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Abstract: One of the main questions facing precision agriculture is the evaluation of different
algorithms for the delineation of homogeneous management zones. In the present study, a new
approach based on the use of time series of satellite imagery, collected during two consecutive
growing seasons, was proposed. Texture analysis performed using the Gray-Level Co-Occurrence
Matrix (GLCM) was used to integrate and correct the sum of the vegetation indices maps (NDVI and
MCARI2) and define the homogenous productivity zones on ten durum wheat fields in southern
Italy. The homogenous zones identified through the method that integrates the GLCM indices with
the spectral indices studied showed a greater accuracy (0.18–0.22 Mg ha−1 for ∑NDVIs + GLCM and
0.05–0.49 Mg ha−1 for ∑MCARI2s + GLCM) with respect to the methods that considered only the
sum of the indices. Best results were also obtained with respect to the homogeneous zones derived
by using yield maps of the previous year or vegetation indices acquired in a single day. Therefore,
the survey methods based on the data collected over the entire study period provided the best results
in terms of estimated yield; the addition of clustering analysis performed with the GLCM method
allowed to further improve the accuracy of the estimate and better define homogeneous productivity
zones of durum wheat fields.

Keywords: precision agriculture; spatial patterns; gray-level co-occurrence matrix; yield monitor;
durum wheat

1. Introduction

Durum wheat (Triticum turgidum ssp. durum Desf.) is the main raw material for making
pasta and is cultivated primarily in the Mediterranean basin, under rainfed conditions,
where the unpredictable seasonal rainfall has a decisive influence on the yield and grain
quality [1,2]. Another important source of uncertainty in crop production is represented
by within-field variability of soil physical and chemical properties that should be taken
into account in the management of the crop [3]. A key challenge that wheat growers face
is to increase and stabilize the yield and quality attributes over the years, managing the
soil spatial variability and, achieving the standards determined by the pasta industry,
particularly high grain protein content. In fact, given significant inter- and intra-field
variation of agronomic attributes, conventional agricultural systems have limited capacity
to respond to the industry demands for increasingly grain quality specifications. The
uniform application of inputs such as fertilizer potentially could result in the farmer failing
to reach the qualitive standards, as nitrogen application in some areas of the field may not
have had the desired effect.

To achieve this goal, Precision Agriculture (PA) techniques, based on the identifi-
cation of homogeneous management zones within a field, allow the site-specific appli-
cation of agrochemicals (i.e., definition of optimal sowing rates, fertilization, and fungi-
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cide/insecticide applications) and managing spatial-temporal variability of soil properties
for crop growth [4].

Crop yield data has been considered the most important parameter for efficiently
defining management zones in annual cropping systems [5,6]. In fact, yield mapping is
one of the most widely used PA techniques to identify homogeneous zones, for its easy
applicability [7]. The identification of areas of similar yield potential, called “productivity
zones”, could improve durum wheat performances as some key management decisions are
dependent on reliable estimates of expected yield [8].

Productivity zones have most commonly been derived from an analysis of a single
yield map but, promising results have been reported by using several years of yield data
to create homogeneous management zones. Diacono et al. [9] noted that if an analysis
averages yield maps across wet and dry years, then the procedure may neutralize infor-
mation needed to better understand the interaction between soil properties and climate
and the resulting effects on durum wheat yield and grain quality. Therefore, the stability
of such zones needs to be tested for each individual field. Ideally, the variability within
homogeneous is expected to be uniform spatially and stable across the years, representing
a comparable level of yield potential, plant biomass, and/or soil quality [10].

Static soil properties and topographic variables have also been used to derive produc-
tivity zones. When compared to the use of multiple years yield maps, deriving productivity
zones from soil and topographic information represents a tremendous time savings and
is, therefore, appealing to producers [11]. For this reason, although yield mapping rep-
resents a useful decision support system for defining homogeneous management zones,
it is currently used in combination with soil attributes [11], electrical conductivity crop
measurements [12], and remotely sensed images [3].

The use of unmanned aerial vehicles (UAV) [13] and satellite imagery [14] has accel-
erated the development of new automatic land delimitation tools for recognizing homo-
geneous zones at field level, since reflectance data and vegetation indices (VIs) are good
predictors of crop parameters (e.g., leaf area index, below-ground biomass accumulation
nitrogen content) and yields [15–18].

With reference to the use of remote sensing data, numerous studies have attempted to
understand the optimal period for NDVI acquisition for better evaluation and/or definition
of homogeneous zones from an agronomic point of view [19]. However, several authors
have reported inconsistent advantages for this yield prediction strategy and identification
of homogeneous zones [20]. Spatial patterns in yield tend to change from year to year [21],
mostly because static soil properties interact differently with meteorological factors and
agronomic management [22]. The use of satellite imagery allows the identification of the
within-field variability of crop development and yield, albeit with a very high resolution
(10 × 10 m), and the definition of homogeneous management zones [23,24], the use of
which is limited to the ongoing growing season.

Besides this, another of the main questions facing PA is the evaluation of different
algorithms for the delineation of management zones. Before generating variable-rate
application maps, in fact, it is necessary to quantify the within-field variability, with the
available attributes, i.e., soil chemical or physical criteria, yield, vegetation indices, with
spatial statistical indices. Recently, Leroux and Tisseyre [25] provided an extensive review
of the methods to assess within-field variability. Researchers have proposed various tech-
niques and algorithms for identifying homogeneous zones, including expert systems [26],
segmentation algorithms [27], clustering [28,29], fuzzy algorithms [30,31], and machine
learning techniques [32]. The objective of each method is to minimize statistically the
within-group variability while maximizing the among-group variability to produce ho-
mogeneous groups that are definite from one another. Guastaferro et al. [33] compared
different algorithms for the delineation of management zones and outlined the pros and
cons for each method. In particular, studies have suggested that vegetation indices ex-
tracted from a single pixel, mainly for high-density crops, have a poor ability to describe
the canopy structure [34]. For example, NDVI is sensitive for lower LAI values (<3) but
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is saturated for medium or higher LAI values (>3) [35] with a direct consequence on the
definition of homogeneous management zones. Texture analysis, instead, provides the
images with additional information reflecting the variation of vegetation structure [33,36].
Recently, texture features extracted from Gray Level Co-Occurrence Matrix (GLCM) [37]
were widely used in classification research showing, improved classification accuracy [38]
and a better LAI and biomass estimation [39,40].

