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Abstract: Measures of vegetation structure are often key within ecological restoration monitoring
programs because a change in structure is rapidly identifiable, measurements are straightforward,
and structure is often a good surrogate for species composition. This paper investigates the use of
drone-based digital aerial photogrammetry (DAP) for the characterization of the structure of regener-
ating vegetation as well as the ability to inform restoration programs through spatial arrangement
assessment. We used cluster analysis on five DAP-derived metrics to classify vegetation structure
into seven classes across three sites of ongoing restoration since linear disturbances in 2005, 2009,
and 2014 in temperate and boreal coniferous forests in Alberta, Canada. The spatial arrangement of
structure classes was assessed using land cover maps, mean patch size, and measures of local spatial
association. We observed DAP heights of short-stature vegetation were consistently underestimated,
but strong correlations (rs > 0.75) with field height were found for juvenile trees, shrubs, and perenni-
als. Metrics of height and canopy complexity allowed for the extraction of relatively tall and complex
vegetation structures, whereas canopy cover and height variability metrics enabled the classification
of the shortest vegetation structures. We found that the boreal site disturbed in 2009 had the highest
cover of classes associated with complex vegetation structures. This included early regenerative (22%)
and taller (13.2%) wood-like structures as well as structures representative of tall graminoid and
perennial vegetation (15.3%), which also showed the highest patchiness. The developed tools provide
large-scale maps of the structure, enabling the identification and assessment of vegetational patterns,
which is challenging based on traditional field sampling that requires pre-defined location-based
hypotheses. The approach can serve as a basis for the evaluation of specialized restoration objectives
as well as objectives tailored towards processes of ecological succession, and support prioritization
of future inspections and mitigation measures.

Keywords: vegetation structure; forest regeneration; digital aerial photogrammetry; drones; ecologi-
cal restoration; linear disturbance; spatial arrangement

1. Introduction

Global demand for natural resources such as natural gas and minerals is expected
to continue to grow in the next two decades [1,2] which in turn has ongoing implications
for biodiversity and ecosystem functions in forest ecosystems [3]. Forest disturbances
associated with these anthropogenic activities have been shown to be drivers of alien
species invasion, changing soil stability including erosion and compaction, groundwater
storage, water flow, and landscape fragmentation [3–5]. Forest restoration activities, which
involve reestablishing biodiversity and ecological processes on disturbed sites to accelerate
forest recovery, have been successful in offsetting or minimizing the impacts of industrial
activities and developments, including mines, seismic lines, and roads [6,7]. As a result,
there is a growing interest in mandatory restoration policies, some of which have been
implemented by industry in the last decade [8–10].

Restoration goals and objectives must be set in order to evaluate restoration success.
These can be unambiguous, such as the implementation of quick erosion control, improving
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water quality, or limiting invasion of alien species, or more complex and holistic when
focused on restoring ecological processes and biodiversity towards a resilient state [11].
Theory-driven reference targets can be developed in line with project goals that combine
knowledge about ecological principles, present-day reference sites, on-the-ground restora-
tion experience, and historical records [12–14]. To be able to evaluate success, a set of
indicators should be developed that reflect restoration objectives, are easy to measure, have
a known response to stresses in the ecosystem and ecological succession, and can be linked
to management actions [15].

In terrestrial ecosystems, quantitative indicators that capture vegetation structure are
commonly used, e.g., cover by vertical stratum, cover by life form, and canopy height [16].
Vegetation structure is relatively static, efficient, and rapid to measure, and has been associ-
ated with successional stages [16]. It can also be used as an indirect indicator for processes
such as controlling erosion or improving water quality [11]. The spatial arrangement,
patterns, and patchiness of vegetation structure can be associated with topography and eco-
logical processes across spatial, temporal, and thematic scales [17] and as a result, provide
insights into recovery patterns [18].

Measuring forest structure, however, especially of short-stature vegetation over large
areas that have undergone disturbance, is difficult and constrained by resources (e.g.,
time, costs, and expertise). Traditional field sampling is typically undertaken manually
using quadrats positioned with Global Navigation Satellite Systems (GNSS) which is
demanding on project resources especially when large, remote, or hazardous areas need
to be covered [19]. In addition, it is challenging to define spatial, temporal, and thematic
scales at which monitoring is carried out, resulting in trade-offs and indicators not being
well-aligned with restoration objectives as well as processes of ecological succession [18,20].

Remote sensing, in combination with geospatial data analysis techniques, can be used
to provide spatially continuous, i.e., wall-to-wall, measurements of vegetation structure.
Currently, a range of remote sensing sensors and platforms exist that allow the characteriza-
tion and mapping of vegetation structure at scales previously unavailable to ecologists and
restoration professionals. Relevant remote-sensing technologies include Light Detection
and Ranging (LiDAR, i.e., laser scanning) and structure-from-motion photogrammetry,
which can be deployed from manned or unmanned aerial systems (drones), spaceborne
systems, tripods, or movable handheld devices [17,21,22]. Airborne LiDAR, i.e., airborne
laser scanning (ALS) data are increasingly available, partly due to joint public–private
campaigns reducing acquisition costs, providing opportunities for characterizing vertical
and horizontal vegetation structure over large areas [22]. Digital aerial photogrammetry
(DAP) utilizes conventional or multispectral cameras, structure-from-motion photogram-
metry, and accurate GNSS measurements (typically including ground-control-points) to
reconstruct detailed three-dimensional surfaces, represented as point clouds, meshes, or
digital surface models, from sequences of photographs with high spatial overlap. Increas-
ing computing power, automated and simplified processing workflows, development of
open-source software, and decreasing computer costs are making DAP increasingly acces-
sible for ecological monitoring [23,24]. Critically, DAP can be acquired by drones which
have been shown to be able to acquire information about vegetation structure at reduced
costs, more frequent intervals, and higher spatial resolutions compared to airborne and
spaceborne platforms. The advantages of DAP reconstructions are their high level-of-detail
and the ability to incorporate spectral information [25–27]. Unlike ALS, drone-based DAP
primarily characterizes the outer canopy envelope [28], limiting the ability to accurately
model terrain which is a prerequisite for measuring vegetation height. Despite this, others
have shown that DAP is capable of characterizing the structure of small plants depending
on vegetation density, the slope of the terrain, careful ground filtering, and implemented
geometric control [25,26,29–31].

