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Abstract: Fisheye cameras are widely used in visual localization due to the advantage of the wide
field of view. However, the severe distortion in fisheye images lead to feature matching difficulties.
This paper proposes an IMU-assisted fisheye image matching method called spherically optimized
random sample consensus (So-RANSAC). We converted the putative correspondences into fisheye
spherical coordinates and then used an inertial measurement unit (IMU) to provide relative rotation
angles to assist fisheye image epipolar constraints and improve the accuracy of pose estimation
and mismatch removal. To verify the performance of So-RANSAC, experiments were performed
on fisheye images of urban drainage pipes and public data sets. The experimental results showed
that So-RANSAC can effectively improve the mismatch removal accuracy, and its performance was
superior to the commonly used fisheye image matching methods in various experimental scenarios.

Keywords: fisheye image matching; inertial measurement unit (IMU); random sample consensus
(RANSAC); mismatch removal; sensor fusion

1. Introduction

Fisheye cameras have a wide field of view (FOV). The images acquired by fisheye
cameras have richer visual information than those acquired by perspective cameras, which
is conducive to extracting and tracking more visual features [1]. In infrastructure moni-
toring applications, such as bridge inspection, tunnel inspection, and drainage pipeline
disease detection [2–4], due to the long mileage, narrow internal space, and lack of texture
in the inspection scene, visual localization is prone to problems with extracting sufficient
features and error accumulation, and it is difficult to ensure the stability and reliability of
localization. In this case, wide-angle fisheye images are more conducive to the matching
and tracking of visual features, thereby improving the reliability of image registration and
camera pose estimation and further improving the visual localization accuracy. There-
fore, in a complex environment, using a fisheye camera for visual localization is more
advantageous than using traditional cameras.

However, the special properties of fisheye images also bring challenges to image
matching: fisheye images compress visual information while acquiring a wide FOV, so
objects in fisheye images undergo nonrigid deformation; at the same time, perspective
projection models cannot describe the imaging process of fisheye cameras, so a specific
imaging model is needed to accurately describe the two-view geometry of fisheye images.
In view of these problems, the existing matching methods are not effective. On the one
hand, traditional feature matching methods are sensitive to distortion, fast motion, and
sparse texture, so a large number of outliers will be generated in fisheye image matching,
resulting in a decline in the matching accuracy. On the other hand, the mismatch removal
algorithm represented by random sample consensus (RANSAC) [5] usually requires the
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establishment of specific geometric models (e.g., essential matrix). These models are usually
based on perspective projection and cannot accurately describe the two-view geometry
between fisheye images, which will lead to errors in fisheye image matching. These errors
may then lead to inaccurate pose estimation or localization failure. Therefore, it is of great
importance to develop robust and reliable fisheye image matching methods that can lay
the foundation for high-precision localization of complex scenes.

To solve the problem of poor matching accuracy and inaccurate pose estimation caused
by severe fisheye image distortion, we propose an IMU-assisted fisheye image matching
method called spherically optimized RANSAC (So-RANSAC). First, a fisheye spherical
model was adopted to restore the epipolar geometry of fisheye images. Then, the relative
rotation angle was estimated by IMU propagation. On this basis, IMU-assisted RANSAC
was adopted to improve the accuracy of pose estimation, and the putative correspondences
set was filtered by the estimated pose to achieve reliable fisheye image matching.

The contribution of this paper is two-fold. First, we propose the So-RANSAC for
fisheye image matching. A fisheye spherical model is proposed to reconstruct the epipolar
geometry of fisheye images that projects the putative correspondences on the original
fisheye images to a sphere. By combining the spherical model, IMU, and RANSAC, we
propose an outlier removal method that is adaptive to fisheye distortion thus reducing the
influence of fisheye deformation on pose estimation and improving the outlier removal
accuracy. Second, we performed an experiment on an infrastructure monitoring application
of urban drainage pipe inspection. The fisheye images of pipes were acquired using a
self-developed pipe capsule robot. The experimental results validate the superiority of our
method in fisheye image matching.

2. Related Work

The process of fisheye image feature matching can be abstracted into two stages [6]:
a feature matching stage and an outlier removal stage. In the feature matching stage, the
features are extracted and described by descriptors, and then feature matching is performed
based on the descriptors to obtain the putative correspondences set. However, this set
contains outliers; therefore, the second stage is to filter the putative set, keep as many
inliers as possible, and remove outliers. In the following, we review the related works and
briefly classify and introduce them according to the above two stages.

