped earlier in the SAR image than the bottom of the slope, this phenomenon is active
layover. Due to the influence of the active layover (EF), the adjacent areas (DE and FG),
which cannot be normally imaged in the SAR image [28,32], are known as the passive
layover regions. According to the distance measured from the region to the satellite, the
near-satellite area (DE) is defined as the near passive layover region and the far-satellite area
(FG) is defined as the far passive layover region (see Figure 1b). For a slope dipping away
from the satellite, when the slope angle of the terrain (α) is greater than the complementary
angle of the incidence angle of the satellite LOS (90◦ − θ) (i.e., 90◦ − θ < α), this slope
cannot be reached by the radar beam, and as a result the region (IJ) cannot be mapped in
the SAR image (see Figure 1c), this phenomenon is active shadow. The area (JK) that is
located at the end of this steep slope (IJ), which cannot be normally imaged in the SAR
image, is known as the passive shadow region (see Figure 1c).
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The latter two kinds of geometric distortion regions (i.e., layover and shadow regions)
in the SAR images are the areas with poor visibility; and, the ground points in the layover
and shadow regions cannot be detected and monitored by the time series InSAR technique
such as the persistent scatterer interferometry (PSI) technique and the small-baseline subset
(SBAS) technique [27,33]. On the other hand, a few image pixels with bright reflectivity, in
the foreshortening regions in the SAR image, can be detected and monitored by the time
series InSAR technique [20]. As such, the visibility of the foreshortening regions is medium
and the monitored ground deformation might be inaccurate.

2.2. The R-Index Model and Its Potential Limitation

The R-index model, which can capture the ratio of the slant range (i.e., the pixel size
in the SAR image) and the ground range (i.e., the distance at the ground surface), was
initially proposed by Notti et al. [22,23]; and then, the R-index model has been widely
adopted to evaluate the visibility of the SAR image. In reference to Notti et al. [22,23], the
R-index can be calculated based on the cosine of the angle between the local terrain surface
and the radar beam. As illustrated in Figure 2, an imaging scenario with the satellite in
ascending mode and the slope dipping towards the radar is taken as an example to depict
the formulation of the R-index [22].

R-index = cos(γ) = sin{θ+ arctan[tanα× cos(ϕ− β)]} (1)

where γ is the angle between the local terrain surface and the radar beam; α is the slope of
the terrain; β is the aspect of the terrain; θ is the incidence angle of the satellite LOS; and, ϕ
is the azimuth angle of the satellite LOS.
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It is noted that in the areas with good visibility, the angle (γ1) between the local terrain
surface and the radar beam is acute and is not greater than the complementary angle of
the incidence angle of the satellite LOS, thus the value of the R-index is not smaller than
sin(θ). The relationship between the incidence angle of the satellite LOS and the slope of
the terrain in the geometric distortion regions is analyzed in Dai et al. [34], and the possible
values of the R-index (in the geometric distortion regions) are summarized as follows: (1)
in the foreshortening regions (e.g., BC in Figure 1a), the angle (γ2) between the terrain
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surface and the radar beam is acute and it is greater than the complementary angle of the
incidence angle of the satellite LOS, thus the R-index is between 0 and sin(θ), expressed as
0 < R-index < sin(θ); (2) in the active layover regions (e.g., EF in Figure 1b), the angle (γ3)
between the terrain surface and the radar beam is obtuse, and the R-index is a negative
value; and 3) in the active shadow regions (e.g., IJ in Figure 1c), the angle (γ4) between the
terrain surface and the radar beam is acute, and the R-index is a positive value.

As can be seen, one possible limitation of the R-index model is that the value of the
R-index in the areas with good visibility and that in the active shadow regions are both
positive [26]. Thus, the areas with good visibility and the active shadow regions might
not be distinguished by this R-index. The other limitation of the R-index model is that the
passive layover regions (e.g., DE and FG in Figure 1b) and passive shadow regions (e.g., JK
in Figure 1c) in the SAR images are formed due to the influence of the adjacent terrains,
which may not be recognized through the cosine of the angle between the local terrain
surface and the radar beam (or the R-index) [26,31]. In short, the original R-index model
may not identify the passive layover regions and shadow regions in the SAR images [24,26].
To overcome this limitation, a modified R-index model was developed in Cigna et al. [26]
and Notti et al. [27], in which a layover coefficient and a shadow coefficient are incorporated;
and, the modified R-index, denoted as R-index(m), is formulated as follows:

R-index(m) = cos(γ) = sin{θ+ arctan[tanα× cos(ϕ− β)]} × Sh× La (2)

where Sh is the shadow coefficient and La is the layover coefficient, which can be calculated
using the hillshade model in ArcGIS [35]. The altitude and azimuth angles (of the light
source adopted in the hillshade model) are demanded for the calculation of the shadow
coefficient (Sh) and layover coefficient (La), as illustrated in Figure 3a,b. More information
about the shadow coefficient (Sh) and layover coefficient (La) can be found in Notti et al. [27].
The value of R-index(m) is smaller than 1.0, and the visibility of an area can be evaluated
with the following criteria: 1) if R-index(m) is greater than or equal to sin(θ) (i.e., R-index(m)
≥ sin(θ)), the related area is an area with good visibility; 2) if R-index(m) is between 0
and sin(θ) (i.e., 0 < R-index(m) < sin(θ), the related area is a foreshortening region and the
visibility is medium; and 3) if R-index(m) is not positive (i.e., R-index(m) ≤ 0), the related
area is a layover or shadow region and the visibility is poor.

In reference to Figure 1b, the passive layover region consists of two parts, in terms
of the near passive layover region (DE) and the far passive layover region (FG). However,
the R-index(m) could only identify the active layover region (BC) and near passive layover
region (AB) in the SAR images, according to the geometric basis of the layover coefficient
shown in Figure 3b; and, the far passive layover region (CD) in the SAR images cannot
be recognized. Thus, the modified R-index model is not perfect and there is still room
for improvement.

2.3. The Improved R-Index Model

To recognize the far passive layover regions of SAR images, a far passive layover
coefficient, which is based on the formation mechanism of the far passive layover region (see
Figure 1b), is proposed in this study. This far passive layover coefficient is then incorporated
into the calculation of the R-index to improve the modified R-index model [26,27], and the
improved R-index, denoted as R-index(im), is formulated as follows:

R-index(im) = cos(γ) = sin{θ+ arctan[tanα× cos(ϕ− β)]} × Sh× La× Fa (3)

where Fa is the far passive layover coefficient, the value of which is 0 in the passive layover
region and while in the other region is 1.0. This far passive layover coefficient can be
calculated using the hillshade model in ArcGIS [35], the reversed DEM (of the terrain) and
the altitude and azimuth angles (of the light source employed in the hillshade model) are
input parameters for the estimate of this far passive layover coefficient. In reference to
Figure 3c, the geometric feature of the light source is first determined through making the



Remote Sens. 2021, 13, 1938 6 of 21

location (in terms of latitude and longitude) of the hillshade region in the hillshade model
(e.g., E’F’ and F’G’ in Figure 3c) to coincide with that of the layover region (i.e., the active
layover region and the far passive layover region) (e.g., EF and FG in Figure 3c); and, the
altitude and azimuth angles of the light source in the hillshade model can be obtained:
the altitude angle is equal to the incidence angle of the satellite LOS (θ) and the azimuth
angle is equal to the opposite orientation of the satellite LOS (ϕ + π). The outcome of the
hillshade analysis is the gray gradient, based on which the far passive layover coefficient
(Fa) could be determined: the far passive layover coefficient (Fa) in the area with gray
gradient above 0 is set to 1.0 while that in the other area is set to 0.
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Note that the calculated value of the improved R-index (R-index(im)) is between 0 and
1.0, based on which the visibility of an area can be evaluated: 1) if R-index(im) is greater than
or equal to sin(θ) (i.e., R-index(im) ≥ sin(θ)), the related area is an area with good visibility;
2) if R-index(im) is between 0 and sin(θ) (i.e.,0 < R-index(im) < sin(θ)), the corresponding
area is a foreshortening region and the visibility is medium; and 3) if R-index(im) is equal
to 0 (i.e., R-index(im) = 0), the related area is a layover or shadow region and the visibility
is poor.

3. Application of the Improved R-Index Model: Terrain Visibility Analysis in Fengjie

To illustrate the applicability of the improved R-index model, the terrain visibility of
SAR images in Fengjie, a county in the Three Gorges Reservoirs region of China, is studied
in this section, and the effectiveness of the improved R-index model is demonstrated
through comparing the visibility analysis results with those obtained from the existing
R-index models and P-NG method [28].