In this study, we examine the capacity of DAP-based vegetation structure metrics, ac-
quired by a drone, to map classes of regenerating vegetation structure to inform ecological
management and restoration. DAP data were acquired on three natural gas pipeline rights-



Remote Sens. 2021, 13, 1942 3 of 23

of-ways (ROWs) in northwest Alberta, Canada. First, DAP-derived vegetation heights
were compared to in situ heights of various vegetation life forms. Second, vegetation
structure metrics were calculated over a regularized surface over the ROW, representing
vegetation cover, vegetation height, height distribution, variability, and surface complexity.
Classes of structure were then developed using a two-stage clustering analysis and pat-
terns of structure were evaluated across sites using indicators of local spatial associations.
Understanding the capacity of rapidly deployed DAP datasets to characterize short-stature
vegetation structure (i.e., <2 m) within environments with high complexity and variability
of vegetation cover is important, as timely mitigation measures are desired within these
areas of ongoing anthropogenic disturbance. Similarly, the developed workflow aims to
inform users of these data of potential in these applications.

2. Materials and Methods
2.1. Research Context: Pipeline Operations, Restoration, and Monitoring

The Province of Alberta is a key producer of oil and gas production within Canada,
and the 4th largest producer of oil and natural gas worldwide, representing 81% and 64% of
Canada’s total oil and gas production, respectively [32,33]. The production is characterized
by the development of a complex network of seismic lines, roads, and pipelines and
other infrastructure, e.g., wells and oil sands [34]. The infrastructural networks can have
ecological implications for both plant and animal biodiversity and as a result, operators
and regulators aim to reduce their impact on the landscape. This includes implementing
reclamation and monitoring frameworks [5,35–38]. Pipelines are typically constructed
underground (0.8 to 2 m depth) requiring a 15 to 30 m wide ROW [39,40]. Since the
early 2000s, pipeline construction in Alberta uses minimal surface disturbance (MSD)
construction practices, where possible, to reduce their overall construction footprint. MSD
techniques where root layers and seedbed sources are left largely undisturbed, lay the
foundation for natural regeneration and rapid re-establishment of planted vegetation on
pipeline ROWs. MSD techniques during construction can be achieved by mulching in
the ROW during frozen conditions to reduce disturbance of surface soils except where
grading is necessary, limiting the size of machinery used, and using heavy machinery only
on frozen soils or rig mats [40–42].

The industry is required to develop environmental protection plans associated with
regeneration of native vegetation (e.g., minimizing soil disturbance, seeding, and weed
management), erosion control, access management (e.g., limiting public access and minimiz-
ing the footprint of access routes on ROW) and when in caribou range, provide provincially
required Woodland Caribou (Rangifer tarandus caribou) protection plans (e.g., breaking
line-of-sight for predators) [43–45]. Post-construction monitoring is performed to confirm
the effectiveness of environmental protection and mitigation measures. Objectives include,
among others, monitoring of drainage patterns (e.g., erosion and stream bank stability),
assessment of total live cover on the ROW versus off-ROW, assessment of wetland-specific
species composition, and identification of undesirable species as defined under the Alberta
Weed Control Act [46,47]. In Woodland Caribou range, there may be federal requirements,
depending upon the project approval conditions, to assess line-of-sight, seedling density,
species richness, and composition of general life forms including lichen, moss, graminoids,
herbaceous, shrubs, and trees according to three general ecosite types: non-wetland forests,
treed, and non-treed wetlands [38].

2.2. Study Sites

Across the region, we selected three sections on ROWs which are part of an extensive
natural gas transmission pipeline system and which covered a range of ecosites and ages
of pipeline construction. Details are summarized in Table 1 including ecoregion, elevation,
aspect, construction year, and area of image acquisition. To include a range of different
ecosite conditions, we focused on two Natural Regions and Subregions [48], the Lower
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Boreal Highlands and Upper Foothills, and located sites with a close proximity to roads
(for field and drone control access) representing a variety of slopes and elevations.

Table 1. A summary of the study sites. LBH = Lower Boreal Highlands subregion and UF = Upper
Foothills subregion.

Pipeline Construction
Year Ecoregion Elevation (m) Slope (◦) and

Aspect Site Area (ha)

A 2009 LBH 720 Level 2.6
B 2014 LBH 785 Level 8.2
C 2005 UF 1180 7.5, NW 1.6

The Lower Boreal Highlands are characterized by extensive wetlands within flat areas
and mixedwood forests on slopes of hill systems, whereas a more diverse complex of
conifer, deciduous, and mixedwood forest stands as well as fens and shrubby grasslands
characterize the Upper Foothills region. Elevations in the Lower Boreal Highlands range
from 400 to 1075 m. Mixedwood forests are found on moist slopes and include aspen poplar
(Populus tremuloides), balsam poplar (Populus balsamifera), black spruce (Picea mariana), white
spruce (Picea glauca), white birch (Betula papyrifera), or hybrids between lodgepole pine
(Pinus contorta) and jack pine (Banksiana) [48,49]. Extensive wetlands are found on level
sites and are typically treed, shrubby, or graminoid fens. Within the Chinchaga Plain, which
is south of the two study sites in the Lower Boreal region, the bog wetland type makes
up almost 50% of total wetland cover [48]. The Upper Foothills region, with elevations
ranging between 950 and 1750 m, is typically dominated by conifer forest stands including
lodgepole pine, black spruce, and white spruce [49]. Deciduous and mixedwood stands
occur on south and west-facing slopes. Poor-to-rich fens occur in valleys and shrubby
grasslands on the driest sites [48].