In the fisheye image feature matching stage, the main factor that affects the accuracy
is severe distortion. Traditional matching methods are sensitive to distortion and cannot
guarantee accuracy and robustness in fisheye image matching tasks. Therefore, the key to
improving the accuracy of fisheye image matching is how to deal with distortion. According
to their different principles of processing deformation, we divided the current fisheye
image feature matching methods into two groups: methods based on geometric correction
and methods based on distortion models. Methods based on geometric correction adopt
rectification algorithms to remove distortion and then perform traditional matching. The
first step is to calibrate the fisheye camera [7–9], project the fisheye image onto a new
image plane through projection transformation to correct the image [10–13], and, finally,
apply traditional matching methods (e.g., scale-invariant feature transform (SIFT) [14],
oriented FAST and rotated BRIEF (ORB) [15]). This group of methods has a simple process
flow; however, there are two shortcomings: one is that the rectification process will cause
the loss of information [16], which loses the advantages of the wide FOV, and the other
is that reprojection will lead to image artifacts [17]. The methods based on distortion
models build improved feature matching descriptors that are based on fisheye distortion
models to directly match fisheye images. The affine-invariant detectors, Harris–Affine and
Hessian–Affine [18], have good adaptability to local deformation, and it was verified in [19]
that they can achieve good performance against fisheye distortion. Another idea has been
to introduce fisheye distortion models into the scale space to improve the SIFT algorithm
(e.g., Spherical SIFT [20]; Omni SIFT [21]; sRD-SIFT [22], and the division model [23]). This
group of methods avoids the artifacts caused by reprojection, and the improved feature
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descriptor is adaptable to distortions, and effectively improves the accuracy of fisheye
image feature matching.

Feature matching results inevitably include outliers; thus, outlier removal is neces-
sary. There are two difficulties in removing outliers from fisheye images. First, fisheye
images do not conform to perspective geometry, so epipolar constraints in pose estimation
(e.g., essential matrix) will lead to errors. Therefore, methods based on geometric models
(e.g., RANSAC) become inaccurate. Second, severe distortion leads to a large number
of outliers.

To address the challenge of outlier removal, researchers have proposed nonparametric
outlier removal methods independent of geometric models [24] that are based on the
assumption of local geometric consistency. The assumption is that the geometric properties
of image features remain consistent before and after deformation in a small local region.
The locality preserving matching (LPM) [25] algorithm looks for adjacent points of putative
correspondences in a local region and takes the distance between adjacent points as the
metric standard. The locality affine-invariant matching (LAM) [26] algorithm is based on
the principle that the area ratio before and after affine transformation remains unchanged,
and it uses the adjacent points in the local region of putative correspondences to construct
the affine-invariant triangle, which can improve the matching accuracy in the case of
deformation. The four-feature-point structure (4FP-Structure) [27] algorithm combines
point and line feature constraints to construct a strict geometric relationship composed of
four pairs of putative correspondences, and the matching accuracy is further improved.
This kind of nonparametric method has a higher adaptability to distortion. However, if
the constraints are loose, the accuracy will be low, and if the constraints are strict, the
efficiency will be reduced. Moreover, these methods do not straightforwardly deal with
fisheye distortion, so there are still challenges in fisheye image matching.

Another idea is to use additional information to assist image matching. Additional
information is provided by means of pre-calibration, multi-sensor fusion or fixed connec-
tions between the camera and the vehicle platform to provide a reference for matching. The
recursive search space method (SIFTRFS) [28] uses global positioning system (GPS) data to
provide the camera pose and improves the fisheye epipolar geometry model through spher-
ical projection so that the essential matrix can be used for pose estimation. The inliers are
selected by predicting the positions of the points after they are projected onto the adjacent
images. However, the depth of the point in the pose estimation process is estimated only
by experience. The one-point RANSAC method was proposed in [29]; this method affixes
a fisheye camera on a vehicle platform and establishes nonholonomic constraints through
the instantaneous center of rotation (ICR) of the wheel. However, this method requires
the camera to be installed along the rear axle, and the x-axis must be perpendicular to the
rear axle; thus, the application scenarios are limited. A four-point RANSAC method is
proposed in [30], which uses the attitude provided by an IMU affixed to a camera to assist
pose estimation and does not require camera-IMU calibration. However, this method is
used only for perspective cameras. The adaptive fisheye matching algorithm [31] also uses
fisheye epipolar constraints, but the constraint is constantly adjusted based on the Kalman
filter prediction state to improve the pose estimation accuracy. This kind of multi-sensor
fusion method can effectively improve the accuracy of pose estimation and outlier removal
by using additional information, and the results of RANSAC-type methods can be inte-
grated into a visual oedometer as the initial value. However, such methods are usually
limited to specific hardware requirements and application scenarios or are not suitable for
fisheye images.

