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Abstract: High-spatial-resolution precipitation data are of great significance in many applications,
such as ecology, hydrology, and meteorology. Acquiring high-precision and high-resolution precip-
itation data in a large area is still a great challenge. In this study, a downscaling–merging scheme
based on random forest and cokriging is presented to solve this problem. First, the enhanced decision
tree model, which is based on random forest from machine learning algorithms, is used to reduce
the spatial resolution of satellite daily precipitation data to 0.01◦. The downscaled satellite-based
daily precipitation is then merged with gauge observations using the cokriging method. The scheme
is applied to downscale the Global Precipitation Measurement Mission (GPM) daily precipitation
product over the upstream part of the Hanjiang Basin. The experimental results indicate that (1)
the downscaling model based on random forest can correctly spatially downscale the GPM daily
precipitation data, which retains the accuracy of the original GPM data and greatly improves their
spatial details; (2) the GPM precipitation data can be downscaled on the seasonal scale; and (3)
the merging method based on cokriging greatly improves the accuracy of the downscaled GPM
daily precipitation data. This study provides an efficient scheme for generating high-resolution and
high-quality daily precipitation data in a large area.

Keywords: GPM; spatial downscaling; random forest; daily precipitation; cokriging; precipitation
data merging

1. Introduction

As an important part of the energy and material cycles, precipitation is of great signifi-
cance to hydrology, meteorology, and ecology [1–3]. The surface process is mostly affected
by precipitation, an essential input parameter of surface meteorology in various plant phys-
iology models, ecology, hydrology, and other fields [4–7]. Most of the uncertainties in land
hydrological processes are caused by the spatiotemporal variability of precipitation [8,9].
Therefore, acquiring high-resolution and high-precision precipitation data is essential for
researching surface processes and global climate change.

At present, precipitation is mainly measured by the rain gauge, satellite remote
sensing, and weather radar. Traditional rain gauges can provide relatively accurate rainfall
values on the point scales, but they are not accurate for estimating continuous spatial
precipitation distributions on a large scale [10]. Meteorological radar can provide more
precise rainfall data with spatial and temporal resolution. However, weather radar has
many disadvantages, such as measurement error caused by beam obscuration and distance
attenuation in complex terrain [11]. Since the 1980s, satellite precipitation observation
based on remote sensing technology has developed rapidly, such as the Geostationary
Operational Environmental Satellite (GOES), the MeteoSat, the National Oceanic and
Atmospheric Administration–Polar Orbiting Environmental Satellites (NOAA–POES), the
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Tropical Precipitation Measurement Mission (TRMM) [12], Global Precipitation Satellite
Mapping (GSMaP) [13], the Global Precipitation Climate Plan (GPCP) [14], and the Global
Precipitation Measurement Mission (GPM) [15]. The satellite precipitation observation
data provide reliable precipitation estimates and reflect more spatial distributions than the
rain gauge data. For satellite precipitation observation, it is impossible to achieve high
temporal resolution and high spatial resolution simultaneously (such as 0.25◦ from the
TRMM and 0.1◦ from the GPM). The spatial resolution of the satellite precipitation data is
too low for local basin hydrological research. The spatial downscaling is an effective way
to solve this problem to expand the application range of satellite precipitation data [16].

There are usually two methods for the spatial downscaling of precipitation: dynamic
and statistical downscaling. Dynamic downscaling relies on regional climate or numer-
ical weather models and provides high-resolution precipitation by simulating physical
processes of the land–atmosphere coupling system, usually requiring considerable com-
putational resources [17]. Statistical downscaling is a downscaling model constructed
by the significant relationship between environmental variables and precipitation, and
high-resolution precipitation is then inferred using high-resolution environmental vari-
ables. Statistical downscaling has been widely applied to spatial downscaling of satellite
precipitation data. The normalized vegetation index (NDVI) was independently used as
the explanatory variable to downscale the annual TRMM data for the first time in the
Iberian Peninsula [18]. Jia et al. [19] improved the accuracy of the downscaled annual
TRMM data using DEM and NDVI as explanatory variables. Fang et al. [20] indicated
that the effects of topography factors such as aspect, slope, and terrain roughness on the
spatial downscale of TRMM data should be considered. After that, environmental variables
such as topography (elevation, slope, aspect), vegetation (NDVI), land surface temperature
(LST), and geographical location (longitude and latitude) were widely used in the spatial
downscaling of TRMM, GPM, and other data at an annual or monthly scale [21–24]. The
correlation between environmental variables and precipitation at a daily scale is not clear,
so Ma [25] and Chen [26] et al. tried to downscale the satellite annual precipitation data
accumulated by daily precipitation using the regression model and then disassembled the
downscaled annual precipitation data into a daily scale to obtain downscaled satellite daily
precipitation data.