2.3. In Situ Measurements

Vegetation height and structure on the ROW were sampled across seven transects
at each of the three study sites. It was hypothesized that transects, placed perpendicular
to the pipelines, would best represent species diversity, as they may cross sections with
various soil and illumination, as well as underground infrastructure. All field samples
were collected in August 2019. Transect locations were determined in the field based on
an optimal representation of vegetation type diversity visually observed at each study
site. Start and end locations of each transect were recorded using a Trimble Geo7X ground
station, which were post-processed using differential GNSS data of a station in Fort Saint
John, British Columbia. Each transect consisted of 40 1 x 1 m2 cells, as shown in Figure 1.
Within each cell, maximum height, cover percentage, and associated species were recorded.
A species was not recorded when it covered less than 10% of the cell. To verify transect
alignment with the acquired imagery, locations of known neighboring trees or large shrubs
were used. Additionally, up to 300 terrestrial photographs were taken along each transect
as a reference.

It was anticipated that lower stature vegetation would show little structural variation
in the DAP reconstructions and that heights derived from DAP datasets would be underes-
timated [26,29,50]. Therefore, in situ measurements and clustering, which are described
in Section 2.5.4, were limited to heights up to 2 m potentially improving the capability to
distinguish the shortest life forms from DAP such as grasses and perennials. The observed
plant species are listed in Table 2, including representative life form and study site(s) of
occurrence. Species identification was limited to conifer and deciduous trees, shrubs,
perennials (both herbaceous and woody), and weeds listed under Alberta’s Weed Control
Act [51]. Cover percentages and, if applicable, heights of graminoids, mosses, or bare soil
were recorded, however, graminoids were only identified as short- or tall-growing (rushes
and sedges) graminoids and moss species were not identified.
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Table 2. Plant species observed on the transects, including representative life form and study site(s) of occurrence.

Life Form Observed Species Occurrence

Coniferous trees
Black Spruce (Picea mariana)

Lodgepole Pine (Pinus contorta)
White Spruce (Picea glauca)

A, B, C
A, B, C

A

Deciduous trees and shrubs

Aspen Poplar (Populus tremuloides)
Balsam Poplar (Populus balsamifera)

Bog Birch (Betula pumila)
Willow (Salix Spp.)

A, B
B, C

B
A, B, C

Perennials

Aster (Symphyotrichum Spp.)
Bearberry (Arctostaphylos uva-ursi)

Blueberry (Vaccinium Spp.)
Canada buffaloberry (Shepherdia Canadensis)

Cloudberry (Rubus chamaemorus)
Common Yarrow (Achillea millefolium)

Cranberry (Vaccinium Spp.)
Dandelion (Taraxacum officinale)

Fireweed (Chamerion angustifolium)
Honeysuckle (Lonicera dioica)
Horsetail (Equisetum arvense)

Indian Paintbrush (Castilleja Spp.)
Labrador Tea (Rhododendron groenlandicum)

Milkvetch (Cicer milkvetch)
Raspberry (Rubus Spp.)

Strawberry (Fragaria virginiana)
White Clover (Trifolium repens)

White Peavine (Lathyrus palustris)
Wild Rose (Rosa acicularis)

Yellow Rattle (Rhinanthus minor)
Yellow Sweet Clover (Melilotus officinalis)

A, B, C
B
C
A
B

A, B
A

A, C
A, B, C

C
A, B, C

C
A

A, B
C

A, C
A, B, C

A
A, B
B, C

B

Listed weeds

Broad-leaved Pepper-grass (Lepidium latifolium)
Marsh Thistle (Cirsium palustre)

Meadow Hawkweed (Hieracium caespitosum)
Perennial Sow Thistle (Sonchus arvensis)

A
A
A
A

Graminoids Short-growing graminoids (sp. not recorded
Tall-growing graminoids (sp. not recorded)

A, B, C
C

Mosses Sp. not recorded A, B, C
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2.4. Data Acquisition and Photogrammetric Processing

Imagery from three drone flights was acquired in August and September 2019 using a
20-megapixel camera, measuring in red, green, and blue, carried by a DJI Phantom 4 Pro
(integrated camera) or DJI Matrice 200 v2 (Zenmuse X5S camera) system. Drones include
a ground control station with integrated flight planning software, collision avoidance
systems, and IMU and GPS units, allowing for semi-autonomous data collection. Mean
flying height, overlap, and weather conditions varied between the three data acquisitions.
Table 3 summarizes flight parameters, conditions, and data specifications. High height
above ground level (HAGL) was necessary to comply with visual line-of-sight requirements
and to allow for rapid data collection. Overcast weather resulted in minimal shadowing
at sites A and B, while sunny conditions resulted in heavy shadowing at site C. A pair
of ground control points (GCPs) was placed on the ROW approximately every 200 m,
resulting in a total of 4, 10, and 6 GCPs at site A, B, and C, respectively. GCPs were
registered using a Real-Time Kinematic (RTK) GPS ground station and post-processed
using a Precise Point Positioning (PPP) service.

Table 3. Summary of flight parameters, conditions, and data specifications. Mean values are listed for acquisition time,
height above ground level (HAGL), forward overlap, ground sample distance (GSD), and point density.