In light of these motivations, a new approach for delineating homogeneous produc-
tivity zones by using satellite spectral indices was proposed. The aim of the study was
to identify a methodology, based on a time series of high-resolution observations from
satellites of two vegetation index (Normalized Difference Vegetation Index, NDVI and
Modified Chlorophyll Absorption in Reflectance Index 2, MCARI2), to reduce the inter-
annual effects of weather conditions that normally affect yield monitor-based and/or
single-day vegetation index-based maps.

The maps obtained from the time series were processed for texture analysis using the
GLCM and, the dataset was elaborated with principal component and cluster analysis for
the delineation of homogeneous durum wheat productivity zones.

2. Materials and Methods
2.1. Study Site

Ten fields extended over a total area of 80 hectares were identified in southern Italy
(Figure 1), near the CREA Research Centre for Cereal and Industrial Crops in Foggia
(41◦28′ N, 15◦32′ E, and 75 m asl), which are representative of one of the most important
durum wheat cultivated areas in the Mediterranean basin.
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Figure 1. Italy (a) and in the red box Foggia province and (b) the ten fields studied (1–10). 

The fields are placed in a flat area called ‘Apulian Tavoliere’ and the soil is a silty-
clay Vertisol of alluvial origin classified as Fine Mesic Typic Chromoxerert by Soil 
Taxonomy USDA [41]. The main physical and chemical characteristics of the soil were: 
36% clay, 17% silt, and 47% sand; pH 7.8; 17.3 g kg−1 C organic; 1.5 g kg−1 N total; 19 mg 
kg−1 available P; 111 mg kg−1 interchangeable K. Before sowing, the soil was ploughed and 
then harrowed for an adequate seed-bed preparation. The sowing period was in the first 
10 days of December in both seasons and, the sowing density was 350 seeds m−2. In both 
years, nitrogen and phosphorus were applied at a dose of 80 and 70 kg ha−1, respectively. 

Figure 1. Italy (a) and in the red box Foggia province and (b) the ten fields studied (1–10).

The soils in the study area were cultivated with durum wheat for grain production
for two consecutive growing seasons. The harvest took place in June 2018 and 2019 and
the same crop management was applied in each season. Wheat was grown on the same
land, including in 2017, while during the summer between 2018 and 2019, the fields were
not cultivated.

The fields are placed in a flat area called ‘Apulian Tavoliere’ and the soil is a silty-clay
Vertisol of alluvial origin classified as Fine Mesic Typic Chromoxerert by Soil Taxonomy
USDA [41]. The main physical and chemical characteristics of the soil were: 36% clay,
17% silt, and 47% sand; pH 7.8; 17.3 g kg−1 C organic; 1.5 g kg−1 N total; 19 mg kg−1

available P; 111 mg kg−1 interchangeable K. Before sowing, the soil was ploughed and
then harrowed for an adequate seed-bed preparation. The sowing period was in the first
10 days of December in both seasons and, the sowing density was 350 seeds m−2. In both
years, nitrogen and phosphorus were applied at a dose of 80 and 70 kg ha−1, respectively.
The nitrogen fertilizer was applied in two phases: 1/3 at the sowing date (150 kg ha−1 of
bi-ammonium phosphate N 18%, P 46%) and 2/3 at the stem elongation stage (200 kg ha−1
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of ammonium nitrate N 26–27%). Weeds during the growing seasons were controlled with
the following herbicides: Tralcoximim (1.7 L ha−1) + Clopiralid + MCPA + Fluroxypyr
(2.0–2.5 L ha−1).

2.2. Homogeneous Zones Definition
2.2.1. Yield Monitor-Based Maps

The yield map of each field during the two seasons were collected by a combine
harvester equipped with a yield-monitoring system (StarFire3000, John Deere, Moline,
IL, USA). The high-accuracy GPS technology of the harvester, coupled with on-board
yield monitors, allowed accurate and fine-resolution mapping of within-field variation
of crop yields. High resolution data collected by the combine harvesters were used to
obtain detailed yield shapefiles that were processed by R software for geostatistical analysis.
The yield maps, after being processed with R, were elaborated to eliminate the outliers
according to the method indicated by Còrdoba et al. [42].

2.2.2. Satellite Data

During durum wheat cultivation, from the moment in which the crop was significantly
visible from the satellite and up to the harvest (from 20/01/2018 to 16/06/2018 and
from 26/01/2019 to 18/06/2019 for the two growing-seasons, respectively), the reflection
bands of the available spectra were extracted from the ESA (European Space Agency—
https://sentinel.esa.int/web/sentinel/sentinel-data-access, accessed on 13 April 2021)
website. Table 1 reports the characteristics of the spectral bands detected by Sentinel-2A
and Sentinel-2B satellites.

Table 1. Spectral bands available from Sentinel 2 satellites.

Sensor Band Name
Sentinel-2A Sentinel-2B

Resolution
(Meters)Central

Wavelength (nm)
Bandwidth

(nm)
Central

Wavelength (nm)
Bandwidth

(nm)

Multispectral NIR 835.1 115 833 115 10
Multispectral Red 664.5 30 665 30 10
Multispectral Green 560.0 35 559 35 10

The data, obtained and ortho-corrected by ESA, were processed through R software,
using the sen2r function of the “sen2r” package, and satellites 2A and 2B were set as sources.
Level-2A processing includes scene classification and atmospheric correction applied to
Top-Of-Atmosphere (TOA) level 1C ortho imaging products. The resolution of the bands
required was 10 × 10 meters.