In addition to the above works, learning-based methods provide a new way to address
fisheye image matching problems. In the feature matching stage, deep learning methods
can significantly improve the accuracy of matching [32]. However, existing studies mainly
focus on rectilinear perspective images. For fisheye images with significant distortions,
deep learning methods still face challenges. Learning from images for transformation
model estimation is limited when applied to images under complex and serious deforma-
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tion [6]. A deep architecture was developed in [32] to learn to find good correspondences
for multiple types of images, but the recall rate was low in severely distorted scenes. An
end-to-end framework was introduced in [33] with the aim to enhance both precision and
recall in the fisheye image matching process, but they transformed the fisheye image to a
rectilinear perspective image to remove the radial distortion, which will lead to the loss of
image information. To develop learning-based methods for fisheye image matching, the
key lies in how to model the distortion in a deep neural network, but there is no represen-
tative method at present. However, the success of learning-based methods in the field of
conventional images indicates the potential of deep learning for fisheye image matching.

3. Spherically Optimized RANSAC Aided by an IMU

The motivation for this paper was to explore an inertial-assisted matching method
suitable for fisheye images in view of the limitations of the previous multi-sensor-assisted
matching method. The So-RANSAC algorithm proposed in this paper was inspired by
previous works [22,28–30]. This method can be divided into three stages: (1) fisheye model
construction: the internal parameters and the distortion parameters of the fisheye camera
were obtained by calibration, and the fisheye camera imaging model was recovered from
the fisheye image; (2) image feature matching: feature points were extracted by an affine-
invariant detector; (3) outlier removal: So-RANSAC method was proposed to construct
the fisheye spherical coordinates, and then outliers were removed. Compared with the
previous methods, So-RANSAC not only improves the outlier removal accuracy by using
the IMU, but also has good adaptability to fisheye distortion. The main innovation of this
paper is the construction of a fisheye spherical model that restores the fisheye epipolar
constraints and improves the outlier removal accuracy. The overall process of our method
is shown in Figure 1.
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Figure 1. Overall flowchart of the fisheye image matching method.

3.1. Camera Model and Feature Matching

Fisheye camera models do not conform to the perspective geometry; that is, they do
not conform to the collinear condition, so the fundamental matrix or essential matrix under
the perspective geometry cannot be directly applied to fisheye images. To handle this
problem, the fisheye camera needs to be calibrated, and the two-view geometry needs to be
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restored based on a specific model. Therefore, in this stage, the fisheye camera calibration
method proposed in [7] was adopted. The principle can be expressed as:

[u, v, f(u, v)] = PX (1)

f(u, v) = a0 + a1ρ + a2ρ2+···+ anρn (2)

where (u, v) represents the image pixel coordinates, X represents the world coordinates,
f(u, v) is a function related to (u, v), ρ is the distance from (u, v) to the principal point of
the image, a0, a1,···, an is the set of coefficients to be calculated (usually, n = 5), and P is
the projection matrix. After calibration, a collinear relationship is established between
the pixel coordinates of the points in the fisheye image and the world coordinates of the
spatial points.

In the feature matching stage, the Hessian–Affine detector [18] is used to extract feature
points. The principle of the Hessian–Affine algorithm is that the deformation between the
local regions of fisheye images can be approximated by an affine transformation. Based on
this principle, affine regularization is carried out on the local regions of extracted features
to reduce the influence of deformation on feature description. Finally, the extraction and
matching of feature points are completed, and the putative correspondence set is obtained.

3.2. Fisheye Image Matching Aided by an IMU

In the outlier removal stage, we propose So-RANSAC to remove outliers while cor-
rectly estimating poses. Traditional RANSAC first randomly extracts a minimum sample
from the putative set to estimate a pose model and then divides inliers and outliers based
on this model. The optimal pose is constructed through an iterative process of sample
selection and estimation. However, traditional RANSAC is sensitive to a high proportion
of outliers, and the pose estimation step is based on perspective geometry. In this paper,
RANSAC is improved by projecting the fisheye image correspondences onto a sphere and
restoring the epipolar geometry for pose estimation, and the matching process is assisted
by an IMU.

The process of So-RANSAC is shown in Figure 2. The putative correspondence set is
converted into spherical coordinates in the fisheye spherical projection part; the relative
rotation angle is obtained by IMU propagation in the assistance of the IMU part as a
constraint of pose estimation. By combining the above two parts, four-point RANSAC [30]
is used to remove outliers, and, finally, the matching result is obtained.
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3.2.1. Fisheye Spherical Projection

The fisheye images undergo severe distortions such that the perspective geometry of
rectilinear perspective images cannot be directly applied to fisheye images [34]. Specific
projections (e.g., panoramic or log-polar) can reduce the distortions, while the spherical
projection is a non-deformed model for the fisheye images. The projection of the visual
information on the sphere correctly handles the information without introducing distor-
tion [21]. Therefore, we adopted the spherical projection to restore the epipolar geometric
relationship of the fisheye image and apply the RANSAC method to the fisheye image. The
projection of image coordinates onto a sphere was conducted on the basis of calibration as
shown in Figure 3.
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Fisheye cameras can be modeled by a unit sphere and a perspective camera [9], which
means the fisheye imaging process can be performed in two steps: First, we project the
world points onto the unit sphere. This step is similar to perspective cameras and conforms
to the collinear condition. Then, points on the unit sphere are projected onto the fisheye
image plane, and fisheye distortion is mainly produced in this step.