Study Site Platform Date Time Weather HAGL (m) Forward
Overlap (%)

GSD
(cm/px)

Point Density
(pts m−2)

A Phantom 2019-08-14 16:20 Overcast 90 75 2.5 885
B Phantom 2019-08-24 13:15 Overcast 180 80 4.9 940
B Phantom 2019-08-25 09:40 Overcast 125 85 3.4 970
C Matrice 2019-09-17 11:00 Sunny 110 90 2.4 1190

Structure-from-motion photogrammetry was used to produce georectified wall-to-wall
point clouds and orthomosaics [52]. The developed workflow incorporates a Scale-Invariant
Feature Transform (SIFT) algorithm to locate conjugate tie-points between overlapping
images, followed by a bundle block adjustment procedure that determines positions and
altitudes of images in 3D space, incorporating GCPs and in-flight GPS and IMU measure-
ments [53–55]. Following image alignment, orthomosaics and dense DAP point clouds
were built with ground sample distances (GSDs) ranging between 1.6 and 1.95 cm/pixel
and mean point densities between 885 and 1190 points m−2. Original image scales were
used throughout all photogrammetric processing steps. Root mean square errors (RMSE)
of the models of sites A and B were close to 1 cm in X, Y, and Z whereas RMSEs for site C
were 34.4 (X), 34.8 (Y), and 7.8 (Z) cm.

2.5. Processing and Analysis

Processing and analysis comprised six steps: (1) point cloud post-processing including
ground filtering and height normalization, (2) DAP height assessment, (3) generation
of hexagon-based descriptions of structure, (4) clustering analysis, (5) cluster interpre-
tation, and (6) assessment of arrangement of vegetation structure across the study sites.
Figure 2 presents a methodological flow diagram and each processing step is described in
detail below.
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2.5.1. Point-Cloud Processing

Critical to the derivation of structure metrics, including vegetation heights, is the
accurate definition of terrain which is especially important when focusing on lower-stature
vegetation. Ground points were filtered conservatively in the DAP point clouds using
triangulated irregular network (TIN) densification followed by an iterative surface lowering
(ISL) method [56,57]. In short, the TIN densification method creates a sparse triangular
surface model based on the lowest points within a search window, after which spikes are
removed and points added iteratively based on certain criteria such as maximum distance
away from the surface and angle [56,57]. Set parameters include step (5 m), spike (50 cm),
offset (10 cm), and bulge (0◦). The ISL refinement method was applied to remove ground
points at the foot of bulges, i.e., mounds that may have been classified incorrectly. ISL
uses ground points from TIN densification and iteratively removes points below a digital
terrain model (DTM) created at each step using Delaunay triangulation.

Consistent point densities are required to derive point-based metrics of vegetation
structure. Point densities vary between data acquisitions, as shown in Table 3, but also
within each site depending on vegetation cover. Therefore, all point clouds were thinned
after normalization, keeping only the highest point per 4 × 4 cm2. Since the focus of the
analysis was short-stature vegetation (<2 m), an additional filtering step was undertaken
to remove high points from overhanging branches.

2.5.2. DAP Height Assessment

To confirm that short-stature vegetation heights can be accurately reconstructed in
the DAP point clouds, we investigated the relationship between in situ and DAP height,
which was assessed by life form. First, the in situ heights measured along the transects
were summarized into 2 × 2 m2 cells to reduce positioning errors. Second, for each 2-m cell
the maximum DAP and in situ height were derived, stratified by life form, and compared
using regression and Spearman correlation coefficients. In addition, mean height offsets
(i.e., bias), root-mean-square errors (RMSEs), and normalized RMSEs, were calculated as
described by [29].
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2.5.3. Structure Metrics

Previous analysis of vegetation structure using DAP datasets has incorporated metrics
describing the 3D point distribution, which are related to vegetation height, height variabil-
ity, and canopy cover [58,59]. Most of these metrics have been shown to be representative
of forest structure at the stand level, however, their applicability at finer spatial resolutions
and for short-stature vegetation is less well demonstrated. We summarized the DAP point
clouds using a hexagonal tessellation, with each hexagon being 1 m2, on the assumption
that hexagons better represent natural vegetation features compared to a grid. The metrics
derived within each 1 m2 hexagon are listed in Table 4 and were selected to describe key
characteristics of vegetation structure.

Table 4. DAP metrics, descriptions, and categories. Metrics selected for cluster analysis are indicated with an asterisk (*).

Metric Description Category

Pn nth percentile point height. Height
Mean Mean point height. Height
Max * Maximum point height. Height

SD Standard deviation of point heights. Height Variability
Skew, Kurt Skewness and kurtosis of point heights. Height Variability

COV * Coefficient of variation is the ratio of standard deviation to mean height. Height Variability

RI * Rumple index is the ratio of canopy surface area, calculated using
Delaunay triangulation, to projected ground area. Surface Complexity

%P_below2.5, %P2.5_25 *,
%P25_50, %P50_75

% Points, i.e., density, within lower height strata. For example, between
2.5 and 25 cm. Cover

%P25_200 * % Points, i.e., density, between 25 and 200 cm representing total
vegetation cover. Cover

High multicollinearity between height metrics, as well as reduced dispersion in height
variability between different short vegetation types was anticipated. We also computed
metrics of canopy surface complexity, the Rumple index, which represents the area of a
canopy surface modeled using Delaunay triangulation divided by the area of a projected
flat surface [60]. Metrics of point density, i.e., vegetation cover, by vertical height strata and
variability were also calculated [61].