From the bands obtained, Red (R, σ = ~665 nm), Green (G, σ = ~560 nm), Vegetation
Red Edge (VRE, σ = ~780 nm), and a NIR (Near Infra-Red, σ = ~833 nm) were selected, and
for each pixel of the maps the spectral indices NDVI (Normalized Difference Vegetation
Index) were defined by the Formula (1):

NDVI =
NIR− Red
NIR + Red

(1)

and MCARI2 (Modified Chlorophyll Absorption in Reflectance Index 2), was calculated by
the Formula (2):

MCARI2 =
1.5[2.5(NIR− Red)− 1.3(NIR− Green)]√
(2NIR + 1)2 − (6 NIR− 5

√
Red)− 0.5

(2)

The two indices were selected for their high capacity to detect the homogeneity of
the photosynthetic activity of crops [43,44]. In particular, the NDVI was chosen because
of the wealth of information and its validation history and the MCARI2 index because it

https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://sentinel.esa.int/web/sentinel/sentinel-data-access
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is one of the best predictors of green leaf area index (LAI) [35,45,46] and incorporates a
soil adjustment factor while preserving sensitivity to LAI and resistance to chlorophyll
influence. Satellite images were acquired throughout the entire durum wheat growth cycle
from the tillering stage (Zadoks Growth Scale, GS 31) to harvest (GS 89) [47]. They were
then checked and only those in which there was no cloud formation over the fields were
used. Therefore, from the 24 maps of 2018 and the 26 maps obtained in 2019, only 14 maps
were selected for processing in 2018 and 13 in 2019.

Considering that the NDVI can be affected by the environmental brightness and by
the inclination of the incident ray, the sum of vegetation indices (ΣNDVI and ΣMCARI2)
were calculated over the observation period (January–June) on each coordinate of the fields.
This methodology was used to attribute the same amount of error to all points, while
maintaining the effect of each single acquisition date.

2.2.3. Texture Analysis

The maps obtained from the time series were then processed for the calculation of the
GLCM indices developed by Robert Haralick [37] for the characterization of heterogeneous
surface samples and inhomogeneity of digital images. Each index highlights a certain
texture property, such as homogeneity, irregularity, or contrast. Texture is the term used to
characterize the tone of grey-level variations in an image [48]. The construction of GLCM,
as reported by Chessel et al. [49], involves first converting an image to greyscale to be
discretized in an entire matrix by dividing the range of continuous pixel values into N
sub-samples of equal width, called gray levels, the values are then remapped on a single
gray level. The elements of GLCM are calculated based on this discretized map by counting
the frequency with which, in the matrix, pairs of pixels occur with specific gray levels
and in a specified spatial relationship. The adjacency of the pixels can be defined in four
different angles: 0, 45, 90, and 135 degrees. The GLCM is then normalized to make the sum
of all elements equal to one. Four GLCM indices were selected, and their meanings and
formulas are presented in Table 2.

Table 2. Selected GLCM indices.

Indices Description Equation

Homogeneity

Measures image homogeneity. Sensitive to the
presence of near diagonal elements in a GLCM,

representing the similarity in gray level between
adjacent pixels.

∑
Ng−1
i=0 ∑

Ng−1
j=0

1
1+(i−j)2 g(i, j)

Contrast
Measures the drastic change in gray level between

contiguous pixels. High contrast images feature
high spatial frequencies.

∑
Ng−1
i=0 ∑

Ng−1
j=0 (i− j)2g2(i, j)

Variance A measure of heterogeneity, variance increases
when the gray level values differ from their mean. ∑

Ng−1
i=0 ∑

Ng−1
j=0 (i− µ)2g(i, j)

Correlation
Measures the linear dependency in the image.

High correlation values imply a linear relationship
between the gray levels of adjacent pixel pairs.

∑
Ng−1
i=0 ∑

Ng−1
j=0 (i− µ)(j− µ)g (i,j)

σ2

Note: Ng is the number of gray levels, g(i,j) is the entry (i,j) in the GLCM, µ is the GLCM mean, and σ2 is the GLCM variance. Source: [36].

For each field, a regular grid of points identified by their geographical coordinates
was prepared, with a layout of 3 × 3 m (Figure 2). The map projection was converted from
WGS84 to the UTM projection system to express the distances in physical units (meters).
Therefore, the distances between the sites within the field can be expressed as absolute
distances (meters) instead of relative distances (degrees), facilitating interpretation. For this
operation, we used the spTransform function of the “rgdal” package [50] which converts the
geographic coordinates to UTM Cartesian coordinates.
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The extract function of the “raster” package was used to extract the corresponding
values from the raster of the spectral indices NDVI and MCARI2 and the glcm function
of the homonymous package, to calculate the respective GLCM indices. These functions
allowed to obtain a data frame in which in each row a point of the map (long, lat) was
described with a column for the spectral index and a column for each GLCM index, for
each date of the observed period.

The values of the spectral indices of all the dates of the two periods were added for
each point, while for the GLCM indices, the maximum value reached in the observation
period was used. So, the new data frame, which still had the coordinates of the points of the
regular grid in each row, had the sum of the spectral index (Σ) values in the columns and a
column for each GLCM index represented by the maximum value collected in the period.

2.2.4. Modelling Analysis

The dataset was used for Principal Component Analysis (PCA), to verify any correla-
tions between the variables and to observe the effect of each variable on the distribution of
points. In recent years, PCA has been extensively used in remote sensing classification de-
velopments, especially for hyperspectral imagery [32]. Principal Component Analysis was
carried out for the study of clustering methods, taking into consideration the percentage
of variance explained by the first and second components and therefore considering the
loadings of the methods observed on the two components as suggested by Deur et al. [32].

The same dataset of the PCA was subjected to fuzzy k-means cluster analysis [51]
for homogeneous zones identification, which allows the division of a set of objects into
k groups based on their attributes, assuming that the attributes of the objects can be
represented as vectors, thus forming a vector space. The goal of the algorithm was to
minimize the total intra-group variance. Consequently, each group was identified by a
centroid or midpoint. The algorithm worked iteratively to assign each coordinate of the
fields to one of the k groups based on the features that were provided. Initially, it created
k partitions and assigned the coordinates of the fields to each partition and calculated
the centroid of each group. Later, it built a new partition associating each coordinate to
the group whose centroid was closest to it. Finally, the centroids were recalculated for
the new groups, until the algorithm converged. The variables that were observed for the
development of PCA and k-means clustering are shown in Table 3.
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Table 3. Variables observed in the developed PCA and clustering analysis on studied models.