According to this imaging process of a fisheye camera, we can also restore the fisheye
epipolar geometry in two steps: First, we reproject the image points back to the unit sphere
through calibration to avoid the influence of distortion. Then, we can restore the collinear
relationship between the spherical points and the world points.

In Figure 3, (u1, v1) is the image pixel coordinates of world point P. (u1, v1), P1, and P
do not satisfy the collinear condition due to the influence of fisheye distortion. Under the
calibration model [7], f (u, v) was used to represent the image distortion. We converted an
image pixel point (u, v) to the point (u, v, f(u, v)) on the sensor plane thus taking the fisheye
distortion into consideration. The point (u, v, f(u, v)) is related to a ray emanating from the
viewpoint O to the world point, and this relation is expressed by Formula (1). Therefore,
the points on the sensor plane and the world points conform to the perspective projection.
Finally, we normalized the points on the sensor plane to the unit sphere. Through the
above process, we modeled the fisheye distortion and restored the collinear condition.
The details are as follows: According to Formula (1), the coordinates (u, v, f(u, v)) restore
the collinear geometry by calibration [7]. (u, v, f(u, v)) are normalized to the unit sphere
and converted into spherical coordinates (Xs, Ys, Zs) for the subsequent implementation of
the pose estimation algorithm. The normalization and projection are accomplished by the
following formula:

[Xs, Ys, Zs)] = [u, v, f(u, v)]/n (3)

n =
√

u2 + v2 + f 2(u, v) (4)

where (u1, v1) and (u2, v2) are the image pixel coordinates of world point P projected
onto fisheye images A and B. The fisheye camera is calibrated to obtain (u1, v1, f (u1, v1))
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and (u2, v2, f(u2, v2)), and the spatial coordinates are normalized to spherical coordinates
O1 and O2 to obtain P1(Xs1, Ys1 Zs1) and P2(Xs2, Ys2 Zs2), so the collinear relationship
can be reconstructed, and the relative motion between the two fisheye images can be
described by essential matrix. By combining this spherical model and the IMU-aided
RANSAC, we extend the RANSAC method for rectilinear perspective images and propose
the So-RANSAC with fisheye distortion adaptability.

3.2.2. Relative Rotation Angle

The IMU can obtain accurate short-term poses, so when the accuracy of visual pose
estimation is not good, the pose obtained by the IMU is used as the constraint of RANSAC
to improve the matching accuracy.

In this paper, the theoretical basis of IMU-aided matching was the invariance of the
rotation angle of a rigid body in different coordinate systems [35]. It was further proved
in [30] that when the camera and IMU are fixed, the rotation angle obtained by the IMU can
be directly regarded as the rotation angle of the camera without the need for camera-IMU
calibration. Based on this theory, we first used the IMU affixed to the camera to obtain the
measurement data, then Madgwick’s method [36] was used to obtain the attitude, and,
finally, we converted the attitude into the equivalent rotation vector and rotation angle in
which the rotation angle was used to assist with outlier removal.

The complete propagation of the IMU state is complex; thus, for the sake of clarity, we
used a simplified navigation equation to describe the IMU orientation propagation:

Ċb
n = Cb

n

([
ωb

ib

]
×

)
(5)

where Cb
n is the attitude matrix of IMU, which represents the conversion from the body

frame (b) to the navigation frame (n), andωb
ib is the real angular velocity measured by the

IMU, and × represents the conversion of the vector into the skew-symmetric matrix. The

change in attitude Ċb
n over time is described by Equation (5).

After the attitude at each moment of the IMU is obtained by IMU propagation, the

relative transformation between the attitudes Ċb
n of adjacent moments is calculated to obtain

the rotation matrix R. R describes the relative motion between Ċb
n of adjacent moments,

and then R is expressed as a function of the equivalent rotation vector φ by Rodrigue’s
rotation formula [37].

R = I +
sin ‖φ‖
‖φ‖ +

1− cos φ

‖φ‖2 ([φ]×)2 (6)

where φ represents the three-dimensional equivalent rotation vector, the vector direction
of the equivalent rotation vector represents the direction of the axis of rotation, and the
magnitude of the norm ‖φ‖ represents the magnitude of the rotation angle.

3.2.3. RANSAC Aided by the IMU

RANSAC estimates the essential matrix, E, through a five-point method. For a corre-
spondence s and s’, the two-view geometry is described by the essential matrix:

s E s’ = 0 (7)

E = [t]×R (8)

where t represents the displacement, [t]× represents the skew-symmetric matrix, and R
represents the rotation matrix. The essential matrix E has 5 degrees of freedom, and at least
5 correspondences are needed to estimate it.