All metrics were tested for multicollinearity and removed from analysis if inter-
correlation (r) > 0.8. Selected metrics include maximum height (Max), coefficient of vari-
ation (COV), Rumple index, percentage points between 2.5 and 25 cm (%P2.5_25), and
total vegetation cover (%P25_200). Maximum height was preferred over percentile heights
as it retains treetops. Principle Component Analysis (PCA) was performed on the ini-
tial hexagon-based summaries to analyze the distribution of variance across the selected
metrics and assess their contribution to variance [62].

2.5.4. Two-Step Clustering Analysis

We clustered the selected metrics over the landscape to produce a classification of
vegetation structure to inform restoration activities. Two-step clustering approaches have
been shown to be highly effective on large remotely sensed datasets, [61,63,64], improving
scalability and reducing computing times compared to conventional multivariate clustering
by incorporating a pre-clustering method, in our case, the k-means++ algorithm [64]. As a
result, agglomerative hierarchical clustering was performed to group the pre-clusters using
the Ward linkage algorithm and Euclidian distance [65]. From the initial pre-clusters, an
optimal number of clusters was defined by the gap statistic which compares total intra-
cluster variation with a hypothetical distribution showing no natural grouping. The optimal
number of clusters (k) is found where the gap statistic is maximized but k is minimized.

2.5.5. Cluster Comparison and Interpretation

To assess the uniqueness of the derived clusters, we performed Dunn’s post hoc multi-
ple pairwise comparisons that evaluates, for each metric, whether clusters are significantly
different [66,67]. In addition, exploratory data analysis through visualization was used to
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assess cluster characteristics, which included: a heatmap and dendrogram organized by
hierarchical relations, boxplots of metrics, and cross-sections of the point clouds. Based
on these assessments, similar clusters were merged to result in a final classification of
structure. To interpret the indicative vegetation features and types in each cluster, such as a
dominant life form, level of regeneration, or dominant species, we overlaid and assessed
the seven transects.

2.5.6. Cover and Spatial Arrangement

Lastly, to demonstrate how class cover and spatial arrangement can be used to evaluate
the state of regeneration, we summarized and mapped measures of local spatial association
of the structure classes. To do so we utilized a novel entropy-based local indicator of spatial
association (ELSA), introduced by [68], that can be applied to categorical data. We used a
search radius of 3.3 m.

2.6. Software

The structure-from-motion photogrammetric processing workflow was fully imple-
mented in Agisoft Metashape (v 1.6.3). TIN densification (i.e., initial ground filtering),
height normalization, clipping point clouds to hexagonal extents, and noise filtering were
performed using LasTools [56]. LidR R package’s function grid_canopy in combination
with dsmtin was used for ISL (i.e., refining filtered ground points) and cloud_metrics
for generation of structure metrics. Python’s scikit-learn library functions RobustScalor
and MinMaxScaler were used for scaling and standardizing data. Factoextra R pack-
age was used to determine the optimal number of final clusters. The R packages Clus-
terR and Stats were used for K-means++ and agglomerative hierarchical clustering, in
combination with Heatmaply for extensive visualization. PMCMR R package’s func-
tion posthoc.kruskal.dunn.test was used to evaluate cluster uniqueness. The R package
Ggfortify was used for PCA. Finally, the Elsa R package was used to calculate local spa-
tial autocorrelation.

3. Results
3.1. DAP Height Assessment

The relationship between maximum in situ and DAP height was investigated by life
form (conifer, deciduous, graminoid, and perennial) using transect-based cells. Figure 3
shows strong correlations (rs > 0.75) for all lifeforms, except for graminoid species (rs = 0.26)
with p-values < 0.05. However, DAP heights were consistently underestimated, expressed
by large mean height offsets, ranging from 35.6 cm for perennials and 54.4 cm for conifers.
According to the slope of the linear regression lines, height offsets of deciduous vegetation
samples are consistent throughout all height strata, while offsets of samples representative
of the other three life forms are greater for short vegetation (<75 cm) than tall vegetation.
Offsets between DAP and in situ height were consistent across study sites ranging from an
average offset of 44.1 cm for site B to 47.0 cm for site A.

3.2. Clustering Analysis

We extracted structure metrics, examined multicollinearity, and performed a clustering
analysis including k-means++ pre-clustering and agglomerative hierarchal clustering.
Table 5 shows cross-correlations of the five selected structure metrics. Correlations are
typically much lower than rp = 0.8. Max and RI (rp = 0.80) and Max and %P25_200
(rp = 0.78) are the exception. Again, all p-values were < 0.05.
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Table 5. Pearson correlation coefficients (rp) across the five selected structure metrics, based on 1 m2

hexagons. All p < 0.05. Metrics and associated abbreviations and descriptions are listed in Table 4.

Max RI COV %P2.5_25 %P25_200

Max 1.0
RI 0.80 1.0

COV −0.38 −0.20 1.0
%P2.5_25 −0.20 −0.15 −0.44 1.0
%P25_200 0.78 0.52 −0.54 −0.39 1.0

Figure 4 illustrates the optimal number of clusters (k) selected based on 325 pre-clusters
was nine, which is where intra-cluster variation is maximized while a small number of
clusters is maintained. Sharp increases of the gap statistic were found up to a k of seven. The
dendrogram in Figure 5 shows the similarity between pre-clusters according to a distance
matrix and agglomerative hierarchical clustering. The final clusters were color-coded
based on the optimal k. The dendrogram consists of stacked branches that partition the
pre-clusters into more homogeneous clusters. This means that clusters one and eight were
more similar than clusters eight and four. The heatmap in Figure 5 shows the structure
metrics for the pre-clusters, all scaled from zero to one. The metrics facilitated cluster
characterization and interpretation, for example, cluster nine could be distinguished based
on %P25_200 (close to one) and Max (between 0.6 and one). Note that metrics of a few
clusters showed more similarity with distant clusters than with neighboring clusters, for
example, clusters three with eight.