Models Variables

∑NDVI ∑NDVI by 1 year; Year; Standard deviation of NDVI by 1 year
∑MCARI2 ∑MCARI2 by 1 year; Year; Standard deviation of MCARI2 by 1 year

NDVI single-day NDVI of a single day; Year
MCARI2 single-day MCARI2 of a single day; Year

∑NDVI
+GLCM

∑NDVI by 1 year; Year; Standard deviation of NDVI by 1 year; GLCM
(Homogeneity, Contrast, Variance, Correlation)

∑MCARI2
+GLCM

∑MCARI2 by 1 year; Year; Standard deviation of MCARI2 by 1 year;
GLCM (Homogeneity, Contrast, Variance, Correlation)

The methods were then considered in the process of attributing to clusters, in which
the Euclidean distance was the similarity distance included in the classification algorithm
optimization function. Fuzzy clustering of spatial components in this space was achieved
by setting a fuzziness weighting exponent to 1.3, as indicated in PA applications [33,52,53].
The cluster analysis, as indicated in the protocol proposed by Cordoba et al. [42], was
calculated using the “e1071” package [54]. A summary index was calculated to determine
the optimal number of k-classes [55–58].

2.2.5. Yield Maps Elaboration

For each clustering model, each point of the field, identified by its coordinates, was
assigned to a cluster based on its measured values of the variables considered in the model.
Then, the sum of the average yield obtained in the two-year period 2018–2019 of each point
belonging to a cluster was performed, then was divided by the number of points of the
cluster. In this way, the average yield and the relative standard deviations of each cluster
were obtained.

Then, the regression between yield obtained from the identified clusters and the
clusters identified from the 2019 yield distribution was studied. The regressions were
described with R2 and Root Mean Square Error (RMSE). This analysis was carried out
using the gls function of the “nlme” package [59].

2.3. Comparison Analysis

To confirm the hypothesis of our work, a comparison was made between the mean
yield of the homogeneous zones created with clustering based on the sum of the spectral
indices in the observed period and that made with the yield data measured at harvest
time. The same comparison was also made with clustering performed with the dataset
obtained with the vegetation indices and GLCM method. In addition, we compared the
homogeneous yield maps derived from our approach proposed in this work, with the
homogeneous zones defined on the basis of the yield maps of the previous year and also
on the basis of a single-day vegetation index maps (NDVI and MCARI2). In the latter
case, the maps generated by the satellite images were collected in the weeks corresponding
to the anthesis phenological stage of durum wheat (beginning of May) in both growing
seasons. The Tukey test method was used to compare the yield data obtained from the
clusters identified by the proposed models (NDVIs + GLCM, NDVIs, MCARI2s + GLCM,
and MCARI2s).

3. Results and Discussion
3.1. Vegetation Indices Derived from a Time Series of Satellite Imagery

The results of spectral indices NDVI and MCARI2 were placed in chronological order,
covering the entire time span of cultivation curve of durum wheat (Figure 3). The two
indices showed the same trend reflecting the crop phenology with an accurate synchro-
nization with the durum wheat growth. In the past, several studies have reported to use
of remote sensing for estimating biomass accumulation and predicting crop phenology
by analyzing VI time-series data [60]. Currently, interest has shifted to the use accumu-
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lated NDVI throughout the wheat growing season with the measurements taken at GS30,
GS32, GS37, and GS65 growth stages, which are considered more informative [61]. Zheng
et al. [62] selected three key periods (mid-March, mid-April, and mid-May), corresponding
to the early, middle, and late wheat growing stages, respectively, to validate the relationship
between the satellite imagery and estimated biomass. In our study, the trend of the two
vegetation indices showed a high variability during the entire growth cycle of durum
wheat in the 10 fields. The variability of the values of the two spectral indices was observed
by analyzing the variation of the standard deviation between the values measured on each
coordinate, for each observation date over the two years (Figure 4).
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The rise of the crop density and the variation of the photosynthetic activity values
increased the standard deviation among the measured values. A consistent increase in
values for both vegetation indices was observed during the stem elongation phase up to the
flowering phase, when the curves reached a plateau, due to the complete coverage of the
soil surface, from the end of March to the beginning of May. The MCARI2 index showed a
higher standard deviation during this phase than the NDVI index, while during the grain
filling period, the NDVI lost sensitivity in the estimation of vegetation cover, resulting in a
higher standard deviation than MCARI2. This confirmed a previous study [35] showing
the loss of sensitivity of the NDVI for values of LAI greater than 3 and, the greater potential
of MCARI 2 for estimating LAI and biomass. The decrease in the values of the vegetation
indices at the end of the season was attributed to the senescence of the leaves which
increased the reflectance of the red band and decreased the reflectance of the NIR band.



Remote Sens. 2021, 13, 2036 9 of 21
Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 4. Standard deviation variations for average VIs collected during 2018 and 2019. 

The rise of the crop density and the variation of the photosynthetic activity values 
increased the standard deviation among the measured values. A consistent increase in 
values for both vegetation indices was observed during the stem elongation phase up to 
the flowering phase, when the curves reached a plateau, due to the complete coverage of 
the soil surface, from the end of March to the beginning of May. The MCARI2 index 
showed a higher standard deviation during this phase than the NDVI index, while during 
the grain filling period, the NDVI lost sensitivity in the estimation of vegetation cover, 
resulting in a higher standard deviation than MCARI2. This confirmed a previous study 
[35] showing the loss of sensitivity of the NDVI for values of LAI greater than 3 and, the 
greater potential of MCARI 2 for estimating LAI and biomass. The decrease in the values 
of the vegetation indices at the end of the season was attributed to the senescence of the 
leaves which increased the reflectance of the red band and decreased the reflectance of the 
NIR band. 

As reported in Figure 5, the acquisition of the satellite image for a single day showed 
low values of variability (min = 0.008) between coordinates and a high uniformity in the 
crop, at the same time, it showed high values of variability (max = 0.07) between 
coordinates and low uniformity in the crop. In Table 4, were reported the average values 
of the two years (2018–2019) of the NDVIs and MCARI2s sum in the 10 fields. 

  

Figure 4. Standard deviation variations for average VIs collected during 2018 and 2019.

As reported in Figure 5, the acquisition of the satellite image for a single day showed
low values of variability (min = 0.008) between coordinates and a high uniformity in
the crop, at the same time, it showed high values of variability (max = 0.07) between
coordinates and low uniformity in the crop. In Table 4, were reported the average values of
the two years (2018–2019) of the NDVIs and MCARI2s sum in the 10 fields.
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Table 4. Mean values (µ) of the sum of the two spectral indices and standard deviation (σ) collected
during 2018 and 2019.

