
remote sensing  

Article

Mapping Mature Post-Agricultural Forests in the Polish Eastern
Carpathians with Archival Remote Sensing Data
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Abstract: Post-WWII displacements in the Polish Carpathians resulted in widespread land abandon-
ment. Most of the pre-war agricultural areas are now covered with secondary forests, which will soon
reach the felling age. Mapping their exact cover is crucial to investigate succession–regeneration pro-
cesses and to determine their role in the landscape, before making management decisions. Our goal
was to map post-agricultural forests in the Polish Eastern Carpathians using archival remote sensing
data, and to assess their connectivity with pre-displacement forests. We used German Flown Aerial
Photography from 1944 to map agricultural lands and forests from before displacements, and Corona
satellite images to map agricultural lands which converted into the forest as a result of this event.
We classified archival images using Object-Based Image Analysis (OBIA) and compared the output
with the current forest cover derived from Sentinel-2. Our results showed that mature (60–70 years
old) post-agricultural forests comprise 27.6% of the total forest area, while younger post-agricultural
forests comprise 9%. We also demonstrated that the secondary forests fill forest gaps more often than
form isolated patches: 77.5% of patches are connected with the old-woods (forests that most likely
have never been cleared for agriculture). Orthorectification and OBIA classification of German Flown
Aerial Photographs and Corona satellite images made it possible to accurately determine the spatial
extent of post-agricultural forest. This, in turn, paves the way for the implementation of site-specific
forest management practices to support the regeneration of secondary forests and their biodiversity.

Keywords: post-agricultural forest; German Flown Aerial Photography; Corona spy satellite; Polish
Eastern Carpathians

1. Introduction

Post-agricultural forests develop on former farmlands and differ in species compo-
sition from those with no record of agricultural use [1–3]. Nowadays, in many regions
around the world, post-agricultural forests constitute a significant part of the total forest
area [1,4,5]. There are many examples of mapping abandoned farmland [6,7] and forest
cover changes [8,9], but limited research has focused on mapping post-agricultural forest
in late succession stages. Post-agricultural forests develop in a different way than an-
cient forests and even several decades after agricultural land abandonment, they are still
recovering [1,10,11]. Documenting their accurate extent is crucial to investigate succession–
regeneration processes and compare them with ancient forests. Post-agricultural forests
often seem to form uniform complexes with old forests, but the differences between them
are significant for the natural environment [12,13]. For instance, forests with long contin-
uous history are characterized by a higher biodiversity and occurrence of ancient forest
species [2,13].
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One of the main factors influencing the dispersal of forest species and affecting the
regeneration is the connectivity with the ancient forest [1,2,10]. Mapping post-agricultural
forests and old-woods (forests that most likely have never been cleared for agriculture)
enables to further analyze the connectivity and, thus, the possibility of spreading species
between them. Forest connectivity is also closely related with biodiversity. With the
increasing interest and demand for biodiversity conservation, research on connectivity and
forest cover changes become more and more needed [14,15]. It has also been found that
the patch isolation and fragmentation affect the species richness and dispersal speed [14].
Moreover, the influence of past land use and past forest management on forest productivity
and biodiversity has become one of the key ecological research questions in Europe [2,16]
and in other regions of the world, e.g., in the USA [17] and Japan [18].

In most of the Carpathian Mts., the largest agricultural land abandonment happened
between 1990 and 2000 after the collapse of communism [19], whereas in the eastern part
of the Polish Carpathians, abandonment peaked in the 1940s. This region was inhabited by
Ukrainians (Carpatho-Ruthenian ethnic groups) involved mainly in agriculture, who were
forcibly displaced in the 1940s, and therefore, abandoned large areas of farmlands [20–22].
The event triggered a substantial and irreversible land-use regime shift, from an agricul-
turally dominated to forest-dominated regime [22]. Forests that developed on abandoned
agricultural lands after the displacements are now 60–70 years old stands, which will soon
reach the felling age. Therefore, it is crucial to determine their role in the landscape, before
making forestry management decisions. In turn, a prerequisite for in-depth field research
of post-agricultural forests is an accurate recognition of their spatial extent. The database of
the Polish State Forests includes the information if the stand is of post-agricultural origin for
some forest districts. However, even if included, such information is based mainly on un-
certain post-war inventories and relates only to State Forests. The area of post-agricultural
private forests has not yet been determined. Therefore, there is no consistent information
on the overall extent of post-agricultural forests in the Polish Eastern Carpathians. In many
places, the stands of post-agricultural and pre-displacement forests are in the similar age,
but differ in terms of species composition and regeneration processes due to the past land
use. Their exact area and the boundaries between old-woods and post-agricultural forest
are not yet clearly defined.