The rotation matrix is expressed by Rodriguez’s rotation formula. The vector direction
of the equivalent rotation vector φ in Formula (6) is expressed by the unit rotation axis
vector µ in three-dimensional space, the magnitude of the norm ‖φ‖ is expressed by the
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rotation angle θ, and the rotation matrix is described by R(θ, µ). At the same time, according
to Lie Algebras [38], the skew-symmetric matrix is rewritten by Formula (9), Formula (6) is
transformed into Formula (10), and Formula (8) is converted into Formula (11):

([µ]×)2 = µ µT − I (9)

R(θ, µ) = (cos θ)I + (1 − cos θ) µ µT + (sin θ)[µ]× (10)

E(θ, µ, t) = [t]× R(θ, µ) (11)

To estimate E(θ, µ, t), the parameters to be calculated are the rotation angle θ, unit
rotation axis vector µ = (µx, µy, µz)T, and displacement t = (tx, ty, tz)T, for a total of 7
unknowns. Since the scale is unknown, µ and t are normalized, so there are 5 degrees
of freedom. For the RANSAC task, the reduction in the degree of freedom means the
reduction in the number of points required in the minimum sample set, and the influence
of the outliers is reduced, so fewer iterations are required, and the theoretical accuracy
of the method will also be improved [30]. We adopted four-point RANSAC to estimate
E(θ, µ, t), and we provided the rotation angle θ through the IMU to reduce the degrees of
freedom of pose estimation. After introducing θ, E had only 4 degrees of freedom, and
4 correspondences were required to estimate the pose, which simplified the calculation.
Subsequently, the obtained pose model was used to calculate the reprojection error of each
point in the putative set, and the inliers and outliers were classified. After iterating, the
optimal pose and inliers set were finally obtained.

The above content is the principle of the So-RANSAC algorithm on the fisheye spheri-
cal point set S; the algorithm flow is shown in (Algorithm 1).

Algorithm 1 So-RANSAC aided by IMU
Input: putative set M, relative rotation angle θ, fisheye camera calibration parameters
Initialization:
1. The putative set M is projected onto the sphere, and the spherical set S is obtained
2. for i=1:N do
3. Select a minimum sample set (4 correspondences) from S
4. The essential matrix E is estimated, and the attitude of the model is given by θ
5. The reprojection error of S is calculated according to model E, and the number of inner
points Ninliers is calculated.
6. The model with the largest Ninliers is regarded as the best model
7. end for
8. Save the optimal model Eoptimal and the inliers
Output: Inliers

In summary, the method proposed in this paper adopted four-point RANSAC to inte-
grate the IMU and visual information, and we used the IMU to improve the effect of outlier
removal. This did not require camera–IMU calibration, which was convenient to apply.
More importantly, the reliability of the epipolar constraint was improved by constructing
the fisheye spherical coordinate model, and the accuracy of RANSAC was improved.

4. Results
4.1. Experimental Data

To verify the method proposed in this paper (So-RANSAC), image matching experi-
ments were carried out in a real application and using public data sets.

The real application was the detection of urban drainage pipes. The fisheye images
of the drainage pipe were acquired by a self-developed pipe capsule robot. The robot
had a small, portable structure and traveled in the pipeline by drifting; it also had a high
work efficiency and autonomously localized and detected pipeline issues. An IMU and a
fisheye camera were integrated into the robot. The type of IMU was an ICM-20689 high-
performance six-axis microelectromechanical systems (MEMS), and the fisheye lens was
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a high-definition 220◦ wide-angle lens. The main hardware specifications of the capsule
robot are shown in Table 1.

Table 1. Main parameters of the capsule robot.

Main Components of the Robot Parameters

CMOS IMX274 1080p HD sensor
Lens 220◦ wide-angle HD lens

Video resolution HD 1080p
Frame rate 1080p 60 fps

IMU ICM-20689 high-performance 6-axis MEMS

The appearance of the capsule robot is shown in Figure 4. The original data taken by
the robot were 1080p video data, and the frame rate was 60 frames per second. The video
was sampled at 30 frames per second to obtain discrete fisheye images as shown in Figure 5.
Due to the complex internal environment of drainage pipes, the factors that affected the
fisheye image matching problem included motion blur and lens occlusion caused by the
water environment, fisheye distortion, and the lack of texture caused by the pipe surface
material. Therefore, the fisheye image matching task of this scene was challenging.
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Figure 5. The fisheye images obtained by the capsule robot.