FIELD
ΣNDVI ΣMCARI2

µ σ µ σ

1 9.15 0.39 4.11 0.36
2 8.81 0.33 3.96 0.33
3 8.72 0.37 3.88 0.30
4 8.74 0.38 3.88 0.28
5 8.97 0.29 4.05 0.22
6 8.98 0.34 4.05 0.27
7 9.02 0.33 4.09 0.28
8 9.05 0.42 4.03 0.37
9 9.01 0.28 3.99 0.23
10 8.38 0.49 3.56 0.39

The sum of the mean NDVI values were approximately double those of MCARI2,
while the standard deviation for both cumulative indices were comparable, suggesting
a greater sensitivity to the variation of the MCARI2 fields compared to the NDVI [63].
Among the ten fields investigated, field 1 was the one with the highest average values for
both indices (9.15 and 4.11 for ΣNDVI and ΣMCARI2, respectively), while field 10 showed
the lowest average values of sum of the two spectral indices (8.38 and 3.56 for ΣNDVI and
ΣMCARI2, respectively). Field 10 was also the one with the highest standard deviation for
both vegetation indices.

3.2. GLCM Processing and Clustering Analysis

GLCM processing allowed to extract the homogeneity, contrast, variance, and correla-
tion from each pixel constituting the raster of the spectral indices. Then, the results were
sorted to form an array containing the coordinates of the grid points in the rows and the
dates in the columns. The values were the intensities of the GLCM indices. Therefore, the
maximum values of each row were searched, to verify the maximum peak reached by the
pixels in the time span of cultivation. As a result, Figure 5 reported the calculation of the
four GLCM indices searched for field 1.

The analyzed models showed R2 values between 0.621 (RMSE = 1.15) obtained in the
model based on the yield map of the previous year and 0.982 (RMSE = 0.25) obtained from
the model based on the sum of the NDVI corrected by the GLCM processing. The two
models based on the sum of the spectral indices with GLCM showed higher values of R2

and lower values of RMSE (Table 5).
The PCA developed on all data from the ten fields, by averaging the two years, showed

that the set of observed variables explain 72.1% of the overall variance for the NDVI dataset
and 69.96% for the dataset relating to MCARI2 (Figure 6).



Remote Sens. 2021, 13, 2036 11 of 21

Table 5. Relationship between the averages calculated in the clusters obtained from the models
compared with the cluster averages obtained from the yield values.

Model Regression R2 RMSE

ΣNDVI+GLCM
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Figure 6. Multivariate analysis of the NDVI (a) and MCARI2 (b) indexes and GLCM characteristics.

Regarding the NDVI, homogeneity (−0.57) and contrast (0.57) showed greater in-
fluence on the first component (Table 6), while correlation (0.66) and NDVI_sum (0.64)
showed the greatest influence on the second component. In the case of MCARI2, variance
(0.55), homogeneity (−0.55), and contrast (0.59) showed the greatest influence on the first
component (Table 6), while the correlation (0.71) and the MCARI2_sum (−0.67) showed
the greatest influence on the second component.



Remote Sens. 2021, 13, 2036 13 of 21

Table 6. Loadings of variables processed with the PCA.

NDVI MCARI2

FACTORS PC1
(52.00%)

PC2
(20.10%)

PC1
(49.51%)

PC2
(20.45%)

Spectral_indices_sum −0.11 0.69 −0.16 0.67
Homogeneity_max −0.57 −0.02 −0.55 −0.11

Contrast_max 0.58 0.13 0.59 0.17
Variance_max 0.56 0.07 0.55 0.55

Correlation_max −0.07 0.71 −0.05 0.71

The visualization of these results is shown in Figure 6. In the two lower quadrants (III
and IV), all the coordinates of the points that showed greater values of the NDVIs during
the observation period and a greater GLMC-correlation were concentrated. In the upper
quadrants (I and II), all the coordinates of the points that recorded lower values of the
NDVIs fell. With the same value of NDVIs and GLMC-correlation, the points were also
distributed on the right and left due to greater GLMC-homogeneity and GLMC-contrast,
respectively. Similarly, for the MCARI2 index, the PCA analysis showed a biplot with
the analogous distribution of both the GLCM indices and the MCARI2 data (Figure 6b).
Using the GLCM indices, two, three, and four clusters were evaluated. Based on the
calculated indices (Table 7), for all fields over two years, the optimal number of clusters
(i.e., homogeneous zones) was three, both for the NDVI and for the MCARI2.

Table 7. Indices used to select the number of clusters from fuzzy k-means cluster results for 10 durum wheat fields, in
Italy. For each index, the optimum class number among 2, 3, or 4 classes is suggested by the lowest index value, with a
red background.

NDVI MCARI2

Field No. Cluster 2 3 4 2 3 4

1

XieBeni 8.45 × 10−6 7.83 × 10−6 8.32 × 10−6 3.95 × 10−6 3.55 × 10−6 2.44 × 10−6

FukSug −1.01 × 105 −1.18 × 105 −1.01 × 105 −1.02 × 105 −2.95 × 105 −1.31 × 105

PartCoef 1.01 × 10 1.00 × 10 1.06 × 10 1.01 × 10 1.01 × 10 1.02 × 10

PartEntr 9.94 × 10−2 9.16 × 10−2 9.43 × 10−2 2.15 × 10−2 1.99 × 10−2 3.04 × 10−2

2

XieBeni 7.50 × 10−6 6.61 × 10−6 0.00000769 4.8 × 10−6 2.14 × 10−6 2.26 × 10−6

FukSug −1.04 × 105 −1.09 × 105 −1.05 × 105 −3.26 × 105 −1.42 × 105 −4.26 × 105

PartCoef 1.07 × 10 1.02 × 10 1.08 × 10 1.05 × 10 1.05 × 10 1.09 × 10

PartEntr 9.20 × 10−2 9.19 × 10−2 9.55 × 10−2 3.56 × 10−2 1.14 × 10−2 1.30 × 10−2

3

XieBeni 8.36 × 10−6 7.37 × 10−6 0.00000819 2.74 × 10−6 2.64 × 10−6 3.85 × 10−6

FukSug −1.03 × 105 −1.08 × 105 −1.05 × 105 −2.17 × 105 −4.10 × 105 −5.14 × 105

PartCoef 1.06 × 10 1.01 × 10 1.03 × 10 1.07 × 10 1.04 × 10 1.06 × 10

PartEntr 9.96 × 10−2 9.18 × 10−2 9.91 × 10−2 2.73 × 10−2 1.29 × 10−2 3.51 × 10−2

4

XieBeni 9.57 × 10−6 7.82 × 10−6 0.00000898 4.13 × 10−6 3.29 × 10−6 3.82 × 10−6

FukSug −1.06 × 105 −1.08 × 105 −1.06 × 105 −3.17 × 105 −1.89 × 105 −4.63 × 105

PartCoef 1.04 × 10 1.02 × 10 1.01 × 10 1.06 × 10 1.01 × 10 1.03 × 10

PartEntr 9.77 × 10−2 9.54 × 10−2 9.71 × 10−2 3.32 × 10−2 1.27 × 10−2 3.91 × 10−2
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Table 7. Cont.