Studies on land cover changes in the Carpathians from before the era of Landsat
are mainly based on historical maps [19]. However, errors resulting from generalization,
interpretation and comparison of maps with different scales and symbols cause significant
uncertainty in land cover research [23]. More accurate results can be obtained from aerial
photographs, but due to the low accessibility and difficult processing, such data from the
WWII period are rarely used in land use research. Nonetheless, they have already been used
to determine, e.g., the rate and pattern of tree invasion in Israel [24] and historical forest
mapping in British Columbia [25]. Specifically, German Flown Aerial Photographs (the
primary data in our research) were used, e.g., for the reconstruction of WWII fortifications
in the Carpathians [26].

The most common method to classify panchromatic, historical aerial images is manual
interpretation, but it is time-consuming, expensive and impossible over large areas [25,27].
One of the ways to speed up that process is the utilization of Object-Based Image Analysis
(OBIA). OBIA is an automatic classification method that uses image objects instead of
single pixels as basic units. The crucial step in OBIA is image segmentation, which groups
pixels into shapes that represent individual objects. The next step is feature extraction
and classification, the quality of which depends on segmentation accuracy [28,29]. This
procedure has already been successfully applied to classify black and white images [8,30]. In
archaeological and historical-geographic research, archival aerial photographs are usually
georeferenced using ground control points, which leads to significant location errors,
especially in mountain areas (see [26]). Orthorectification of aerial images is particularly
important to eliminate errors resulting from the projection of varied terrain to a flat surface
of images [31].
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The impact of WWII on land cover is still poorly understood, mainly due to the
limited availability of spatial data from that period [32]. However, recent studies in the
Carpathians shed new light on the effects of war-induced human displacements on forest
area increase [22] and transformations of pre-war farmland [33]. Still, the site specific
forest succession that took place right after the displacements has not been mapped so
far in sufficient detail, because the pre-war maps used in prior research were either of too
low resolution (1:100,000) or were too distant in time from the displacements (the 1850s).
Additionally, the post-war sources used have substantial time lag (showing state from
the 1970s and 1980s, respectively), and therefore, distinguishing forests that developed in
the first years after displacements from younger post-agricultural forests was not feasible
on their basis. This might be only possible with the combination of high resolution data
presenting the state just before and soon after the displacement-driven land abandonment.

A post-war data source that meets these criteria is the U.S. spy satellite Corona,
acquiring images since 1960 [34]. However, it is still rarely used in land cover research,
mainly due to the demanding orthorectification process [32] and lack of clear classification
methods for black and white images [8]. Moreover, the use of Corona images for scientific
research was not possible before their declassification in 1995 [8,32,35]. Only since then,
Corona images have been used for mapping land cover changes in Senegal [35], forest cover
changes in the Eastern United States, Central Brazil [36] and the Latvian-Russian border [8]
and for the detection of forest cutting across Romania after WWII [32]. However, there are
no studies using Corona images for mapping post-agricultural forests. Moreover, the forest
cover in the Polish Eastern Carpathians from the 1960s has not yet been determined either.

The main goal of this work was, therefore, to map mature (60–70 years old) post-
agricultural forests in the Polish Eastern Carpathians using German Flown Aerial Pho-
tographs and Corona satellite data, and define their connectivity with the old-woods. On
the one hand, our research is methodological in nature, aimed at specialists seeking for al-
ternative sources to investigate past land cover change or innovative processing of archival
remote sensing data. On the other hand, the generated forest maps and connectivity data
can help inform management decisions and provide the basis for further research on the
regeneration of post-agricultural forests.

2. Methods
2.1. Study Area

Our study area is the Polish Eastern Carpathians, comprising two geographical regions:
Bieszczady Mts. and Sanok-Turka Mts. (Figure 1), which together cover 221,244 ha.
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The climate of the study area is temperate, additionally modified by altitudinal zo-
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pine, is strictly connected with vegetation zonation and occurrence of oak-hornbeam 
forests, beech and fir forests and grassland communities, respectively [38–40]. Eastern 
Carpathians are built with the Carpathian Flysch (sandstones, conglomerates, shales, 
mudstones), on which mainly Eutric and Dystric Cambisols were formed [41,42]. 

2.2. Remote Sensing Data 
To map forests and agricultural areas from before displacements, we used the 

German Flown Aerial Photography from 1944 (Figure 2). To order the aerial photos from 
the U.S. National Archives and Records Administration (NARA) 
(https://catalog.archives.gov/id/306065), we first selected the 27 most suitable series. 
Then, we compared their extent with the study area to indicate the matching aerial im-
ages. In this way, we selected and ordered 50 panchromatic aerial images, 43 of which 
were further used for mapping. Images were of good quality, with no cloud cover, 
scanned with 1200 dpi (21 μm). They formed an irregular block of 15 strips, each con-
taining from one to five photos. The longitudinal overlap in the strip ranged from 10% to 
90%, while the lateral overlap ranged from 10% to 70%. Photos in the same strip had the 

Figure 1. Study area—the Polish Eastern Carpathians with footprints of German Flown Aerial
Photographs. Borders of geographic regions according to [37].