Principle components 1 and 2 described 54% and 28% of the total variance in the
dataset (Figure 6). The direction of the vectors, or loadings, indicates how metrics drive
the separability of the clusters. COV and %P2.5_25 were most influential in terms of
discriminatory power among clusters and drove separability among clusters associated
with relatively short-stature vegetation and homogenous canopy heights. The stronger
correlated metrics, which included Max, RI, and %P25_200, drove separability of the
clusters with larger vegetation and more heterogeneous structures. In more detail, COV
drove the separability of cluster two and six, and %P2.5_25 drove the separability of cluster
three, seven, and eight. Cluster three and eight, which show high overlap along the vector
associated with %P2.5_25 in Figure 6, could be separated from each other based on Max,
RI, and %P25_200.
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Figure 7 compares the structure metrics across nine clusters. Generally, three group-
ings of clusters can be discerned, principally based on maximum height. The first group
consisting of cluster one and nine had a standardized height around 0.75 (~150 cm). The
second group included cluster four and five approximately 0.37 (~80 cm) and the remaining
clusters lower than 0.2 (~40 cm). The first group also showed relatively high RI values and
was representative of relatively tall vegetation and complex canopy structures. The second
group showed relatively high %P25_200 values and was characteristic of medium-tall
vegetation and high canopy cover. In addition, RI and COV indicated a relatively smooth
canopy for clusters in the second group. The third group was characterized by relatively
low or no canopy cover, indicated by %P2.5_25 and %P25_200, and a smooth to extremely
smooth canopy surface, indicated by RI and COV.
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Within the three groups, we found subtle differences across metrics related to canopy
cover and height variability. In the first and second groups, one of the clusters was
characteristic of a more closed and flatter canopy, clusters nine and four, respectively, while
their counterparts had a more open canopy. Differences between clusters in the third group
were small, although the clusters were still significantly different (p < 0.01). We found
clusters characterized by the absence of vegetation structure, including cluster two and
six, as well as clusters with very short vegetation (three, seven, and eight). Clusters in the
third group can be characterized in more detail with the height and cover between 2.5 and
25 cm greater for cluster six compared to two, likely indicating some presence of very low
stature vegetation. Clusters three, seven, and eight all had high total canopy cover, but
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cluster seven stood out as %P2.5_25 was close to 1, which is representative of dense, very
short vegetation.

3.3. Final Structure Classes

We merged the clusters into final classes based on the structure metrics, point-cloud
visualizations, and field observations. The final classes, including structural descriptions
and indicative life forms, are summarized in Table 6, and representative point clouds are
illustrated in Figure 8 using cross-sections. Relatively tall and complex vegetation was
represented by classes one and two. Field observations indicated the presence of woody
vegetation, predominantly willow (Salix spp.) shrubs, was characteristic of class one.
Single occurrences of aspen poplar and lodgepole pine were also found. Class two was
characterized by tall (>50 cm) graminoids and perennials including yellow sweet clover and
white clover. A few noxious weed species were recorded in the in situ transects overlapping
with class two. The difference in canopy height heterogeneity between underlying clusters,
described in the previous paragraph, was related to the inclusion of more exposed soil and
short vegetation, e.g., graminoids. Figure 8 illustrates that clusters one and five were found
on boundaries of vegetation patches or include single isolated plants.

Table 6. Final structure classes with corresponding descriptions of vegetation structure and observed life forms, based on
the structure metrics, point-cloud visualizations, and field observations.

Class Cluster(s) Structural Description Observed Life Forms

1 1 and 9 Tall and complex vegetation structures. Woody vegetation, e.g., willow.

2 4 and 5 Mid-tall vegetation structures with
low-moderate height variability. Tall graminoids and perennials.

3 3 and 8 Short vegetation structures with low-moderate
height variability. Short graminoids and perennials, e.g., white clover.

4 2 Structures absent and very flat canopy surface. Bare soil, mosses, and short graminoids.
5 6 Structures absent and flat canopy surface. Seedlings, mosses, and short graminoids.

6 7 Very short vegetation structures and flat, or
closed, canopy surface.

Short graminoids and perennials possibly side-by-side
with seedlings.

7 N.A. Vegetation above 2 m, excluded from cluster
analysis. N.A.

Classes three to six were characteristic of short-stature vegetation with homogenous canopy
height and vegetation structure absent. Class three, which is based on two merged clusters,
was characterized by the presence of graminoid species and short perennials such as white
clover. The cross-sections in Figure 8 illustrate strong similarity among classes four, five, and
six, all of which characterized the absence of vegetation structure, however, differences exist.
Class four is absent of vegetation structures and characterized by exposed soil, mosses, and
short grass. Class five includes mosses, short grasses, and small seedlings (approximately 30
to 40 cm). Class six is representative of short graminoids and perennials, that sometimes grew
together with small seedlings, including aspen, black spruce, and willow.

3.4. Land Cover and Spatial Arrangement

Figure 9a shows the proportions of structural classes by site. Total cover by relatively
large and complex structures, presumably woody vegetation, was highest at site A (Lower
Boreal Highlands) with 35.2% followed by site C (Upper Foothills) and B (Lower Boreal
Highlands) with 27.6% and 13.9%, respectively. Site A was mostly covered by young woody
vegetation shorter than 1.5 m (class one; 22%) followed by short as well as mid-tall vegetation
structures representing graminoids and perennials (class two and three; 37.1%). In contrast,
site C had a high cover of developed woody vegetation (class seven; 19.6%) and absent or
near-absent vegetation structures (class four and five; 40.5%) but relatively low cover by classes
representative of short graminoids and perennials (classes two, three, and six; 31.8%) and young
woody vegetation (class two; 8%). Cover percentages found at Site B were similar to site C
except for the cover by short dense vegetation structures (class six; 20.1%) being more than
twice as high as the developed woody vegetation cover (class seven; 7.5%).
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Figure 9. Barplots of (a) land cover percentages and (b) mean patch sizes (m2) by structure class and site. Study site
characteristics are summarized in Table 1 and class descriptions in Table 6.