In addition, we used fisheye images from the Technical University of Munich’s (TUM)
monocular visual odometry data set [39]. The scene in the data set is an indoor environ-
ment. Compared with the pipeline data, the TUM images have richer textures, no violent
motion artifacts, and better image quality as shown in Figure 6. This data set was selected
for comparison to verify the robustness of the proposed method in different scenarios.
The TUM data set provided the ground truth of the camera pose, that is, the absolute
pose information at each moment, and the poses are represented by quaternions. In this
experiment, the quaternion data were converted into relative rotation angles, which are
regarded as auxiliary information.
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4.2. Image Matching Results

The ground truth of the fisheye image matching experiment was manually selected
to ensure correctness. The So-RANSAC was compared with RANSAC [5] and the current
state-of-the-art methods: LPM [25], vector field consensus (VFC) [24], and four-point
RANSAC [30]. The matching quality was evaluated through the precision, recall, and
F-score, which were calculated by Formulas (12)–(14). In addition, we counted the number
of correct matches (NCMs) and the success rate (SR) as the evaluation metrics.

Precision =
NCorrect

NCorrect + NFalse
(12)

Recall =
NCorrect

NGroundtruth
(13)

F–score =
2·Precision·Recall
Precision + Recall

(14)

For the parameter settings of each matching method, the confidence of the RANSAC-
type methods was set to 0.99, and the threshold of the reprojection error of the inliers
during iteration was set to 3 pixels. The parameters of the LPM and VFC algorithms
were set according to the default parameters of the source code provided by the authors.
The IMU measurements in the pipeline were processed in accordance with the method in
Section 3.2.2, using Madgwick’s method [36] to obtain the attitude at each moment and
then converted to the relative rotation angle. The TUM data set provided the ground truth
of the attitude, which was directly converted into the relative rotation angle. Detailed
information on the experiment is shown in Table 2.

The average number of correct matches (NCMs) and the success rate (SR) of matches
were calculated on the pipeline data set as shown in Table 3. To calculate the matching
success rate, we first estimated the correct pose using the correspondences of the ground
truth; then, we calculated the residuals of the putative correspondences under the estimated
pose of the ground truth and regarded the correspondences with residuals less than 3 pixels
as the correct matches. If the number of correct matches of an image pair was less than four,
we considered that the match had failed. Due to the complex characteristics of pipeline
images (e.g., motion blur, fisheye distortion, and the lack of texture), the RANSAC-type
methods may fail when the number of correct correspondences is less than four pairs or
there are too many outliers. Therefore, the matching success rate of the three RANSAC-
type methods was only 96%. The introduction of IMU assistance did not improve this
situation, but it did increase the number of correct matches. The LPM and VFC methods
are based on local geometric constraints, so they are more adaptable to these situations,
and their matching success rates were both 100%, and they retained more correct matches
than RANSAC-type methods. However, it should be noted that although the matching
success rate can reflect the adaptability of the matching method under harsh conditions, if
the restriction is too loose, the high matching success rate may also lead to undiscovered
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outliers. Therefore, in order to measure the performance of the matching methods, it is also
necessary to consider other evaluation metrics (e.g., precision and recall).

Table 2. The details of the experimental settings.

Scheme 1 Information

Parameters (1) So-RANSAC, Four-point RANSAC, RANSAC: p = 0.99, T = 3
(2) LPM, VFC: default

Data sets (1) TUM data set: sequence_01, 50 images; sequence_05, 50 images; sequence_14, 50 images
(2) Pipeline data set 1: 50 images; Pipeline data set 2: 50 images

Methods

(1) RANSAC, C++, OpenCV 2.4.9
(2) Four-point RANSAC, C++:

https://github.com/prclibo/relative-pose-estimation/tree/master/four-point-groebner
(3) LPM, MATLAB: https://github.com/jiayi-ma/LPM
(4) VFC, MATLAB: https://github.com/jiayi-ma/VFC

Evaluation metrics Precision; recall; F-score; MAE; RMSE

Table 3. The comparison of NCMs and SR on the pipeline data set.

Method Correct Matches Number Success Rate/%

RANSAC 127.15 96
LPM 190.45 100

Four-Point RANSAC 147.21 96
VFC 187.19 100

So-RANSAC 165.27 96

Figure 7 shows the matching results of sample image pairs selected from the pipeline
and TUM data sets. In the pipeline image matching example in Figure 7, the LPM algorithm
considered only the geometric consistency in the local area (usually within a few pixels),
and the precision was only 58.37% in the case of repeated texture in the pipeline image.
However, due to the fact of its loose geometric restrictions, the recall reached 95.42%. The
VFC algorithm assumed that the correct matching points should conform to the same
vector field model, but due to the serious distortion in fisheye images, this assumption
was inaccurate, so the precision was only 66.38%. However, it is worth mentioning that
although the accuracy of the above two methods is not high, they have a high recall and
can retain most of the correct correspondences. Therefore, in tasks requiring real-time
performance, they can be used as coarse matching method to provide initial values for
subsequent optimization. RANSAC, four-point RANSAC, and So-RANSAC have the same
basic principles, but the difference lies in two points: whether to use IMU assistance and
whether to use a fisheye spherical model. Neither RANSAC nor four-point RANSAC
adopted the fisheye model; the precision of RANSAC was 82.69%, and the precision of four-
point RANSAC improved to 89.91% after the addition of IMU assistance. The So-RANSAC
method adopted fisheye spherical coordinates in the pose estimation stage, which was
more adaptive to distortions, so the precision improved to 90.23%, thus indicating the
feasibility of this spherical model.