3.1. The Geological Setting of the Study Area and the Parameters of the Satellite LOS

In reference to Figure 4a, the study area, Fengjie, is situated in the hinterland of the
Three Gorges Reservoir region of China (109◦1’17”E ~ 109◦45’58”E, 30◦29’19” ~ 31◦22’33”N),
covering an area of about 4100 km2. The topography of the study area is mainly character-
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ized by rugged mountains and deeply incised valleys with elevations ranging from 86 m to
more than 2100 m. The mountainous areas account for around 88% of the total area of this
county. The lithology in the study area consists of that of the Quaternary, Jurassic, Triassic,
Permian, Carboniferous, Devonian, and Silurian, and the outcrops mainly consist of the
Middle Triassic Badong Formation, with a broken and loose structure [36,37]. The climate
of the study area is the central Asian tropical humid monsoon climate, with abundant
rainfall and annual average precipitation of 1132 mm. There are numerous rivers in the
study area that drain into the Yangtze River; and, the Yangtze River runs through the
central part of the study area, with an average annual discharge of about 13,700 m3/s [37].
The study area is prone to landslides. For example, plenty of landslides were distributed
along the Yangtze River and its tributaries. A total of 1550 landslides were identified in the
study area (from 2001 to 2019), according to the information from the Chongqing Municipal
Geological Environment Agency, a governmental institution responsible for monitoring
and investigating geological hazards. The locations of the 1550 historical landslides are
mapped in Figure 4b.
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There exist various SAR satellites could be utilized for the ground surface deformation
monitoring in the study area (i.e., Fengjie). For illustration purposes, four sets of SAR
images, acquired by three SAR satellites, are analyzed in this paper, the orbit information
of which is: descending scenes (track 118 frames 2979 and 2989) of ENVISAT ASAR,
descending scenes (track 112 frame 3000) of ALOS PALSAR, ascending scenes (track 464
frames 600 and 610; track 465 frames 600 and 610) of ALOS PALSAR, and ascending scenes
(track 84 frames 97 and 98) of Sentinel-1A. The SAR images acquired by ENVISAT ASAR
and Sentinel-1A can be downloaded from the European Space Agency (https://earth.esa.
int, accessed on 26 April 2021), while those acquired by ALOS-PALSAR can be downloaded
from the Japan Aerospace Exploration Agency (https://global.jaxa.jp, accessed on 26 April
2021). The coverage areas of these four analyzed sets of SAR images are shown in Figure 4a,
and the orientation parameters of the satellite LOSs are tabulated in Table 1.

3.2. Terrain Visibility Analysis in Fengjie with the Improved R-Index Model

The procedures for implementing the improved R-index model are summarized in
the following steps. First, the original R-indexes (see Equation (1)), of the four sets of

https://earth.esa.int
https://earth.esa.int
https://global.jaxa.jp
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SAR images, are calculated with the incidence angles (θ) and azimuth angles (ϕ) of the
satellite LOSs and the terrain parameters (i.e., slope α and aspect β), the results are shown
in Figure 5. The slope (α) and aspect (β) of the terrain, in this study, are calculated from
the Shuttle Radar Topography Mission (SRTM) DEM of Fengjie, the resolution of which is
30 m/pixel. Second, the shadow coefficients (Sh) and layover coefficients (La) are estimated
with the procedures developed in Notti et al. [27], then the modified R-indexes (R-index(m);
see Equation (2)) are computed, the results are depicted in Figure 6. Third, the far layover
coefficients (Fa) are calculated with the procedures mentioned in Section 2.3, then the
improved R-indexes (R-index(im); see Equation (3)) are obtained, the results are shown in
Figure 7.

In reference to the mathematical formulation of the improved R-index model, the sine
value of the incidence angle of the satellite LOS, in terms of sin(θ), plays an important
role in evaluating the terrain visibility, and which is taken here as the threshold value
for locating the area with good visibility. The related threshold values of the selected
four sets of SAR images, acquired by the descending ENVISAT ASAR, descending ALOS
PALSAR, ascending ALOS PALSAR, and ascending Sentinel-1A, are 0.38, 0.51, 0.63, and
0.60, respectively. Based on the comparisons between the improved R-indexes (R-index(im))
and the threshold values, the terrain visibility of the study area can be evaluated, and
the evaluation results are illustrated in Figure 7. It can be seen from Figure 7 that the
evaluated terrain visibility varies with the input SAR image, which is consistent with the
previous knowledge that the terrain visibility can be closely related to the parameters of
the satellite LOS [20,38]. The statistical information of the areas with different levels of
visibility, obtained with the selected four sets of SAR images, is listed in Table 2. A detailed
discussion on the effect of the orientation of the satellite LOS on the terrain visibility will
be presented later.