Patch size distributions of the structural classes are shown in Figure 9b and indicate
that across all sites the largest mean patch size occurred for class seven, ranging from
10.6 m2 for site A to 26.3 m2 for site C. At site A, the second largest mean patch size was for
class one, representing young regenerating woody vegetation. At sites B and C, there were
also a number of areas of class four with vegetation structures absent with mean patch
sizes of 8.3 and 13.7 m2, respectively. In addition, relatively large patches with very short
vegetation structures and homogenous canopy heights, representative of class six, were
found at site B. The mean patch size of class six at this site was 6.1 m2. The remaining
classes at all sites had mean patch sizes ranging from 2.4 to 4.3 m2.

Figure 10 shows maps of the structural vegetation classes across the three sites based
on the classified 1 m2 hexagons. Multiple adjacent ROWs, including an approximately
30-m-wide ROW of a pipeline constructed in 2009 and a 10-m-wide ROW, were observed
at site A with varying compositions of vegetation structure. The narrow ROW was predom-
inantly covered by large patches with tall and complex vegetation structures representative
of classes one and seven, with an anticipated trajectory towards a mature forest. A small
section with mid-to-tall vegetation representative of class two, presumably tall graminoids
and perennials, was found in the east section. A complex mosaic of structure classes was
found on the wide ROW. Relatively large patches with regenerating woody vegetation
representative of class one were observed that connected both sides of the ROW at three
sections. Patches representative of very short but dense vegetation structures, characterized
by class six, connected both sides of the ROW at the east section. Long, narrow continuous
patches representative of class two, characterizing tall graminoids and perennials, were
found in the middle of the wide ROW.
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Site B included an approximately 75 m wide ROW on which multiple parallel sections
with distinctive vegetation structures were found. The southwestern half of the ROW,
which included a power line, had large amounts of class four (vegetation structure absent)
and six (very short but dense vegetation structures). This half was largely separated
by vegetation representative of class seven. The northeastern section, which includes
three pipelines, included long, narrow stretches of young regenerating woody vegetation
representative of class one. Stretches of tall perennials and graminoids representative of
class two were also observed. Lastly, a few relatively large patches of class four were found
adjacent to the forest edge.

At cite C, which included an approximately 26-m-wide ROW of a single pipeline, two
major areas were observed with a high cover of predominantly a single structure class.
A large continuous area with vegetation representative of class seven was found in the
western section (left), while vegetation characteristic of class four (structures absent) was
predominantly found in the eastern section (right).

Measures of local spatial association between structure classes by site, using entropy-
based local spatial association (ELSA) scores ranging from zero to one are shown in
Figure 11. At site A, relatively low ELSA scores were found for class one and seven indicat-
ing both classes occur generally in patches, having a median of 0.47 and 0.25, respectively.
Class four, which is closely followed by class five, had the highest scores, indicating
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hexagons representative of absent or almost-absent vegetation structures were generally
randomly distributed at site A. Contrarily, at sites B and C, class four showed relatively low
ELSA scores of 0.37 and 0.2, respectively, indicating hexagons with vegetation structures
absent typically occurring in patches. At site B, young woody vegetation (class one) and
short graminoids and perennials (class three) show the same level of random distribution,
both having a median ELSA score of approximately 0.55. At site C, classes three and six
had the highest scores with medians around 0.5.
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Figure 12 shows maps of the three study sites indicating the level of local spatial
association based on all classified hexagons. At site A, relatively low ELSA scores were
found at multiple locations on the narrow ROW. ELSA scores were relatively high in the
ROW’s east section indicating a more random class distribution of class two. The wide
ROW showed generally high ELSA scores but included some sections with high patchiness.
In the west section (left), patches were representative of regenerating or more developed
woody vegetation. In the east section (right), patches were found of class six, representative
of very short but dense vegetation structures, that largely formed a connection between the
ROW’s boundaries.

At site B, multiple parallel stretches, as well as large sections adjacent to the ROW’s
boundaries, had low ELSA scores. At the southwestern half of the ROW (bottom), areas
of bare ground surface were highly patchy, becoming more random towards the eastern
(right) locations. Lastly, at site C, two extensive sections with high patchiness were present
in the southwest (left) and northeast (right).

4. Discussion

The past five years have seen considerable progress on the application of DAP for
characterizing short vegetation structures for monitoring, however, research has princi-
pally been focused on DAP height measurement or mapping of structures in sparsely
vegetated landscapes such as savannas [25,26,29]. This study focused on areas of ongoing
anthropogenic disturbance in temperate coniferous and boreal forest ecoregions which
are generally densely vegetated and include heterogeneous mosaics of early successional
vegetation types. The incorporation of metrics derived over a regularized surface, describ-
ing vegetation height, cover, variability, and surface complexity, allowed a more detailed
characterization of vegetation patterns than studies that simply utilize the canopy height
model such as [25].
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Concurrently, innovations in drone design are resulting in systems with longer flight
range and speed, improved autopilot and safety features, and greater maximum pay-
loads [69,70]. Furthermore, drones are becoming more user-friendly due to plug-and-play
sensor systems, improved smartphone-operated mission planning software, and in cloud
processing [69]. New drone-specific aviation legislation and streamlined permit systems
have been implemented by Canadian, American, and, as of 2021, European aviation safety
agencies, making it easier and safer for organizations to start deploying drones [71,72].