Since there is no additional precise precipitation observation in the downscaling
process, the original satellite precipitation data affect the accuracy of downscaling results.
Many studies have found that the time scale certainly influences the accuracy of satellite
precipitation data. The accuracy of low time resolution (monthly or yearly) satellite
precipitation data is higher than that of high time resolution (day or finer time scale)
satellite precipitation data [27,28]. Therefore, it is certain that the accuracy of high temporal
resolution downscaled satellite precipitation data is also inferior. In recent years, to reduce
errors in satellite precipitation estimation and improve its accuracy, the method of merging
satellite-based precipitation data with gauge observation data has become a common
approach, such as statistical bias correction [29], inverse root mean square error (IRMSE)
weighting [30], random forest [31], geographic differential analysis (GDA) [32], kriging
with external drift (KED) [33], and cokriging (CK).

A downscaling–merging (DM) scheme based on random forest and cokriging was
adopted in this study. By merging the downscaled satellite precipitation with the gauge
observations, daily precipitation data with high accuracy were obtained. By taking the
upstream of the Hanjiang River Basin (above the Danjiangkou Reservoir) as a case study,
the effectiveness of the method was verified by GPM daily precipitation data.

2. Study Area and Data
2.1. Study Area

The study region is the upstream part of the Hanjiang Basin, which is the largest
tributary in the Yangtze River and the water source of the Middle Route Project of South to
North Water Transfer, China (Figure 1). It originates from Qinling Mountain and is located



Remote Sens. 2021, 13, 2040 3 of 22

in the southeast of China between east longitude of 106◦15′–112◦00′ and north latitude
of 30◦10′–34◦20′. The entire drainage area of the study region is about 960,000 km2. The
basin has a subtropical monsoon climate with humid air and plentiful rainfall. The annual
average rainfall is roughly 830 mm, decreasing from south to north.
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2.2. Datasets

The Global Precipitation Measurement (GPM) is an international satellite mission
launched by the National Aeronautics and Space Administration and the Japan Aerospace
Exploration Agency on 28 February 2014. IMERG (Integrated Multi-satellite Retrievals
for GPM) is the level 3 multi-satellite precipitation algorithm of GPM, which combines
precipitation information measured from the microwave sensor and infrared sensors
onboard GPM constellations and [34] monthly gauge precipitation data. IMERG calculates
precipitation estimates partly from passive microwave (PMW) sensors on the GPM satellite
platform using the 2014 version of the Goddard Section Algorithm (GPROF2014), which is
a significant improvement over TMPA (GPROF2010) [35,36]. The GPM IMERG data as of
March 2014 is available and can be downloaded from http://pmm.nasa.gov/data-access/
downloads/gpm/, (accessed on 28 September 2020) This study used the GPM IMERG
Final Precipitation L3 1 day 0.1◦ × 0.1◦ V06 (GPM_3IMERGDF) as the daily satellite
precipitation products.

The monthly NDVI (MOD13A3) data of the study area were acquired from the NASA
Land Processes Distributed Active Archive Center (LP DAAC) from https://lpdaac.usgs.
gov/products/mod13a3v006/, (accessed on 13 October 2020) which have a 1 km spatial
resolution. Land surface temperature (LST) data were derived from MODIS (Moderate-
resolution Imaging Spectroradiometer) sensors on Terra and Aqua satellites, which pro-
vide day and night global surface temperature records with errors between –1K and 1K.
MOD11A2 products have a 1 km spatial resolution and an eight-day time resolution and
can be downloaded from https://lpdaac.usgs.gov/products/mod11a2v006/, (accessed
on 20 October 2020). The DEM (Digital Elevation Model) data were downloaded from the
NASA Shuttle Radar Topographic Mission (SRTM) from https://srtm.csi.cgiar.org/, with
a 90 m spatial resolution. Table 1 shows all the image products used in the study. The daily
gauge observations were taken from the Hanjiang Bureau of Yangtze River Commission of
Hubei Province, which were collected in 160 rain gauges, as shown in Figure 1. We obtained
the daily precipitation observation data recorded from 1 March 2016 to 28 February 2018.
All data were subject to a series of quality control procedures, including extreme value
examination, internal consistency examination, and the deletion of questionable data.