Among the four sets of SAR images studied, the areas with good visibility obtained
by the descending ALOS PALSAR are the largest (i.e., accounting for 51.91 % of the total
area); and, 844 landslides, accounting for 54.45% of the historical landslides identified, are
located in the areas with good visibility. As can be seen in Figure 7a, the areas with good
visibility are mainly distributed on the flat ground and the W-facing slopes with the slope
less than 59.61◦; the foreshortening regions, the visibility of which is medium, are mainly
distributed on the E-facing slopes with the slope less than 30.39◦; and, the layover regions,
the visibility of which is poor, are mainly distributed on the E-facing slopes with the slope
greater than 30.39◦. Since the incidence angle of the descending ALOS PALSAR is very
small (i.e., 30.39◦), the shadow regions in the study area are small (i.e., only accounting
for 0.015% of the total area), which are mainly distributed on the W-facing slopes with the
slope greater than 59.61◦. It should be noted that 172 landslides are located in the areas
with poor visibility (i.e., layover and shadow regions), the behavior of these 172 landslides
may not well monitored if only the SAR images acquired by the descending ALOS PALSAR
are included using the technique of InSAR.

Table 1. Orientation parameters of the satellite LOSs.

SAR Satellite Flight Direction Radar Azimuth Radar Incidence

ENVISAT ASAR Descending 285.00◦ 22.25◦

ALOS PALSAR Ascending 74.00◦ 38.70◦

ALOS PALSAR Descending 285.00◦ 30.39◦

Sentinel-1A Ascending 77.31◦ 36.69◦
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Remote Sens. 2021, 13, 1938 10 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 21 
 

Remote Sens. 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/remotesensing 
 

 
Figure 6. The terrain visibility evaluation results of the selected SAR images obtained from the modified R-index model: (a) SAR 
images acquired by the descending ALOS PALSAR; (b) SAR images acquired by the ascending ALOS PALSAR; (c) SAR images 
acquired by the descending ENVISAT ASAR; (d) SAR images acquired by the ascending Sentinel-1A. 

Figure 6. The terrain visibility evaluation results of the selected SAR images obtained from the modified R-index model:
(a) SAR images acquired by the descending ALOS PALSAR; (b) SAR images acquired by the ascending ALOS PALSAR;
(c) SAR images acquired by the descending ENVISAT ASAR; (d) SAR images acquired by the ascending Sentinel-1A.



Remote Sens. 2021, 13, 1938 11 of 21
Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 21 
 

Remote Sens. 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/remotesensing 
 

 
Figure 7. The terrain visibility evaluation results of the selected SAR images obtained from the improved R-index model: (a) SAR 
images acquired by the descending ALOS PALSAR; (b) SAR images acquired by the ascending ALOS PALSAR; (c) SAR images 
acquired by the descending ENVISAT ASAR; (d) SAR images acquired by the ascending Sentinel-1A. 

3.3. Comparisons between the improved R-index model and the existing R-index models 
To illustrate the advantages of the improved R-index model over the existing 

R-index models (i.e., the original and modified R-index models) in evaluating the terrain 
visibility of SAR images, the visibility evaluation results obtained from the improved 
R-index model are compared here to those obtained from the existing R-index models.  

According to the geometric basis of the improved R-index model and the existing 
R-index models, the main difference between these three models is in the ability to iden-
tify the layover and shadow regions in the SAR images. As such, the true layover and 
shadow regions are recognized in the SAR intensity image, which are taken as the ref-
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3.3. Comparisons between the Improved R-Index Model and the Existing R-Index Models

To illustrate the advantages of the improved R-index model over the existing R-index
models (i.e., the original and modified R-index models) in evaluating the terrain visibility
of SAR images, the visibility evaluation results obtained from the improved R-index model
are compared here to those obtained from the existing R-index models.