The climate of the study area is temperate, additionally modified by altitudinal zona-
tion and slope aspect. The division into three climatic zones, foothill, montane and alpine,
is strictly connected with vegetation zonation and occurrence of oak-hornbeam forests,
beech and fir forests and grassland communities, respectively [38–40]. Eastern Carpathians
are built with the Carpathian Flysch (sandstones, conglomerates, shales, mudstones), on
which mainly Eutric and Dystric Cambisols were formed [41,42].

2.2. Remote Sensing Data

To map forests and agricultural areas from before displacements, we used the German
Flown Aerial Photography from 1944 (Figure 2). To order the aerial photos from the U.S.
National Archives and Records Administration (NARA) (https://catalog.archives.gov/
id/306065; accessed on 13 April 2021), we first selected the 27 most suitable series. Then,
we compared their extent with the study area to indicate the matching aerial images. In
this way, we selected and ordered 50 panchromatic aerial images, 43 of which were further
used for mapping. Images were of good quality, with no cloud cover, scanned with 1200
dpi (21 µm). They formed an irregular block of 15 strips, each containing from one to five
photos. The longitudinal overlap in the strip ranged from 10% to 90%, while the lateral

https://catalog.archives.gov/id/306065
https://catalog.archives.gov/id/306065
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overlap ranged from 10% to 70%. Photos in the same strip had the same scale, while the
denominator of the photo scale in different strips ranged from 18,000 to 30,000.
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Figure 2. Example of the German Flown Aerial Photography taken in 1944 obtained from NARA U.S. (a) and a Corona
Image from 1969 obtained from USGS (b).

To map the forests which developed after the displacement, we used Corona satellite
images obtained from the USGS EROS Archive (Figure 2). It is a collection of declassified
military intelligence photographs from the satellite systems code-named Corona taken
in 1960–1972 with ground resolution from 6 to 40 feet. The images were originally used
to identify and create maps for U.S. intelligence agencies [34]. We obtained six pairs of
stereographic film strips from the Corona mission. The data were acquired on September
25, 1969 and are available as panchromatic, stereographic image strips each covering about
17 × 230 km on the ground [43]. These data provide full coverage of our study area at a
ground sampling distance resolution of 2.4 m. We chose satellite images from 1969 due to
the best visibility of forest edges, without shades and clouds.

To map the most recent forest cover, we used Sentinel-2 (Table 1) satellite images
obtained from USGS EROS Archive. Sentinel-2 is the Multispectral Instrument of the
European Space Agency that provides global, 10 m resolution, multispectral images every
10 days. The scene analyzed was acquired on July 1, 2019 as a full-resolution True-Colour
Image (RGB composite created from bands 4, 3, 2) [44].

Table 1. Remote sensing data used in this research.

Data Source Image Date Resolution

German Flown Aerial
Photography

National Archives and Records
Administration (NARA) July 1944 ~0.5 m

Corona U.S. Geological Survey 25 September 1969 2.4 m
Sentinel-2 U.S. Geological Survey 1 July 2019 10 m

2.3. Data Processing

The orthoimages from archival aerial photographs were generated using standard
photogrammetric procedures in which the image distortions caused by their central projec-
tion were removed and the denivelation of the terrain covered by the images was taken into
account [45]. We performed digital aerotriangulation to remove geometric distortions. In
the absence of a camera calibration certificate, we determined the interior orientation of the
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aerial photos on the basis of the denominations of fiducial marks, taking into account the
additional parameters compensating their affine distortion. The transformation accuracy
of the image matrix to the ground coordinate system, measured by a standard deviation,
was 10 µm. We determined the external orientation of the photos based on approximate
coordinates of their projection centers identified and measured using the Google Maps
service with an accuracy of 10 m as well as the control points. The control points were
mainly road junctions and building ridges identified and measured with an accuracy of
3.5 m on a topographic map with a 1:10,000 scale. We measured image coordinates of
135 control points in manual and semi-automatic mode with an average error of 12 µm. The
aerotriangulation accuracy (root mean square error, RMSE), was 2.5 m for plane coordinates
and 1.5 m for elevation. The average error of determining the tie point ground coordinates
was 4.5 m for plane coordinates and 2.5 m for the elevation. We took account of the impact
of ground leveling by incorporating into the orthorectification process a digital terrain
model acquired under SRTM mission (vertical accuracy assessed locally at 7.1 m [46]). The
orthoimages of archival aerial photographs were verified based on reference data obtained
from the current orthophoto with ground spatial resolution of 0.25 m. The orthorectification
was performed in Trimble ApplicationsMaster 8.0.