In the example of the TUM data set image in Figure 7, the performance of each
matching method is relatively improved due to the better image quality and richer texture.
By comparison, the precision values of the LPM and VFC algorithm were still relatively
lower than those of the RANSAC-type methods, but the recall values were high. The
So-RANSAC method still outperformed RANSAC and four-point RANSAC.

https://github.com/prclibo/relative-pose-estimation/tree/master/four-point-groebner
https://github.com/jiayi-ma/LPM
https://github.com/jiayi-ma/VFC
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Figures 8 and 9 quantitatively compare the precision, recall, and F-score of each
method in five sets of experimental data (the detailed information on the five sets are
shown in Table 2). For each set, we calculated the mean value of the matching results of all
the images (precision, recall, and F-score), and displayed them via line chart and histogram.
Finally, all the data were integrated to calculate the overall precision, recall, and F-score,
which are shown in Table 4.

By comparison, it can be seen from Table 5 that the precision of the LPM algorithm
was 66.49%, but the recall was 96.82%, which was the highest among the five methods. The
VFC algorithm was sensitive to distortion, and its precision was the lowest (65.57%). So-
RANSAC achieved the best performance with a precision of 92.57% and a recall of 88.41%;
its F-score was 90.44%, both precision and F-score were the highest. The performance of
four-point RANSAC ranked second; the precision and the recall of four-point RANSAC
were better than those of RANSAC with IMU assistance, and the F-score was 85.53%.
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The precision of RANSAC was 83.26%, which was better than that of the LPM and VFC
algorithms, but the recall was the lowest (75.73%).
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Table 4. Performance comparison.

Method Precision Recall F-Score

RANSAC 0.832693 0.757375 0.793250
LPM 0.664963 0.968233 0.788440

Four-Points RANSAC 0.888411 0.824689 0.855364
VFC 0.655793 0.957326 0.778377

So-RANSAC 0.925717 0.884100 0.904430

In addition, the performance of the five methods on the TUM data set was superior
to their performance on the pipeline data, because the image quality was better and
the image textures were richer in the TUM data set. In addition, the motion blur and
repeated textures of the pipeline images reduced the matching accuracy. In general, the
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So-RANSAC method had good performance in real and experimental scenes and was
robust to complex environments.

Table 5. Comparison of the reprojection error.

Method MAE/Pixels RMSE/Pixels

RANSAC 2.757730 3.119673
Four-Points RANSAC 2.208425 3.093145

So-RANSAC 1.595407 2.109953

4.3. Reprojection Error

RANSAC-type methods carry out pose estimation while removing outliers, and the
result can be used as the initial value in visual odometry or simultaneous localization
and mapping (SLAM). To verify the pose estimation accuracy, the correspondences of
the ground truth in all the image pairs were reprojected according to the estimated pose,
and the reprojection error vi was calculated. Reprojection errors of RANSAC, four-point
RANSAC and So-RANSAC were compared and evaluated by calculating the mean absolute
error (MAE) and root mean square error (RMSE) of the ground truth points set.

MAE =
∑N

i=1|Vi|
N

(15)

RMSE =

√
∑N

i=1 Vi
2

N
(16)

Detailed information on the experiment is shown in Table 5. The experiment shows
that the reprojection error of four-point RANSAC was smaller than that of RANSAC, indi-
cating that IMU assistance can improve the pose estimation accuracy, while So-RANSAC
achieved the optimal result, indicating that the fisheye spherical model was helpful for
enhancing the adaptability to distortion and improving the pose estimation accuracy.

4.4. Computation Time

In terms of the computation time, we recorded the runtimes of the various algorithms
on 100 pipeline images and compared the average runtimes. The computational efficiency
results are shown in Table 6. The time complexity of the LPM algorithm was O( N log(N) ),
which was the fastest, and the average matching time was only 0.013 s, but the accuracy was
the lowest. The time complexity of the VFC algorithm was O(N3), which ranked second
in terms of efficiency. The iterative solution process of RANSAC resulted in a relatively
slow computational efficiency, which was more than 10 times that of the LPM algorithm,
but the average efficiency was still controlled within 1 s, and the matching accuracy was
higher. The four-point RANSAC algorithm with the addition of IMU assistance increased
the average runtime to 0.651 s, while the So-RANSAC algorithm with the addition of the
spherical model increased the average time to 0.719 s. It is worth mentioning that the
RANSAC-type methods can obtain inliers and pose at the same time, which can provide
an accurate initial value for subsequent bundle adjustment of SLAM and make it converge
faster. Therefore, RANSAC-type methods are more suitable for tasks requiring localization
than other nonparametric methods.
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Table 6. Comparison of the reprojection error.