In our study, DAP heights were underestimated and show reduced height variability,
which is in line with findings of [29]. This can be explained by height error introduced
during data collection, DAP processing, or ground filtering, being close to short-stature
vegetation height. Observed RMSE values ranged from 38 to 58 cm for various life forms,
while [29] found values in the range of 20 to 46 cm for two height strata (0 to 0.5 m and 0.51
to 2.0 m) at comparable sites with respect to forest type, disturbance type, and successional
stage. Different flight parameters could have caused such a discrepancy. An investigation
by [73] found that small image pitch angle, high solar elevation, and low flight altitudes
ideally between 25 and 50 m (while retaining high image overlap) improved structure
measurements of tree crops. We acknowledge that high flight altitudes (90 to 180 m),
chosen to comply with visual line-of-sight requirements and limit data acquisition time,
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may have reduced data quality in our study. In addition, image pitch angles from the
DJI Phantom 4 acquired imagery were highly variable. High bidirectional reflectance was
observed above exposed soil at sites A and B and heavy shadowing was found at site C.
Our study suggests that errors can partially be explained by vegetation characteristics. The
large height offsets found for conifers suggest that DAP has difficulties resolving seedlings
that ideally stand out more clearly and form an unambiguous structure class. This could be
caused by a combination of flight altitude, illumination conditions, and, as a result, issues
with the identification of treetops during image matching. Automated ground filtering
can become problematic in densely vegetated areas [30,74] which could explain the large
normalized RMSE found for graminoids. Novel flight protocols including oblique imagery
such as those developed by [25,31] can produce very detailed reconstructions of graminoid
and shrub canopies as well as terrain, however, this will require multiple consecutive
flights. We recommend further investigation of optimal flight parameters for short-stature
vegetation, which should also consider battery performance and flight time.

Despite these technological issues, direct measurements of height and canopy at-
tributes were accurate and allowed us to distinguish three broad groupings of structure
associated with young woody vegetation, large perennials, and graminoids as well as
remaining short-stature vegetation. Subtle differences in metrics describing height vari-
ability and canopy cover allow for the classification of the shortest vegetation structures
representative of meadow grasses, seedlings, short shrubby, and herbaceous perennials.
Previously, [61] demonstrated that such metrics enabled the characterization of forest stand
structure from LiDAR. Early successional vegetation shows much less layering along the
vertical dimension but higher structural variation along the horizontal dimension com-
pared to mature forests, which may explain the success of comparable metrics for the
classification of short vegetation structures from DAP. Note that DAP typically has a higher
spatial resolution in comparison to conventionally flown LiDAR point clouds but is limited
to characterization of the top canopy.

Hexagon-based clustering analysis using ELSA provided maps of vegetation struc-
tures at relevant spatial and thematic scales for ecologists and restoration professionals,
requiring limited field sampling for validation and interpretation purposes. Traditional
studies based on field sampling are constrained by time, costs, and resources, which may
result in arbitrarily chosen scales of observation, not well-matched with scales of ecological
processes or environmental variables [18,20]. Such risks are now partially averted, as
underlying environmental variables and processes can be worked out after data acquisition
based on shape, location, and patterns of patches of particular structure classes.

Some unambiguous restoration objectives are analogous to vegetation structure [11].
Such objectives, including soil stabilization and undesirable species control, can be moni-
tored using combined measures of structural cover, patch size, and spatial arrangement.
Areas of potential erosion could be identified based on cover without structures in combina-
tion with associated levels of patchiness as illustrated by Figures 9 and 11. Mapped shapes
and patterns can support restoration professionals by describing and identifying underly-
ing factors such as existing erosion, terrain wetness, seedbank issues, or soil conditions. In
addition, where erosion control includes willow or shrub staking [42], vegetation estab-
lishment can potentially be tracked using the developed tools. One of the shortcomings
of our approach is that species composition is hard to determine, which is necessary for
assessing the presence of invasive species. Alternatively, restoration professionals may find
that specific structural vegetation classes are more likely to represent undesirable species or,
if showing high patchiness, limit successional development towards a treed environment.

Future studies should investigate the potential for the application of off-the-shelf mul-
tispectral and hyperspectral drone-based sensors, in combination with spectral vegetation
indices that capture unique characteristics of plant reflectance, for improving effective dis-
crimination between plant communities. Where a structural or spectral dataset alone may
not be able to resolve the boundaries of a plant community, a combination of the two may
improve discrimination as demonstrated by [75]. In addition, it is important to investigate
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the consistency of the derived information under varying flight parameters and develop
novel flight protocols considering simplicity, cost-effectiveness, and quality of derived
information. Considering that there is a growing push for the restoring and monitoring
of sites impacted by resource extraction, as well as interest in monitoring of present-day
reference sites within the ecological restoration community [76], we suggest that drones
will play an increasingly important role in forest restoration projects in the future.

5. Conclusions

Our approach demonstrates how drone-based DAP can be used to characterize short-
stature vegetation structures on sites displaying a complex mosaic of vegetation types
typical for temperate and boreal coniferous forests in Alberta, Canada. Extraction of classes
representative of mid-to-tall vegetation structures, such as young woody vegetation, tall
graminoids, and perennials, is relatively straightforward based on metrics describing
canopy height and surface complexity, while more carefully selected metrics describing
canopy cover and height variability are necessary to obtain classes of most short-stature
vegetation structures. The spatial arrangement of mapped structures can improve our
understanding of vegetation patterns, which could help to describe the driving environ-
mental variables and processes of ecological succession within the landscape. In return, this
could support the evaluation in relation to restoration objectives, as well as prioritization of
mitigation measures and future monitoring. We anticipate that optimized flight protocols,
optimal weather conditions, and enhanced sensors can further improve the capability of
DAP to characterize early regenerative vegetation structures.
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