NDVI MCARI2

Field No. Cluster 2 3 4 2 3 4

5

XieBeni 7.84 × 10−6 7.86 × 10−6 0.00000789 4.66 × 10−6 4.04 × 10−6 4.43 × 10−6

FukSug −1.08 × 105 −1.09 × 105 −1.02 × 105 −4.60 × 105 −1.79 × 105 −2.69 × 105

PartCoef 1.04 × 10 1.03 × 10 1.05 × 10 1.07 × 10 1.01 × 10 1.10 × 10

PartEntr 9.57 × 10−2 9.20 × 10−2 9.60 × 10−2 3.06 × 10−2 1.37 × 10−2 2.01 × 10−2

6

XieBeni 8.3 × 10−6 8.02 × 10−6 0.00000903 2.35 × 10−6 2.01 × 10−6 3.01 × 10−6

FukSug −1.01 × 105 −1.07 × 105 −1.05 × 105 −3.69 × 105 −1.56 × 105 −2.52 × 105

PartCoef 1.05 × 10 1.02 × 10 1.04 × 10 1.02 × 10 1.01 × 10 1.08 × 10

PartEntr 9.20 × 10−2 9.32 × 10−2 9.32 × 10−2 2.79 × 10−2 1.07 × 10−2 1.35 × 10−2

7

XieBeni 8.81 × 10−6 7.96 × 10−6 0.00000874 4.23 × 10−6 2.2 × 10−6 4.49 × 10−6

FukSug −1.04 × 105 −1.06 × 105 −1.05 × 105 −3.62 × 105 −3.85 × 105 −4.59 × 105

PartCoef 1.02 × 10 1.03 × 10 1.08 × 10 1.04 × 10 1.03 × 10 1.09 × 10

PartEntr 9.73 × 10−2 9.67 × 10−2 9.68 × 10−2 1.89 × 10−2 1.77 × 10−2 3.13 × 10−2

8

XieBeni 7.62 × 10−6 7.17 × 10−6 0.00000928 3.78 × 10−6 2.88 × 10−6 4.22 × 10−6

FukSug −1.02 × 105 −1.07 × 105 −1.06 × 105 −3.77 × 105 −3.91 × 105 −3.27 × 105

PartCoef 1.01 × 10 1.01 × 10 1.09 × 10 1.06 × 10 1.03 × 10 1.09 × 10

PartEntr 9.81 × 10−2 9.45 × 10−2 9.93 × 10−2 3.96 × 10−2 1.85 × 10−2 3.42 × 10−2

9

XieBeni 8.98 × 10−6 7.94 × 10−6 0.00000995 3.04 × 10−6 2.78 × 10−6 3.73 × 10−6

FukSug −1.06 × 105 −1.08 × 105 −1.07 × 105 −3.72 × 105 −1.57 × 105 −4.35 × 105

PartCoef 1.03 × 10 1.03 × 10 1.04 × 10 1.04 × 10 1.01 × 10 1.04 × 10

PartEntr 9.07 × 10−2 9.01 × 10−2 9.43 × 10−2 3.78 × 10−2 3.29 × 10−2 9.51 × 10−2

10

XieBeni 8.22 × 10−6 7.69 × 10−6 0.00000962 3.52 × 10−6 2.87 × 10−6 3.63 × 10−6

FukSug −1.06 × 105 −1.08 × 105 −1.05 × 105 −2.31 × 105 −1.68 × 105 −3.97 × 105

PartCoef 1.08 × 10 1.01 × 10 1.04 × 10 1.06 × 10 1.05 × 10 1.09 × 10

PartEntr 9.44 × 10−2 9.42 × 10−2 9.63 × 10−2 2.19 × 10−2 1.45 × 10−2 3.15 × 10−2

3.3. Comparison of Homogeneous Areas Obtained with Different Methods

Clustering and visualization on the maps based on the NDVIs and MCARI2s values
of the entire study period (averaged 2018–2019), integrated with the GLCM indices and
compared with 10 yield maps were reported in Supplementary Table S1. The average of
the estimated yield values calculated for the three homogeneous zones using the various
models proposed (NDVIs + GLCM, NDVIs, MCARI2s + GLCM, MCARI2s, single-day
VI, and the yield map of the previous year, 2017) were reported in Table 8. The results
showed mean values with differences statistically significant. The adjusted mean values
derived from the cluster analysis of the vegetation indices time series were compared with
the NDVI and MCARI2 recorded in a single-day (May 2018) and with the yield map of
the previous year (2017). The results of the Tukey test highlighted how the models lead to
different yield values among them and across the three cluster zones.
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Table 8. Average of the two-year estimated values (µ), with standard deviation (σ) and range of the yield values (Mg ha−1)
of the areas intercepted by the seven clustering modes in ten fields. Different letters indicate significant differences at Tukey
test (p-value < 0.05) between the three clusters of the same field.