http://pmm.nasa.gov/data-access/downloads/gpm/
http://pmm.nasa.gov/data-access/downloads/gpm/
https://lpdaac.usgs.gov/products/mod13a3v006/
https://lpdaac.usgs.gov/products/mod13a3v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://srtm.csi.cgiar.org/
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Table 1. All the image products used in the study.

Image Products Dataset Resolution Latency

Precipitation GPM_3IMERGDF Daily, 0.1◦ 3.5 months
NDVI 1 MOD13A3 Monthly, 1 km 1 month
LST 2 MOD11A2 8-day, 1 km 8 days

DEM 3 SRTM -, 90 m -
1 NDVI: normalized vegetation index; 2 LST: land surface temperature; 3 DEM: digital elevation model.

3. Methodology

A two-step downscaling–merging scheme was adopted to generate high-resolution
and high-quality daily precipitation data. First, the GPM daily precipitation data were
downscaled by a random forest model to generate high spatial resolution daily precipitation
data. Second, the downscaled daily precipitation data was merged with gauge observations
by the cokriging method to improve the accuracy.

3.1. Random Forest (RF)

Random forest (RF), proposed by Breiman [37,38], is an enhanced decision tree model.
It is an extension of the Classification and Regression Tree (CART) and can improve the
accuracy and stability of CART models. Each tree in a random forest relies on the value of
a randomly selected subset of input variables that are independently sampled and have
the same distribution for all trees [38].

The Bagging (bootstrap aggregation) method [39] is proposed to improve the accuracy
of the model. The Bagging method generates subsets of raw data with bootstrap samples
independent of each other and has repeatable elements in each subset. A training tree
model for each bootstrap sample subset is trained. For regression problems, the arithmetic
average of the predicted results of models is used as the final prediction value. However,
the trees are not entirely independent because of the intrinsic relationship between the
results and the characteristics. Tree models with different bootstrap training sets may have
a different structure, which prevents Bagging from optimally reducing the variance of the
predicted values.

The random forest model can be used for classification and regression, which has
a good performance in solving both problems [40–44]. It has been widely used in many
fields, such as precipitation estimation, prediction of seasonal river flow and prediction of
species or vegetation type occurrence. The advantages of the algorithm for downscaling
are as follows [45,46]:

• Precipitation is related to multiple features. Random forests can process high-dimensional
data without feature selection.

• Overfitted phenomena do not easily occur, because the final estimation is made
through the average prediction of the decision trees.

• The antijamming capability of the random forest algorithm can balance errors and
improve accuracy for original datasets with possible outliers.

• For a large number of remote sensing images, random forest training is fast and
efficient [40,44].

In this study, GPM precipitation data and nighttime land surface temperature (LSTnight),
daytime land surface temperature (LSTday), day–night land surface temperature difference
(LSTDN), slope, elevation, aspect, and NDVI data were input into the random forest model
to establish the relationship between environmental variables and precipitation. The RF
algorithm was implemented in Python using the scikit-learn package [47]. The steps of the
RF algorithm are as follows (Figure 2):

1. The original training dataset is randomly sampled into N subsets by using the boot-
strap method.

2. For each sample subset, M features are randomly selected and used to split the nodes
of the tree.
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3. A prediction is obtained from each bootstrap tree over N decision trees.
4. Among N predictions, the final result is determined by an average.
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3.2. Downscaling by RF
3.2.1. Downscaling the Satellite Precipitation at the Seasonal Scale

The basic concept of the downscaling algorithm is that the correlation model between
precipitation and environmental variables (nighttime land surface temperature (LSTnight),
daytime land surface temperature (LSTday), day–night land surface temperature difference
(LSTDN), NDVI, elevation, slope, and aspect) is established at a low resolution, and high-
resolution environmental variables are then input into the model to obtain high-resolution
precipitation. The relationship between environmental variables and precipitation on a
daily scale is far less evident than that on annual and monthly scales [25,26]. Considering
the time lag of NDVI response to precipitation on a monthly scale, an indirect downscale
method was adopted to process the GPM daily precipitation data on a seasonal scale [48].
The GPM precipitation data was downscaled spatially at the seasonal scale, and the seasonal
downscaled result was then disaggregated into daily downscaled precipitation.