To eliminate the distortions resulting from the Corona camera angle and the terrain,
the photos were orthorectified. The images were geo-rectified using structure from motion
algorithms implemented in AgiSoft PhotoScan (now Metashape), following a workflow
developed specifically for Corona imagery [32]. We used SRTM v3 to extract Z coordinates
for Ground Control Points and Google Maps high-resolution data for X and Y coordinates.

We mapped forest and agricultural areas on German Flown Aerial Photographs using
Object-Based Image Analysis (OBIA) in eCognition Developer 10.0 software [47], followed
by visual, manual verification. The first step in object classification was image cleaning
by applying appropriate filters. We used Edge extraction Canny, i.e., a method of detecting
the edges between objects in the image, Contrast Filter, i.e., filtering based on contrast, and
Pixel Filer 2D, i.e., smoothing pixels and removing noise. The next key step was image
segmentation, for which we had to select the appropriate scale. The Scale Parameter was
established by testing the values of 50, 100, 150 and 200; a value of 100 was selected, as it
gave the best result. The next step was to indicate training fields constituting segments
representing a given class. The last step was the Bayesian classification [48], which is based
on the collected samples of two classes and the values of objects such as brightness, the
maximum difference between pixels, area, and complexity. After completing the classifica-
tion, it was necessary to carefully examine the results and manually change the class for
the incorrectly classified segments. In this way, we generated two layers: agricultural areas
and forest areas from 1944, separately for each of the 43 aerial images. Then, to indicate the
forest extent in 1969, the classification procedure was repeated in eCognition for Corona
satellite images (Figure 3). Before manual correction, we assessed classification accuracy
for both satellite and aerial images. We used Create Accuracy Assessment Points in ArcGIS
software and manually validated the class for each point. Then, a confusion matrix was
created to check the overall accuracy and Kappa coefficient values.

To extract forest cover from 2019 Sentinel-2 images, we performed supervised land
cover classification in the semi-automatic classification plugin in QGIS software [49]. Then,
we estimated the classification accuracy in ArcGIS software using the Create Accuracy
Assessment Points and Compute Confusion Matrix tools in the Spatial Analyst extension.
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2.4. Spatial Analysis

Based on the collected remote sensing materials, we distinguished three types of
forests present today in the study area:

• Old-woods (after Singleton et al. [50])—forests that existed before the displacement
and most likely have never been cleared for agriculture;

• Mature post-agricultural forest (after Singleton et al. [50])—stands currently in the age
of 60–70, with closed canopies that had developed on land abandoned from agriculture
in the 1940s;

• Young post-agricultural forest—forest that developed on former farmlands after 1969.

To map the old-woods and post-agricultural forests, we combined the three remote
sensing datasets (Supplementary Materials). Old-woods were those classified as forest
in 1944 AND forest in 1969 AND forest in 2019. Mature post-agricultural forests were
those that were classified as agriculture in 1944 AND forest in 1969 AND forest in 2019.
Young post-agricultural forests, then, were those that were agriculture in 1944 AND non-
forest in 1969 AND forest in 2019. To harmonize polygon boundaries between layers,
we applied the ArcGIS tool Integrate with an x, y tolerance of 8 m. We set a minimum
mapping unit at 1000 m2 to reduce the scalar mismatch and remove sliver polygons
resulting from combining vector layers [51]. To assess connectivity between old-woods
and post-agricultural forests, we used the Near function in ArcGIS. The tool calculates
distance and other proximity measures between the input features (post-agricultural forest)
and the closest feature in another layer (old-woods) [52]. To eliminate the influence of
the missing old-woods outside our study area, we excluded post-agricultural patches
adjacent to the study area border from the analysis. The Wilcoxon rank-sum test was used
to check the significance of differences (a) in the median patch size between isolated and
non-isolated patches, and (b) in the median distance from the old-woods to mature and
young post-agricultural forests. The statistical analysis was conducted in R software. We
also calculated the Largest Patch Index (percentage of the study area covered by the largest
patch) and used it as a proxy inverse indicator of landscape fragmentation. It takes values
from 0 to 100 and reaches 100 when the largest patch comprises 100% of the area [53]. We
conducted the fragmentation analysis in QGIS software with LecoS plugin [49].
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3. Results

Our results showed that in the Polish Eastern Carpathians, there was 87,534 ha of
old-woods, 40,526 ha of mature post-agricultural forests and 13,249 ha of young post-
agricultural forests in 2019 (Figure 4). This represents respectively: 42.6%, 19.7% and 6.4%
of the study area and 59.5%, 27.6% and 9% of all forests.
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Figure 4. The map of post-agricultural forest and old-woods in the Polish Eastern Carpathians.
Old-woods—forest that existed before 1944; mature post-agricultural forest—post-agricultural forest
that developed before 1969; young post-agricultural forest—forest that developed after 1969; no
data—missing aerial photos from 1944.