According to the geometric basis of the improved R-index model and the existing
R-index models, the main difference between these three models is in the ability to identify
the layover and shadow regions in the SAR images. As such, the true layover and shadow
regions are recognized in the SAR intensity image, which are taken as the reference for
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comparisons among these three R-index models. For ease of comparisons, the SAR images
acquired by the descending ENVISAT ASAR, which are most influenced by the layover
and shadow regions (i.e., yielding the largest area of layover and shadow regions; see
Table 2), are studied. Figure 8 shows the true layover and shadow regions recognized
in the SAR intensity image of the descending scene acquired by ENVISAT ASAR on
September 24, 2003, which is multi-looked with a 1:5 amplification factor (in range and
azimuth) and geocoded to the SRTM DEM (with resolution of 30 m/pixel). It is noted
that the true layover and shadow regions in Figure 8 are recognized using the Geocoding
and Radiometric Calibration module in ENVI SARscape [32]. The total area of the true
layover and shadow regions recognized is 1329.82 km2. Listed in Table 3 is the statistical
information of the areas with different levels of visibility (of the selected four sets of SAR
images), obtained from the existing R-index models. According to the data in Tables 2
and 3, the total area of the layover and shadow regions (of SAR images acquired by the
descending ENVISAT ASAR) detected by the original R-index model is only 478.39 km2,
whereas, those detected by the modified R-index model and improved R-index model are
896.99 km2 and 1252.08 km2, respectively. The comparisons in Figure 8c–e confirm that
the layover and shadow regions could be more effectively detected by the improved R-
index model, compared to the existing R-index models. From there, the improved R-index
model is shown more effective in detecting the layover and shadow regions. In addition,
it is noted that the area of the layover and shadow regions obtained from the improved
R-index model are not consistent with the true layover and shadow regions. Due to the
oversimplification of the acquisition direction of SAR images, variations of the incidence
angles (θ) and azimuth angles (ϕ) of the satellite LOS could not be accounted in the R-index
models. This simplification generally results in inaccurate terrain visibility evaluation at
the margins of SAR image frames [26]. Note that although this limitation of the R-index
models warrants further investigation, the terrain visibility evaluation results (in a large
area) would not be degraded much by this simplification when the improved R-index
model is adopted.
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Figure 8. The comparisons among the SAR intensity image and the terrain visibility evaluation
results obtained from the three models: (a) Geocoded and multi-looked SAR intensity image (1:5
look factors) of the descending scenes of ENVISAT ASAR; (b) The terrain visibility evaluation result
in an area of the SAR intensity image obtained from the original R-index model; (c) The terrain
visibility evaluation result in the related area obtained from the modified R-index model; (d) The
terrain visibility evaluation result in the related area obtained from the improved R-index model;
(e) The true layover and shadow regions in the related area.
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Table 2. Statistical information of the visibility evaluation results of the selected SAR images obtained from the improved R-index model.

Level of Visibility

Sentinel-1A (Ascending) ENVISAT ASAR (Descending) ALOS PALSAR (Ascending) ALOS PALSAR (Descending)

R-Index(im)
Area
(km2)

Landslide
Number R-Index(im)

Area
(km2)

Landslide
Number R-Index(im)

Area
(km2)

Landslide
Number R-index(im)

Area
(km2)

Landslide
Number

Good visibility 0.60–1.00 1922.52 695 0.38–1.00 1992.89 801 0.63–1.00 1965.56 700 0.51–1.00 2127.06 844

Medium visibility
(foreshortening) 0.00–0.60 1897.64 808 0.00–0.38 854.03 365 0.00–0.63 1915.06 813 0.00–0.51 1378.81 534

Poor visibility
(layover) 0.00 261.96 44 0.00 1251.05 384 0.00 196.01 31 0.00 587.11 170

Poor visibility
(shadow) 0.00 16.87 3 0.00 1.03 0 0.00 22.38 6 0.00 6.01 2

Table 3. Statistical information of the visibility evaluation results of the selected SAR images obtained from the existing R-index models.

Level of Visibility

Sentinel-1A (Ascending) ENVISAT ASAR (Descending) ALOS PALSAR (Ascending) ALOS PALSAR (Descending)

R-Index Area
(km2)

Landslide
Number R-Index Area

(km2)
Landslide
Number R-Index Area

(km2)
Landslide
Number R-Index Area

(km2)
Landslide
Number

The original
R-index model

Good visibility 0.60–1.00 1950.22 702 0.38–1.00 2166.59 849 0.63–1.00 1993.50 704 0.51–1.00 2168.53 852

Medium visibility
(foreshortening) 0.00–0.60 2075.08 837 0.00–0.38 1454.02 562 0.00–0.63 2051.90 840 0.00–0.51 1733.87 651

Poor visibility
(layover) ≤0.00 73.70 11 ≤0.00 478.39 139 ≤0.00 53.59 6 ≤0.00 196.60 47