The original environmental variables, such as nighttime land surface temperature
(LSTnight), daytime land surface temperature (LSTday), NDVI, elevation, slope, and aspect,
were resampled to 0.01◦ resolutions and 0.1◦ resolutions (i.e., NDVI0.01◦ and NDVI0.1◦ ,
LST0.01◦ and LST0.1◦ , and DEM0.01◦ and DEM0.1◦ ) by bilinear interpolation. The time
scale of environmental variables and the original GPM daily precipitation were upscaled
to the seasonal scale, where the variation of precipitation could be well explained by
environmental variables. Data processing was as follows: the GPM daily precipitation was
accumulated into the seasonal GPM precipitation (SeasonalGPM), the seasonal average
LSTs were calculated by averaging each eight-day LST (SeasonalLST), and the seasonal
NDVI (SeasonalNDVI) was calculated by averaging the monthly NDVI. As shown in
Figure 3, the detailed steps of the RF-based scale reduction algorithm are as follows:

1. The LSTDN is calculated by subtracting LSTnight from LSTday, and elevation, aspect,
and slope data were further extracted from DEM data with ArcGIS software (Esri,
Redlands CA, USA).

2. A regression model between the 0.1◦ environmental variable and 0.1◦ GPM precipita-
tion data is established by the RF algorithm.

3. The high spatial resolution (0.01◦) environmental variable is input into the model
established in Step (2), and the 0.01◦ resolution downscale precipitation (GPM0.01◦ ) is
obtained.
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4. The 0.1◦ GPM precipitation (GPMe-0.1◦ ) is estimated using the RF model. The resid-
uals of the models (Res0.1◦ ) are then calculated by subtracting the estimated GPM
precipitation (GPMe-0.1◦ ) from the original GPM data (GPMo-0.1◦ ).

5. Subsequently, the residuals of the models (Res0.1◦ ) are spatially interpolated from 0.1◦

to 0.01◦ (Res0.01◦ ) using the simple spline function.
6. The corrected downscaled precipitation (GPMc-0.01◦ ) is then obtained by adding the

interpolated residual (Res0.01◦ ) to GPM0.01◦ [49].
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After the above steps, the high-resolution seasonal precipitation estimation (Seasonal
GPM0.01◦ ) can be obtained.
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3.2.2. Disaggregation from Seasonal Precipitation to Daily Precipitation

Finally, we disaggregated the downscaled satellite seasonal precipitation into daily
precipitation. Based on the original GPM daily precipitation data, the ratio of daily precip-
itation to the corresponding seasonal precipitation was obtained. It is assumed that the
ratio remains unchanged before and after spatial downscaling [26,48,50]. The RGPMk

0.1◦ is
defined by Equation (1):

RGPMk
0.1◦(u, s) =

DailyGPMk
0.1◦(u, s)

SeasonalGPMk
0.1◦(u, s)

(1)

where k represents the k-th day of a season, u is the spatial location, and s represents
the season (spring, summer, autumn, and winter). The RGPMk

0.1◦ was then resampled
to 0.01◦ (RGPMk

0.01◦ ) with the bilinear interpolation method, and the downscaled GPM
precipitation on the k-th day was acquired by Equation (2):

DailyGPMk
0.01◦(u, s) = SeasonalGPMk

0.01◦(u, s) ∗ RGPMk
0.01◦(u, s) (2)

3.3. Merging by Cokriging

The cokriging (CK) [51] method was applied to merge the downscaled daily precipita-
tion and daily gauge observations [52] by Equation (3):

R∗ =
n

∑
i=1

λiRgi +
m

∑
j=1

αjRij (3)

where R* represents the estimated precipitation at any location, Rgi (i = 1, 2, 3, . . . , n)
represents gauge observations at different sample locations, and Rrj (j = 1, 2, 3, . . . , m)
represents the downscaled daily precipitation estimates at different sample locations. λi
and αj are gauge observations and downscaled daily precipitation weights. The weights
are estimated by solving Equation (4):