Our analysis showed that 22.5% of mature post-agricultural forest patches are isolated
(4.4% of the post-agricultural forest area), while 77.5% of patches (95.6% in terms of area)
are connected with the old-woods. In the case of young post-agricultural forests, 67% of
patches are isolated (46.3% of young post-agricultural forest area) and 33% are connected
(53.7% in terms of area). The Wilcoxon test showed that the distance to the old-woods
from the young post-agricultural forest is significantly greater (p < 0.0001) than from the
mature post-agricultural forest. Our results also showed that isolated, post-agricultural
forest patches are significantly smaller than those which are connected with the old-woods
(p < 0.0001). The Largest Patch Index for forest cover took the lowest values in 1944 (13%)
and the highest in 2019 (45%). However, in 1969 it already reached 42%, which means that
it increased the most between 1944 and 1969.
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The orthorectification accuracy was high, with positional errors of Corona images
between 0.5 and 3 pixels (corresponding to 1.2 and 7.2 m). The planar accuracy of the
German Flown orthophoto based on the corresponding shift vectors was 4.5 m for both
coordinates. Classification accuracy of Sentinel-2 images based on 506 samples gave
the overall result of the Kappa statistics equal to 94%. The user’s accuracy for the class
forest was 98.6% and the producer’s accuracy was 98.3%. Before manual verification and
correction, the result of the Kappa statistics for one randomly selected aerial image was
77%. The user’s accuracy for agricultural area was 80%, while it was 95% for the forest
area. In turn, the user’s accuracy of the classified Corona images before manual correction
was 95% for the agricultural area and 98% for the forest area, with Kappa statistics equal
to 94%.

4. Discussion

Orthorectification and classification of German Flown Aerial Photography and Corona
images enabled us to track the forest succession on the abandoned agricultural area after
the displacements in the 1940s. Mature post-agricultural forests constitute a substantial
part of Carpathian forests. They are in the vast majority adjacent to the old-woods, which
contributed to the forest fragmentation decrease. In turn, young post-agricultural forests
cover a much lower share of the total forest area and are located further away from the
old-woods.

It is widely accepted that the use of remote sensing data to study past land cover
changes gives more accurate results than the analysis of generalized historical maps. This
is because aerial photographs show the texture of the ground in much greater detail than
maps [54]. As we aimed to obtain spatially explicit forest-cover changes in the post-WWII
period, well before the era of Landsat imagery, our main challenge was to find and process
suitable remote sensing data.

World War II triggered large changes in land use [32,55], but its analysis is difficult
due to the problematic use of black and white data from the mid-20th century. Attempts to
automatically classify black and white aerial photos have already been made by Morgan
and Gergel [25], with an overall accuracy of 64.4%, and by Okeke and Karnieli [24], with
85% accuracy. In our approach, the crucial step was segmentation, which divides the image
into homogeneous polygons. Then, the manual verification and correction of classified
segments (by switching class for each wrongly classified polygon) is relatively fast and
easy, but improves the accuracy considerably. Therefore, we argue that the application
of German Flown Aerial Photographs and Corona satellite imagery, processed in line
with our methodological approach, has high potential to improve the mapping of land
cover from the post-WWII period also in other regions, and thus, influence significantly
the contemporary forest management [32,56]. However, it should be remembered that
combining source materials with different scales and resolutions carries the risk of drawing
false conclusions due to scalar mismatch. Artificial scraps or gaps may appear when vector
layers resulting from the classification of different source materials are intersected. We
solved this problem by integrating polygon boundaries and setting the common minimum
mapping unit (eliminating all polygons and gaps smaller than 1000 m2). Besides processing,
the remote selection and acquisition of appropriate German Flown Aerial Photographs
from NARA were also challenging, mainly due to the inability to verify their quality
and exact cover before ordering. Not all ordered photos were suitable for land cover
classification due to poor quality or lack of available ground control points in forested
areas. Because of the poor quality, the inaccurate location of some ordered photos and the
lack of available aerial images for part of the region, 7% of the study area was not mapped
(19% of the unmapped area is now open land, which gives an even smaller percentage
of missing forest information). Therefore, we believe that the general trends of post-war
forest succession in the Polish Eastern Carpathians have been captured.