Method Times/s

LPM 0.013
VFC 0.226

RANSAC 0.373
Four-Points RANSAC 0.651

So-RANSAC 0.719

5. Discussion

The IMU will inevitably produce errors in the measurement process. Since this paper
focused on the outlier removal method using visual information, and the relative rotation
angle provided by the IMU was only used for the relative restriction in the epipolar
geometric, we did not analyze the IMU errors in detail. In this chapter, the influence of
IMU error on matching accuracy is discussed theoretically and experimentally.

In general, translation estimation of IMU is much more sensitive to noise compared to
rotation estimation, and the relative rotation measurements are more stable. In addition,
we only used IMU information as auxiliary information to improve the accuracy of outlier
removal. In the estimation of E(θ, t), although the error of θ will affect the accuracy in
theory, in practice this effect will not be obvious when the error is small. Since the errors of
IMU are time dependent, long-term pose estimation will cause trajectory drift and error
divergence, but the effect of the error on the pose estimation in the short time is tolerable.
The sampling interval between two images in this paper was only 1/30s, and in this short
time interval, the influence of the IMU error on RANSAC would not be significant.

We carried out comparative experiments to show how the noise from the IMU influ-
ences the accuracy of the So-RANSAC method, and the experimental results are shown in
Table 7. Due to the limitations of the pipeline environment and equipment, it was difficult
to obtain the ground truth of pipeline data at present. Therefore, we compared the match-
ing precisions of So-RANSAC using the pose obtained by Madgiwick’s method (MARG)
and the Kalman-based algorithm (Kalman), and we discuss the impact of IMU error on
matching results. We used the open-source codes in [36] to implement the above methods.
It was proved in [36] that the MARG method has higher accuracy than Kalman-based
algorithm, so the results of Kalman can be regarded as data with greater noise. In addition,
we set-up simulation data for comparison. We assumed that the relative rotation angle θ
(obtained by MARG) was measured as (1 + e)θ by the IMU, where e reflects the noise, and
we set e as 0.02. In practice, the error of θ provided by IMU was much smaller than e. There-
fore, through this simulation experiment, the influence of the IMU noise on So-RANSAC
can be better tested.

Table 7. Performance comparison under IMU error.

Method Correct Matches Number Success Rate/% Precision

MARG 165.27 96 0.925717
Kalman 165.13 96 0.924592

Simulation 152.55 96 0.854469

As shown in Table 7, the precision of MARG was improved by approximately 0.1%
than that of Kalman, and the average correct matching number was improved by 0.14 pairs,
while the matching success rate remains unchanged, indicating that small IMU errors
have indeed affected the matching precision, but the impact was small. By comparing
the simulation data (1 + e)θ with the MARG method, it can be seen that when the error
increased, the average number of correct matches decreased by approximately 1 pair, and
the matching precision decreased by approximately 7%, but the matching success rate still
remains unchanged. This is because the failure of RANSAC usually occurred when the
number of correct correspondences was less than four or there were too many outliers
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(the rate of the outlier was higher than 90%). Therefore, the above experiments indicate
that small IMU errors in a short period of time will not cause serious impacts on the
matching result.

How to integrate IMU errors into the matching model is a meaningful research
direction. In visual-inertial SLAM, the IMU error is eliminated through a tightly coupled
optimization process. In photogrammetry, the IMU error can be eliminated by bundle
adjustment. However, since the focus of this paper is on the matching of two images,
overall optimization is not the focus of this paper. Meanwhile, due to the limitations of
current equipment, data and theory, at this stage we have not integrated the IMU error
into the matching model, which is a limitation of our method. However, this limitation
does not affect the innovation of our method, the above experiments and discussions are
sufficient to indicate the superiority of So-RANSAC in fisheye image matching.

6. Conclusions

To improve the accuracy of fisheye image matching, we proposed an outlier removal
method called So-RANSAC, which integrates IMU visual information to deal with the
challenge of fisheye distortion. We used the relative rotation angle of the IMU to assist
in pose estimation via RANSAC. Then, we introduced fisheye spherical coordinates to
reconstruct the fisheye epipolar geometry; this model can enhance the adaptability to
distortion and improve the matching quality. We conducted experiments on drainage pipe
fisheye images, and the experimental results show that So-RANSAC can accurately remove
outliers and achieve robust fisheye image matching results for infrastructure monitoring.

The limitation of So-RANSAC is that the geometric model of IMU-assisted matching
can be further improved. At present, only the relative rotation angle was used to reduce
the degrees of freedom in pose estimation by one, and the pose information provided by
the IMU was not fully utilized. Therefore, there is still much room for improvement in the
IMU-aided method to improve the accuracy of fisheye image matching.
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