∑n
i=1 γ

(
xi − xj

)
λi + ∑m

j=1 γ
(
yi − xj

)
αj + µ1 = γ

(
x0 − xj

)
(i = 1, 2, . . . , n)

∑n
i=1 γ

(
xi − yj

)
λi + ∑m

j=1 γ
(
yi − yj

)
αj + µ2 = γ

(
x0 − yj

)
(j = 1, 2, . . . , m)

∑n
i=1 λi = 1

∑m
j=1 αj = 0

(4)

where γ(xi − xj) is the semivariance between the i-th and j-th primary variables, γ(yi −
xj) is the semivariance between the i-th and j-th secondary variables, γ(xi − yj) is the
semivariance between the i-th primary variables and j-th secondary variables, γ(x0 − xj)
and γ(x0 − yj) are the semivariances between the j-th sample points and estimated points,
and µ1 and µ2 are the Lagrange parameters. γ(xi − yj) is estimated by solving Equation (5):

γ̂(h) =
1

2N(h)

N(h)

∑
i=1

(
Rg(xi)− Rg(xi + h)

)
× (Rr(yi)− Rr(yi + h)) (5)

where γ̂(h) is the value of the variogram at the point, N(h) is the number of pairs of data
locations a vector h apart, Rg(xi) is the precipitation from daily gauge observations, and
Rr(yi) is the downscaled daily precipitation.

For estimating daily precipitation in this study, we selected the exponential model [53]
to construct a theoretical semivariogram model by Equation (6):

γ(h) =

{
c0 + c

(
1− e−

h
a

)
h > 0

0 h = 0
(6)

where c0 is the nugget effect, c is the sill, and a is the range.
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3.4. Performance Evaluation Indices

In many previous studies, the rain gauge data have been considered as the ‘true
rainfall’ to evaluate the accuracy of satellite precipitation datasets [19–26]. This is because
rain gauge observations at ground level are able to record rainfall with a lower error rate
in comparison with other instruments. In this study, the rain gauge observations were
considered as ‘true rainfall’ to evaluate the performance of daily precipitation estimates by
quantitative and qualitative indices. The leave-one-out cross validation was adopted to
evaluate the merged precipitation estimates [50].

3.4.1. Quantitative Indices

The correlation coefficient (r) reflects the degree of linear correlation between the gauge
observations and precipitation estimates, ranging from 0 to 1. The mean absolute error
(MAE) represents the absolute errors between the gauge observations and precipitation
estimates. The root mean square error (RMSE) represents the sample standard deviation
of the difference between the gauge observations and precipitation estimates (called the
residual). The Bias represents the deviate degree of the estimations and observations.
The modified Kling–Gupta efficiency (KGE) [54] was selected to compare observations
with estimations synthetically. A Taylor diagram [55] was drawn to visually show the
consistency of the daily precipitation estimates and the gauge observations and to help
evaluate the relative accuracy of the daily precipitation estimates.

r = ∑n
i=1(pi − p)(oi − o)√

∑n
i=1(pi − p)2

√
∑n

i=1(oi − o)2
(7)

MAE =
∑n

i=1|pi − oi|
n

(8)

RMSE =

√
∑n

i=1(pi − oi)
2

n
(9)

Bias =
∑n

i=1 pi

∑n
i=1 oi

− 1 (10)

KGE = 1−

√
(r− 1)2 +

(
p
o
− 1
)2

+

(
σp/p
σo/0

− 1
)2

(11)

Here, o is the observed precipitation, p is the estimated precipitation, o is the mean of
observed precipitation, p is the mean of estimated precipitation, σp is the standard devia-
tions of estimated precipitation, and σo is the standard deviations of observed precipitation.

3.4.2. Qualitative Indices

In addition, four qualitative indices—the probability of detection (POD), critical suc-
cess index (CSI), false alarm ratio (FAR), and frequency bias index (FBI)—were selected to
evaluate the ability of daily precipitation estimation to identify precipitation at different
precipitation intensities. POD is the correct identification ratio between the satellite precip-
itation over the number of precipitation events observed by the rain gauges. FAR is the
proportion of the precipitation event that the satellite precipitation recognizes while the rain
gauges do not recognize. FBI compares the number of precipitation events recognized by
satellite precipitation with the number the events recognized by the rain gauges. CSI shows
the overall ability of the satellite precipitation to correctly capture the precipitation event.