Poor visibility
(shadow) - - - - - - - - - - - -

The modified
R-index model

Good visibility 0.60–1.00 1927.33 695 0.38–1.00 2078.22 809 0.63–1.00 1968.16 700 0.51–1.00 2144.19 844

Medium visibility
(foreshortening) 0.00–0.60 1972.43 823 0.00–0.38 1123.80 419 0.00–0.63 1981.48 825 0.00–0.51 1543.45 583

Poor visibility
(layover) ≤0.00 182.37 29 ≤0.00 895.96 322 ≤0.00 126.98 19 ≤0.00 405.35 121

Poor visibility
(shadow) 0.00 16.87 3 0.00 1.03 0 0.00 22.38 6 0.00 6.01 2
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A further comparison between Tables 2 and 3 illustrates that the difference in the
visibility evaluation results, among these three R-index models, is the most significant
in the foreshortening and layover regions, whereas, the difference is the least obvious in
the shadow region. The existing R-index models, especially the original R-index model,
underestimate the area of the layover regions of SAR images, while overestimate the area
of the foreshortening regions and the area with good visibility (see Figure 8). Further, the
SAR images acquired by the descending ENVISAT ASAR (among the four sets of SAR
images investigated) can yield the biggest difference in the evaluation results between
the improved R-index model and the existing R-index models. As an outcome, some
landslides in the layover regions of the SAR images, the visibility of which is poor, might be
misjudged to be located in the area with good visibility using the existing R-index models,
as illustrated in Figures 5 and 6. It can be expected that the error in the visibility evaluation
could degrade the applicability of the technique of InSAR to landslide monitoring. With
the aid of the improved R-index model, the error in the terrain visibility evaluation could
be effectively reduced, and thus a more informed selection of SAR images may be achieved
in the landslide monitoring.

3.4. Comparison between the Improved R-Index Model and the P-NG Method

In the context of the P-NG method proposed in Chen et al. [28], the active geometric
distortions (i.e., foreshortening, active layover, and active shadow) in the SAR image
are first identified; then, a neighbor gradient between passive and active distortion is
computed, based on which the passive geometric distortions (i.e., passive layover and
passive shadow) could be located. According to this definition, the full name of P-NG may
be referred to the passive geometric distortions-neighbor gradient. More information about
the P-NG method can be found in Chen et al. [28]. To further demonstrate the effectiveness
and advantages of the improved R-index model, the improved R-index model is compared
herein to the P-NG method. Figure 9a depicts the geometric distortions in the SAR images
acquired by the descending ENVISAT ASAR recognized by the P-NG method. As can be
seen in Figure 9b,c, the range of the areas with different levels of visibility obtained by
the improved R-index model is in good agreement with that of the geometric distortion
regions obtained by the P-NG method. From there, the effectiveness of the improved
R-index model can be illustrated. Note that in the context of the P-NG method, each and
every cell (or position) of the study area should be evaluated whether it belongs to the
areas with geometric distortions, while the improved R-index model can be implemented
based on a raster operation in ArcGIS. Thus, the increase of the study area might lead to
a significant increase in the calculation time using the P-NG method, and the improved
R-index model would yield higher computational efficiency. Further, the improved R-index
model can provide a quantitative assessment of the effect of the geometric distortion in the
SAR images, which may be adopted for evaluating the presence of PS points in the prior
processing of PSI techniques [27].

4. Discussions on the Influencing Parameters of the Terrain Visibility

According to the formation mechanism of geometric distortions of SAR images shown
in Figure 1, the terrain visibility of SAR images can be related to the orientation parameters
of the satellite LOS and the characteristics of the local terrain. Thus, the effects of the
orientation (i.e., incidence angle and azimuth) of the satellite LOS and the resolution of
the DEM (of the local terrain) on the terrain visibility are discussed in this section. Note
that although the effects of the influencing parameters on the terrain visibility have been
addressed previously [23,26,27,31,39], the results presented in this section could be taken
as a meaningful supplement to the existing studies.
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4.1. Influences of the Orientation of the Satellite LOS on the Terrain Visibility