FIELD ZONE ∑NDVI
+GLCM ∑NDVI NDVI

Single-Day
Yield Map

2017
Measured

Yield
∑MCARI2
+GLCM ∑MCARI2 MCARI2

Single-Day

1 1 5.01a 5.27a 6.42a 5.40a 4.80 ± 0.3 4.87a 4.77a 5.96a
∆µ% 4.38% 9.79% 33.75% 12.50% 1.46% −0.63% 24.17%

2 6.31b 7.33b 7.28a 5.65a 6.53 ± 0.4 6.48b 6.75b 7.56b
∆µ% −3.37% 12.25% 10.30% −13.48% −0.77% 3.37% 13.62%

3 8.07c 7.41c 9.89b 6.39b 8.25 ± 0.7 7.76c 6.95c 9.78c
∆µ% −2.18% −10.18% 16.58% −22.55% −5.94% −15.76% 15.64%

2 1 4.53a 4.74a 5.67a 5.11a 4.36 ± 0.3 4.42a 4.39a 5.50a
∆µ% 3.90% 8.72% 30.05% 17.09% 1.26% 0.57% 26.15%

2 6.07b 6.74b 6.94b 5.28a 5.98 ± 0.4 6.02b 6.35b 7.11b
∆µ% 1.51% 12.80% 13.84% −11.63% 0.75% 6.19% 15.90%

3 8.28c 7.22b 9.80c 6.52b 8.14 ± 0.7 7.88c 7.24b 9.68c
∆µ% 1.66% −11.36% 16.94% −19.96% −3.19% −11.06% 15.87%

3 1 4.52a 4.81a 5.62a 5.11a 4.38 ± 0.2 4.34a 4.40a 5.46a
∆µ% 3.20% 9.94% 28.34% 16.69% −0.80% 0.46% 24.80%

2 5.33b 6.23b 6.36a 5.05a 5.49 ± 0.4 5.54b 5.71b 6.59b
∆µ% −2.91% 13.48% 13.61% −8.11% 0.82% 3.92% 16.69%

3 7.85c 7.01b 9.22b 6.65b 7.74 ± 0.7 7.63c 6.68c 8.68c
∆µ% 1.42% −9.43% 16.01% −14.08% −1.49% −13.76% 10.83%

4 1 4.67a 4.94a 5.72a 5.17a 4.56 ± 0.3 4.59a 4.52a 5.25a
∆µ% 2.52% 8.34% 25.58% 13.39% 0.77% −0.88% 15.15%

2 5.34a 6.22b 6.12a 4.92a 5.53 ± 0.4 5.48b 5.65b 6.26b
∆µ% −3.35% 12.49% 9.72% −10.95% −0.81% 2.26% 11.74%

3 7.61b 7.02b 9.18b 6.61b 7.76 ± 0.7 7.54c 6.69c 8.68c
∆µ% −1.93% −9.54% 15.49% −14.76% −2.77% −13.80% 10.61%

5 1 4.80a 5.02a 5.90a 5.27a 4.65 ± 0.4 4.70a 4.60a 5.36a
∆µ% 3.12% 7.96% 26.88% 13.33% 1.08% −1.08% 15.16%

2 5.61b 6.44b 6.29a 5.02a 5.83 ± 0.6 5.78b 6.10b 6.35b
∆µ% −3.69% 10.56% 7.39% −13.91% −0.86% 4.72% 8.20%

3 7.91c 7.16b 9.85b 6.49b 8.13 ± 0.9 7.81c 7.15c 9.18c
∆µ% −2.71% −11.88% 17.47% −20.18% −3.94% −12.00% 11.49%

6 1 4.98a 5.15a 6.11a 5.36a 4.79 ± 0.4 4.86a 4.70a 5.50a
∆µ% 3.97% 7.52% 27.69% 11.91% 1.57% −1.78% 14.94%

2 5.80b 6.59b 6.74a 5.18a 5.95 ± 0.7 6.01b 6.13b 6.76b
∆µ% −2.44% 10.77% 11.73% −12.87% 1.01% 3.03% 11.99%

3 8.18c 7.40b 9.75b 6.63b 8.42 ± 1.1 8.02c 7.19c 9.44c
∆µ% −2.85% −12.06% 13.65% −21.27% −4.75% −14.62% 10.81%

7 1 4.95a 5.17a 6.33a 5.33a 4.78 ± 0.4 4.84a 4.70a 5.78a
∆µ% 3.66% 8.17% 32.46% 11.62% 1.36% −1.57% 20.94%

2 5.86b 6.71b 6.87a 5.43a 6.07 ± 0.6 6.05b 6.26b 6.82b
∆µ% −3.38% 10.55% 11.72% −10.55% −0.25% 3.13% 11.07%

3 8.91c 7.94c 10.44b 6.99b 9.05 ± 0.9 8.57c 7.72c 10.41c
∆µ% −1.55% −12.27% 13.36% −22.72% −5.31% −14.65% 13.11%

8 1 5.1a 5.61a 6.40a 5.56a 5.01 ± 0.6 5.05a 4.91a 5.83a
∆µ% 3.30% 11.99% 27.77% 10.99% 0.90% −1.90% 16.38%

2 6.19b 7.10b 6.87a 5.61a 6.38 ± 0.7 6.31b 6.59b 7.26b
∆µ% −2.98% 11.21% 7.06% −12.15% −1.18% 3.29% 12.12%

3 9.08c 8.59c 10.48b 7.30b 9.28 ± 1.2 9.02c 8.21c 10.39c
∆µ% −2.10% −7.44% 11.46% −21.29% −2.75% −11.54% 10.73%
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Table 8. Cont.

FIELD ZONE ∑NDVI
+GLCM ∑NDVI NDVI

Single-Day
Yield Map

2017
Measured

Yield
∑MCARI2
+GLCM ∑MCARI2 MCARI2

Single-Day

9 1 5.27a 5.60a 6.18a 5.80a 5.19 ± 0.7 5.20a 5.12a 6.12a
∆µ% 1.54% 7.91% 19.19% 11.76% 0.29% −1.35% 17.94%

2 6.28b 7.18b 6.98a 5.68a 6.43 ± 0.8 6.37b 6.66b 7.27b
∆µ% −2.41% 11.66% 7.81% −11.66% −0.93% 3.50% 11.49%

3 9.43c 8.81c 10.58b 7.93b 9.54 ± 1.3 9.31c 8.20c 10.54c
∆µ% −1.10% −7.66% 9.83% −16.83% −2.36% −14.05% 9.49%

10 1 4.42a 4.70a 5.14a 4.71a 4.29 ± 0.8 4.36a 4.22a 5.21a
∆µ% 3.03% 9.68% 19.95% 9.92% 1.63% −1.52% 21.59%