We used several software packages to achieve our goal. Working with two GIS
packages (ArcGIS and QGIS) and two photogrammetric packages (ApplicationsMaster
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and PhotoScan) was somewhat redundant and was mainly due to the different preferences
of the authors of this study. For instance, all analyses run in QGIS could have also been
performed in ArcGIS, but not the other way around (e.g., the Near function is not available in
QGIS). Nonetheless, a further reduction of the number of used software packages is rather
unlikely; we are not aware of a package that can perform both OBIA and photogrammetric
processing. Additionally, eCognition, the software we used for OBIA, achieves more
accurate results than other available software packages such as OTB/Monteverdi and
ArcGIS [57]. Moreover, eCognition enables to perform cleaning and filtering the image
before classification, which improved substantially our results. Agisoft Metashape is a
stand-alone software product that performs photogrammetric processing of digital images
and generates 3D spatial data. The digital images which can be processed through the
software should be produced in stereographic pair as the base photogrammetric process
is Structure From Motion. This approach is suitable for Corona mission images [8,32]
since the images are in a stereographic pair. The German Flown Aerial Photographs were
not produced in a stereographic pair to create a specific Structure From Motion bundle
adjustment; therefore, the Application Master 8.0 was used.

Due to the differences in the functioning of the old-woods and the post-agricultural
forests, their recognition and delineation is very important. The agricultural use of land
originally covered with forests causes a significant and long-lasting change in soil [58]. One
of the most impactful changes is the elimination of plant and seeds of forest species. It has
been shown that soil recovering from agriculture has higher pH and the differences are
visible even 100 years after agricultural abandonment [1]. Lack of forest plant seeds and
modified soil conditions mean that forests developing after agricultural land abandonment
differ in species composition from the old-woods. The rate of forest regeneration depends
mainly on the distance from the old-wood edge, soil fertility, seed dispersal and the length
of the regeneration period. The process is faster at a closer distance from the old-woods,
which is the seed source of the forest species [10], so the connectivity is a useful measure
which can help assess the post-agricultural forest regeneration.

Post agricultural forests constitute a significant part of the lowland forests. For
instance, Matuszkiewicz et al. [10] indicated that 65.8% of forests in Masuria and 54.2%
of forests in Kurpie (both in NE Poland) are post-agricultural. The dominant share of
post-agricultural woodlands in the total forest area was also reported for New England [59]
and the Netherlands [60]. The share of post-agricultural forest in our study area is not
that large (36.6%, of which 27.6% was mature and 9% young) due to the location in the
mountains highly forested already before displacements (45% of the study area in 1944).
In the last few decades, forest expansion after agricultural abandonment was observed in
the Swiss mountains [61] and after the collapse of socialism in the Carpathians and post-
soviet Russia [62–64]. However, forests that developed on abandoned agricultural lands
soon after World War II have not been investigated enough, and therefore, the succession
processes and patterns of afforestation are still poorly understood (however, see [22,65]).

Post-WWII forest cover changes were already investigated in the Carpathian Mts.
based on topographical maps, but the majority of studies analyzed longer time intervals
and did not extract changes that occurred soon after WWII (e.g., [23,66]). We are aware of
only one local case study from the Wiar river basin (230 km2) that made use of military
topographic maps 1:25,000 from the 1950s to capture short-term and direct land cover
changes following WWII. The authors showed that forest cover increased from 39% in
1936 to 48% in 1958 and linked it with a dramatic population decline resulting from post-
war displacements [65]. Nonetheless, the above study, like many others in the Polish
Carpathians, used the low resolution 1:100,000 topographic map from the 1930s to show
the pre-war land cover. For instance, Kozak [66] compared this map with Landsat satellite
images from 2001 to analyze land cover changes in the Western Carpathians. In turn,
Kaim et al. [23] used the same pre-war map series and the topographical map from the
1970s to capture land cover changes in the Carpathians and highlighted the disadvantages
of their use [23]. Our study is the first to apply archival German Flown Aerial Photographs
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to reconstruct the forest cover just before the displacements and land abandonment that
took place in the Carpathians in the 1940s. The application of German Flown Aerial
Photographs and Corona images may be an alternative to the widespread use of archival
topographical maps in the mid-20th century landscape reconstructions and help extract
land use and land cover changes directly resulting from World War II.

Our results showed that currently in the Polish Carpathians, there are more than
40,500 ha of 60–70 years old post-agricultural forests. According to Flinn and Vellend [1],
they are old enough to analyze regeneration and compare species composition with neigh-
boring ancient forests. Old-woods cover 87,534 ha and are in large part well preserved
old-growth forests protected by the East Carpathians Biosphere Reserve [67]. Based on
the analysis of the 19th century maps (www.mapire.eu; accessed on 13 April 2021) and
the history of intensive farming by the Ukrainian-speaking population from before the
displacement [21], we may assume that the majority of old-woods are ancient forests, i.e.,
were never cleared for agriculture. This provides a great opportunity to compare mature
post-agricultural forests with forests with no record of agricultural use, for instance in
terms of ancient forest species. It is crucial to analyze the regeneration processes and
species composition in mature post-agricultural forests, before the light conditions will be
disturbed as a result of logging.