A further investigation of the data shown in Table 2 indicates that in the SAR images
collected by descending satellites, the layover areas acquired by ALOS PALSAR are smaller
than those acquired by ENVISAT ASAR, and the shadow areas acquired by ALOS PALSAR
are larger than those acquired by ENVISAT ASAR; whereas, in the SAR images collected by
ascending satellites, the layover areas acquired by ALOS PALSAR are smaller than those
acquired by Sentinel-1A, and the shadow areas acquired by ALOS PALSAR are larger than
those acquired by Sentinel-1A. Therefore, the shadow areas (in the SAR images) tend to
increase with the incidence angle of the satellite LOS, while the layover areas (in the SAR
images) tend to decrease with the incidence angle of the satellite LOS. This observation is
consistent with that derived in the previous studies [26], which can aid in selecting suitable
SAR images for the landslide monitoring. For example, when the study area is located in
the layover area of SAR images, the SAR images with a greater incidence angle should be
preferred. In addition, in the SAR images collected by descending satellites, the layover
regions (i.e., the visibility of which is poor) and the foreshortening regions (i.e., the visibility
of which is medium) are mainly distributed on the E-facing slopes, as shown in Figure
10b,c; whereas, the areas with good visibility and the shadow regions (i.e., the visibility
of which is poor) are mainly distributed on the W-facing slopes, as shown in Figure 10a,d.
The opposite phenomenon could be observed in the SAR images collected by ascending
satellites (see Figure 10). Thus, the SAR images collected by the descending ALOS PALSAR
is more suitable for monitoring W-facing landslides in Fengjie, while those collected by the
ascending ALOS PALSAR is more suitable for monitoring E-facing landslides in Fengjie.
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Figure 9. The comparison between the improved R-index model and the P-NG method: (a) The
geometric distortions in the SAR images obtained by the P-NG method; (b); The terrain visibility
evaluation results in an area of the SAR images obtained by the improved R-index model; (c) The
geometric distortions in the related area obtained by the P-NG method.

According to the inference drawn in Section 3.2, a single set of SAR images cannot
be sufficient for the landslide monitoring of the study area. For example, if only the SAR
images acquired by the descending ALOS PALSAR are utilized, only 51.91% of the total
area (i.e., 2127.06 km2) in Fengjie is categorized into the area with good visibility, and
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844 landslides (i.e., only 54.45% of the historical landslides identified) are located in the
regions with good visibility. Rather, if the SAR images acquired by the descending ALOS
PALSAR and those by the ascending ALOS PALSAR are integrated, 89.01% of the total area
(i.e., 3648.37 km2) in Fengjie would be categorized into the area with good visibility, and
1360 landslides (i.e., 87.74% of the historical landslides) would be located in the regions
with good visibility. In other words, to overcome the problem of poor visibility caused
by the application of a single set of SAR images, a combined use of the ascending and
descending SAR images can provide a promising solution [39].
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Figure 10. The terrain aspect distribution of the areas with different levels of visibility in the selected SAR images of Fengjie:
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4.2. Influence of the Resolution of the Terrain DEM on the Terrain Visibility

It is known that the characteristics of the local terrain (i.e., slope and aspect) could be
more accurately captured by the DEM with higher resolution. To analyze the influence of
the resolution of the DEM (of the local terrain) on the terrain visibility, the SAR images
acquired by the descending ENVISAT ASAR and four levels of resolution of the DEM (of
Fengjie), as shown in Table 4, are studied in this parametric analysis. Figure 11 shows
the terrain visibility evaluation results of the selected SAR images with the four levels of
resolution of the DEM, and plotted in Figure 12a are the influences of the resolution of the
DEM on the percentages of the areas with different levels of visibility.

As can be seen in Figure 11, the resulting boundaries between the areas (with different
levels of visibility) could be more evident when a higher resolution DEM is used in the
terrain visibility evaluation, implying that the regions along these boundaries may be more
accurately assessed with a higher resolution DEM. Figure 12a illustrates that with the
improvement of the resolution of the terrain DEM (i.e., from 250 m/pixel to 12.5 m/pixel),
the percentage of the foreshortening regions (i.e., the visibility of which is medium) and
that of the shadow regions (i.e., the visibility of which is poor) increase, whereas, the
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percentage of the area with good visibility and that of the layover regions (i.e., the visibility
of which is poor) decrease. The difference in the terrain visibility evaluation results is most
significant between the DEM with resolution of 30 m/pixel and that with resolution of
90 m/pixel. Note that a similar observation is derived in the previous studies of the terrain
visibility of SAR images acquired by the ascending ERS-1/2 and ENVISAT [26], as shown
in Figure 12b. That is to say, a higher resolution DEM should be preferred in the terrain
visibility analysis, a higher resolution DEM is however more costly (see Table 4).
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Figure 11. The terrain visibility evaluation results of SAR images acquired by the descending ENVISAT ASAR with the
four levels of resolution of the DEM: (a) 12.5 m/pixel ALOS DEM; (b) 30 m/pixel SRTM DEM; (c) 90 m/pixel SRTM DEM;
(d) 250 m/pixel SRTM DEM.