2 5.14b 5.82b 6.10b 4.85a 5.30 ± 1.0 5.22b 5.49b 6.30b
∆µ% −2.93% 9.82% 13.13% −8.40% −1.51% 3.68% 15.95%

3 7.27c 6.59b 8.25c 6.58b 7.40 ± 1.2 7.30c 6.62c 8.49c
∆µ% −1.76% −10.95% 10.36% −11.02% −1.28% −10.48% 12.90%

The mean yield measured on all fields in the two study-years was 6.33 t ha−1. This
was a high yield if we consider the agronomic potential of the reference area (4.5 t ha−1).
However, it was consistent with the mean yield of the two growing-seasons investigated
(2018–2019), due to the favorable climatic trend. The yield fluctuation across the 10 fields
was between 5.66 t ha−1 (field 10) and 7.05 t ha−1 (field 9), while the mean yields of
the homogeneous areas were 4.29, 5.95, and 8.37 t ha−1, respectively for zone 1, 2, and
3. As expected, in the less productive areas (zone 1), the yield variations were lower
compared to the more productive ones (zone 3), confirming what was well-known in
the literature. Several studies, in fact, suggested that the yield variability in the more
productive environments is greater than in the less productive areas [64–66].

For the first zone, the smaller percentage of deviation was achieved by the MCARIs
method (underestimation of 0.63%), however, it has a range 1.94 times larger than the
measured one. The smaller range difference was obtained by the NDVIs + GLCM method,
which identified a range with amplitude close to the real one (−0.08), the other methods
identified values higher than 1.

Considering the second zone identified, the lowest percentage deviation from the
area identified by the measured yield values was obtained through the MCARI2s + GLCM
method (underestimation of 0.77%). For this second zone, all methods intercepted range
widths that were very close to the real one.

For the third zone identified, the lowest percentage deviation was obtained through
the NDVIs + GLCM method (underestimation of 2.18%). Additionally, for this zone, all
methods intercepted range widths that were very close to the real one.

In general, the best yield estimates were recorded using the sum of the NDVI and
MCARI2 indices, corrections by GLCM. Several studies have proven that time-series images
can provide improved classification accuracy compared with single image (see [11] for a
review). Vannoppen et al. [67] using NDVI time series was able to predict spring and winter
wheat yield at the regional scale and with higher spatio-temporal resolutions than regional
statistics. On the other hand, the estimates yields based on the use of the single-day VI
were unreliable and the estimate produced using the yields of the previous year were even
less reliable.

The results reported in Figure 7 showed the variability of the values in the three
clusters studied and the ranges intercepted by the four methods in confirming, as the
variability of each cluster is reduced, when the GLMC interpretation is added to the NDVI
or MCARI2 index.
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Figure 7. Boxplot of the ranges of yield values intercepted in the three clusters (a–c) by the meth-
ods studied.
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In the complex of the three intercepted zones, the lowest overall percentage devia-
tion from the yield values was obtained by clustering with the NDVIs + GLCM method,
which underestimated the average of the measured yield by 0.19%. Moreover, the same
method always had a deviation of the range amplitude of less than 1 in the three inter-
cepted zones. Recent studies on predictive methods based on satellite information report
that the accuracy with respect to herbaceous crops, such as soybean, was in the range of
0.24–0.48 Mg ha−1 [54] and in maize production, it was of about 1 Mg ha−1. The authors
in [61,62] explored the ability of Sentinel-2 data to estimate within-field yield variability,
providing accurate estimates for individual fields with RMSE values between 0.24 and
1.94 Mg ha−1. This result indicates the accumulation of satellite imagery over the year
improved estimation accuracy throughout the growing season. Our data confirmed this
hypothesis and showed a greater accuracy of 0.18–0.22 Mg ha−1 (∑NDVIs + GLCM) and
0.05–0.49 Mg ha−1 (∑MCARI2s + GLCM). Therefore, the utilization of texture information
reduced the impacts of isolated pixels within the pixel-based approach and improved
the classification accuracy of spectral information as suggested by Kwak and Park [38].
The homogeneous areas identified through the proposed approach showed a better cor-
respondence compared with methods currently used to produce prescription maps for
crop fertilization, based on a one-day reading of the indices and on the previous year’s
production maps.

4. Conclusions

The identification of clusters and homogeneous management zones is still a chal-
lenging task in PA. Unfortunately, defining the sub-field areas is difficult due to complex
interactions between many factors such as climate, topography, and soil properties. The
more appropriate methodology is still under debate considering the index to be used
and the crop stage for image acquisition. The method proposed in this research for the
preparation of clusters, based on the cumulative analysis of spectral VIs combined with the
use of texture analysis, improved the methods commonly used in digital agriculture for
the definition of homogeneous productivity zones. In particular, the proposed algorithm
for clusters preparation allows to identify, in the studied fields, areas much more related to
the crop yield. Therefore, it can become a useful tool for the diversified management of
the fields for the agricultural operations required (tillage, sowing, and nutrition choices),
fostering a transition towards a variable rate application management.

The analysis carried out in this work aimed to verify the integration of a method
dedicated to reading uniformity and contrasts within a two-dimensional set of values. It is
a method applied in quality control through image analysis of industrial production objects
(e.g., leathers, fabrics, textures). It has recently been used for the analysis of landscape
variation, both from a spatial and temporal point of view, to highlight the changes between
one crop and another or to check whether an observed area has undergone changes in the
landscape over time.

Therefore, our results suggest that combining texture analysis of a time series of
satellite images represents a promising tool for delineating homogeneous and stable areas
in crop species. In fact, the study highlighted how the graphical representation of crop
variability by using maps could be a useful tool, not only to describe the homogeneous
productivity zones inside the field, but also to define their temporal stability over time.

Further studies should be implemented to better understand the agronomic sig-
nificance of this classification by combining high-resolution satellite imagery and crop
modelling. The comparison with geo-resistivity maps conducted on the same soils could
attribute, to the intercepted areas, the origin of their difference with the rest of the soil.
Experimental tests are still ongoing and have considered the intercepted areas for the
preparation of the prescription maps used for the distribution of fertilizers in the follow-
ing seasons.
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10.3390/rs13112036/s1, Table S1: Yield and clustered maps (3 clusters) of the ten fields (about 80
hectares) in the Foggia province, Italy.
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