Connectivity and distance to the ancient forests are well-known factors impacting
forest regeneration. Greater distance to the ancient forest slows down regeneration and
dispersal of forest species [1,2,10,60]. The fact that 95.6% of mature post-agricultural forest
in our study area is connected with the old-woods (which most likely were never converted
into farmland) provides good conditions for the spreading of ancient forest species. We also
showed that the development of post-agricultural forests after population displacement
contributed to forest fragmentation decrease and an increase in mean forest patch size. This
effect may be beneficial not only for forest plant species but also for forest animal species,
especially for big mammals, of which populations increased in the last few decades [68].

The Largest Patch Index, the proxy inverse measure for landscape fragmentation,
increased the most between 1944 and 1969, soon after population displacement. In contrast
to our study, Kozak et al. [69] reported increasing forest fragmentation between 1930 and
1970 in the Polish Carpathians. This discrepancy is probably related to the fact that
Kozak et al. [69] analyzed the entire Polish Carpathians, and not only the displaced part. It
is worth noting that we did not exclude roads from forest patches in any of the three time
slices. If roads were taken into account, the Largest Patch Index would most likely grow a
bit less. Nonetheless, the comparison of the two studies highlights the strong impact of
human displacement on forest cover changes.

Young post-agricultural forest patches which are directly connected with the old-
woods constitute only 53.7% of that forest area. This situation provides much worse
regeneration conditions and a smaller possibility for effective seed dispersal from ancient
to young forests. This result also gives an idea of the sequence of overgrowing former
farmlands. The significant difference in the distance to old-woods reflects the general
tendency to overgrow the fields located near the forest edge and further from the village
first. Pazúr et al. [70] showed, for Slovakia, that those abandoned farmlands which were
located further away from the forest edge were re-cultivated. Furthermore, in Russia, the
transition from farmland to forest was more likely to be closer to the forest edge [63]. Our
analysis showed that farmlands still cultivated in the second half of the 20th century were
located further away from the old-woods than those which were abandoned.

In summary, we found that 60–70 years old post-agricultural forests cover large areas
in the Polish Eastern Carpathians. However, in contrast to some other regions, here,
the old-woods cover a much larger area than the post-agricultural forests. We showed
that mature post-agricultural forests are well connected with the old-woods in the post-
displacement areas, which allows effective dispersal of ancient forest species and accelerate
their regeneration. In turn, younger post-agricultural forests are located at a greater distance
from the old-woods, which may suggest that they will regenerate comparably slower in the

www.mapire.eu
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future. We also demonstrated that by the use of panchromatic remote sensing data from the
mid-20th century, it is possible to accurately extract forest area and study the direct effects
of WWII on land cover. Our original approach to orthorectify and classify German Flown
Aerial Photographs enabled the tracking of forest succession. The knowledge about the
exact spatial extent of mature post-agricultural forests in the Polish Eastern Carpathians
can be used in forest management and in research on the regeneration of secondary forests.

Supplementary Materials: Supplementary material is available online at https://www.mdpi.com/
article/10.3390/rs13102018/s1; it is a Shapefile with the exact spatial extent of old-woods, mature
post-agricultural forests and young post-agricultural forests in the Polish Eastern Carpathians.
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J., Ed.; Institute of Geography and Spatial Organization Polish Academy of Sciences: Warsaw, Poland, 2016.
42. Skiba, S.; Drewnik, M. Mapa gleb obszaru Karpat w granicach Polski. Rocz. Bieszcz. 2003, 11, 15–20.

http://doi.org/10.1016/j.foreco.2006.09.049
http://doi.org/10.1016/j.baae.2018.07.006
http://doi.org/10.1139/x11-026
http://doi.org/10.1016/j.foreco.2004.02.050
http://doi.org/10.1016/j.landusepol.2014.01.012
http://doi.org/10.2478/quageo-2014-0029
http://doi.org/10.1080/01431160500315691
http://doi.org/10.1139/cjfr-2012-0492
http://doi.org/10.1002/arp.1792
http://doi.org/10.1080/01431160600887722
http://doi.org/10.1016/j.isprsjprs.2019.02.009
http://doi.org/10.1016/j.isprsjprs.2009.06.004
http://doi.org/10.3390/rs12111820
http://doi.org/10.3390/rs11111388
http://doi.org/10.1016/j.rse.2017.10.021
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#qt-science_center_objects
http://doi.org/10.1016/j.isprsjprs.2014.09.005
http://doi.org/10.7163/GPol.0115


Remote Sens. 2021, 13, 2018 14 of 14

43. Sohn, H.-G.; Kim, G.-H.; Yom, J.-H. Mathematical modelling of historical reconnaissance CORONA KH-4B Imagery. Photogramm.
Rec. 2004, 19, 51–66. [CrossRef]

44. United States Geological Survey USGS EROS Archive—Sentinel-2. Available online: https://www.usgs.gov/centers/eros/
science/usgs-eros-archive-sentinel-2?qt-science_center_objects=0#qt-science_center_objects (accessed on 20 April 2020).