In consideration of the tradeoff between the cost of the terrain DEM and the accuracy
of the visibility evaluation, the DEM with resolution of 30 m/pixel, which yields the best
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compromise solution between the aforementioned conflicting objectives, is recommended
for the terrain visibility evaluation in Fengjie. For example, the visibility evaluation results
obtained by the DEM with resolution of 12.5 m/pixel are close to those obtained by the DEM
with resolution of 30 m/pixel, and there exist obvious differences between the evaluation
results obtained by the DEM with resolution of 30 m/pixel and those obtained by the DEM
with resolution of 90 m/pixel; however, the DEM with resolution of 12.5 m/pixel is more
costly than that with resolution of 30 m/pixel (i.e., one is 1530 RMB while the other is free).
In other words, the DEM with resolution of 30 m/pixel can yield a notable improvement of
the terrain visibility evaluation without sacrifice of the cost, thus, the DEM with resolution
of 30 m/pixel yields the best compromise solution between the terrain visibility evaluation
accuracy and the cost efficiency.

Table 4. Sources and resolutions of the DEMs of Fengjie.

Data Type Source of Data Resolution (m/pixel) Cost Area/Range

ALOS PALSAR DEM http://www.tuxingis.com,
accessed on 26 April 2021

12.5 1530 RMB 82370 km2

SRTM DEM Version 2 https://data.nasa.gov,
accessed on 26 April 2021

30 Free 21176 km2

SRTM DEM Version 4 https://srtm.csi.cgiar.org,
accessed on 26 April 2021

90 Free 57315 km2

Resampled SRTM DEM https://srtm.csi.cgiar.org,
accessed on 26 April 2021

250 Free Global Earth
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Lake and River Etive, Scotland (modified from [26]).

5. Conclusions

The paper presented an improved R-index model for evaluating the terrain visibility
of SAR images, in which a far layover coefficient that can help recognize the far passive
layover regions in SAR images was incorporated into the calculation of the R-index. An
illustrative application of the improved R-index to the terrain visibility analysis in Fengjie
was conducted; and, comparative analyses were conducted to depict the advantages of
the improved R-index model over the existing R-index models (and the P-NG method).
Further, the effects of the orientation parameters of the satellite LOS and the resolution
of the DEM (of the local terrain) on the terrain visibility were discussed. Based upon the
results presented, the following conclusions are reached:

http://www.tuxingis.com
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(1) Compared to the existing R-index models, the improved R-index model is shown
more effective in detecting the layover regions (i.e., the visibility of which is poor) in
SAR images. With the aid of the improved R-index model, the error in the terrain
visibility evaluation can be effectively reduced, allowing for a more informed selection
of SAR images in the landslide monitoring in mountainous regions. Meanwhile, the
improved R-index model might be more computational efficient than the P-NG
method in the terrain visibility evaluation of large areas.

(2) SAR images collected by the descending ALOS PALSAR could be more suitable for
monitoring W-facing landslides in Fengjie, while those collected by the ascending
ALOS PALSAR could be more suitable for monitoring E-facing landslides in Fengjie.
A combined use of the ascending and descending SAR images provides a promising
solution to overcome the problem of poor visibility caused by the application of a
single set of SAR images.

(3) With the improvement of the resolution of the DEM of the local terrain, the terrain
visibility can be more accurately evaluated, thus a higher resolution DEM should
be preferred in the terrain visibility evaluation of SAR images. In consideration of
the tradeoff between the cost of the terrain DEM and the accuracy of the visibility
evaluation, the DEM with resolution of 30 m/pixel, which could yield the best
compromise solution in this tradeoff relationship, is recommended for the terrain
visibility evaluation in Fengjie.

It must be noted that the improved R-index is formulated based on an assumption
that the orientation parameters of the satellite LOS are taken as constant values, thus, there
may exist errors in the terrain visibility evaluation results of SAR images. To overcome
this limitation, it might be necessary to obtain the orientation of the satellite LOS at each
position in the SAR images and then update the light source in the hillshade model, such a
modification of the improved R-index may warrant further investigation.
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