45. Baltsavias, E.P. Digital ortho-images—A powerful tool for the extraction of spatial- and geo-information. ISPRS J. Photogramm.
Remote Sens. 1996, 51, 63–77. [CrossRef]

46. Karwel, K. Ocena dokładności modelu SRTM-X na obszarze Polski (Estimation of accuracy of SRTM-X terrain model on Polish
area). Archiwum Fotogrametrii Kartografii i Teledetekcji 2012, 23, 139–145.

47. Trimble Geospatial. Welcome to eCognition 10. 2020. Available online: https://geospatial.trimble.com/blog/welcome-
ecognition-10 (accessed on 18 May 2021).

48. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: London, UK, 2004.
49. Condego, L. Semi-Automatic Classification Plugin Documentation 2010. Release 2016, 4, 29. [CrossRef]
50. Singleton, R.; Gardescu, S.; Marks, P.L.; Geber, M.A. Forest herb colonization of postagricultural forests in central New York State,

USA. J. Ecol. 2001, 89, 325–338. [CrossRef]
51. QGIS Development Team. Changelog for QGIS 3.10. 2020. Available online: https://www.qgis.org/en/site/forusers/

visualchangelog310/index.html (accessed on 18 May 2021).
52. ESRI Arcgis Pro. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/near.htm (accessed on

20 February 2021).
53. MacGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; General Technical

Report; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995.
54. U.S. Geological Survey Aerial Photographs and Satellite Images—Online Edition. Available online: http://egsc.usgs.gov/isb/

pubs/booklets/aerial/aerial.html (accessed on 15 January 2020).
55. Baumann, M.; Kuemmerle, T. The impacts of warfare and armed conflict on land systems. J. Land Use Sci. 2016, 11, 672–688.

[CrossRef]
56. Munteanu, C.; Nita, M.D.; Abrudan, I.V.; Radeloff, V.C. Historical forest management in Romania is imposing strong legacies on

contemporary forests and their management. For. Ecol. Manag. 2016, 361, 179–193. [CrossRef]
57. Lourenço, P.; Teodoro, A.C.; Gonçalves, J.A.; Honrado, J.P.; Cunha, M.; Sillero, N. Assessing the performance of different OBIA

software approaches for mapping invasive alien plants along roads with remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2021,
95, 1–11. [CrossRef]

58. Turner, M.G.; Pearson, S.M.; Bolstad, P.; Wear, D.N. Effects of land-cover change on spatial pattern of forest communities in the
Southern Appalachian Mountains (USA). Landsc. Ecol. 2003, 18, 449–464. [CrossRef]

59. Foster, D.R.; Motzkin, G.; Slater, B. Land-Use History as Long-Term Broad-Scale Disturbance: Regional Forest Dynamics in
Central New England. Ecosystems 1998, 1, 96–119. [CrossRef]

60. Grashof-Bokdam, C.J.; Geertsema, W. The Effect of Isolation and History on Colonization Patterns of Plant Species in Secondary
Woodland. J. Biogeogr. 1998, 25, 837–846. [CrossRef]

61. Gellrich, M.; Zimmermann, N.E. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains:
A spatial statistical modelling approach. Landsc. Urban Plan. 2007, 79, 65–76. [CrossRef]

62. Griffiths, P.; Müller, D.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of
socialism and expansion of the European Union. Environ. Res. Lett. 2013, 8, 1–12. [CrossRef]

63. Prishchepov, A.A.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in
post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [CrossRef]

64. Pazúr, R.; Lieskovský, J.; Feranec, J.; Ot’ahel’, J. Spatial determinants of abandonment of large-scale arable lands and managed
grasslands in Slovakia during the periods of post-socialist transition and European Union accession. Appl. Geogr. 2014, 54,
118–128. [CrossRef]

65. Affek, A.N.; Zachwatowicz, M.; Solon, J. Long-term landscape dynamics in the depopulated Carpathian Foothills: A Wiar River
basin case study. Geogr. Pol. 2020, 93, 5–23. [CrossRef]

66. Kozak, J. Forest Cover Change in the Western Carpathians in the Past 180 Years. Mt. Res. Dev. 2003, 23, 369–375. [CrossRef]
67. Kucharzyk, S. Forest of primeval character in the Bieszczady National Park. Rocz. Bieszcz. 2008, 16, 19–32.
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