POD =
H

H + M
(12)

FAR =
F

H + F
(13)
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FBI =
H + F
H + M

(14)

CSI =
H

H + F + M
(15)

Here, H indicates the precipitation events recorded by the rain gauges and the esti-
mated precipitation concurrently, M indicates the precipitation events recorded by the rain
gauges but not recorded by the estimated precipitation, and F indicates the precipitation
events recorded by the estimated precipitation but not recorded by the rain gauges.

4. Results and Discussion
4.1. Model Regression Performance Analysis

As the core of the downscaling procedure, constructing a downscaling regression model
based on the RF algorithm is essential. The RF constructs a downscaling regression model
by generating many regression trees and, in this case, utilizing the correlation between GPM
precipitation and environmental variables. Therefore, it is essential to probe and describe the
relationship accurately, which directly influences the accuracy of the downscaled precipitation
results. For the random forest model in this study, the number of trees is the optimized
hyperparameter and obtained by the grid search. The depth of the tree used the default value.
The number of features was the square root of the total number of features.

Figure 4 shows the correlation between the estimated precipitation by the RF model
and the original satellite precipitation at a seasonal scale and the original spatial scale
from March 2016 to February 2018. The RF regression model used for downscaling per-
formed well in the four seasons. The precipitation estimates had a good correlation with
the original precipitation data, with little difference. The r value was between 0.98 and
0.99, the bias was between 0.01% and 0.07%. As shown in Figure 4, higher precipitation
results in lower bias, especially for Figure 4c. The model performance was less influenced
by seasonal variation, indicating that the significant interrelationship between seasonal
GPM precipitation and seasonal environmental variables (LSTnight, LSTday, LSTDN, NDVI,
elevation, slope, and aspect) was relatively steady at 0.1◦ resolutions, which ensures the
accuracy of the spatial downscaling.
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Figure 4. Scatter plots (the color bar represented the density of the point distribution) of the original
satellite precipitation and the predicted precipitation by the RF model at original spatial scale and
seasonal for (a) Spring, (b) Summer, (c) Autumn, and (d) Winter.

4.2. Performance of the Merged Precipitation

Figure 5 shows the spatial precipitation distribution patterns on Days 122, 219, and 290
in 2017 from the original GPM precipitation (Ori_GPM), the downscaled GPM precipitation
(Down_GPM), and the merged precipitation by CK (DM_CK). Generally, the precipitation
spatial distribution of Ori_GPM is like a mosaic because of its coarse resolution, and the
spatial distribution details of the precipitation are insufficient. Compared with Ori_GPM,
Down_GPM dramatically improves the precipitation spatial detail and retains the spatial
precipitation distribution patterns in the aforementioned days.
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and DM_CK: the merged precipitation by CK on Days 122, 219, and 290 in 2017.

The daily precipitation estimates from Down_GPM were clearly corrected after merg-
ing with the gauge observations, which led to some differences between Down_GPM and
DM_CK. The merging corrected the daily precipitation amounts of Down_GPM, which
is evident for the precipitation on the 122nd day of 2017. The merging result decreased
the precipitation noticeably in the southwest of the study area, while the northwest pre-
cipitation increased significantly. The reason is that satellite observations overestimated
the precipitation in the southwest and underestimated the precipitation in the northwest.
From the above three daily precipitation measurements, it can be seen that the merging
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precipitation (DM_CK) not only corrected the daily precipitation amounts and improved
the accuracy of downscaling precipitation (Down_GPM) but also basically retained the
original GPM precipitation (Ori_GPM) spatial distribution pattern.

4.3. Evaluations

To evaluate the accuracy of CK merging precipitation estimation, five evaluation
indices (r, Bias, MAE, RMSE, and KGE) were used to evaluate the accuracy. In Section 4.3.1,
the evaluation process was carried out on the gridded spatial scale for daily and monthly
timescales, respectively. In Section 4.3.2, the evaluation process was carried out on the
basin spatial scale for daily and monthly timescales, respectively.

4.3.1. Evaluation on a Gridded Scale

The Ori_GPM, Down_GPM, and DM_CK from March 2016 to February 2018 were
evaluated. Table 2 shows the general performance of the three precipitation datasets, and
DM_CK performs best. Compared with Ori_GPM, the r and the KGE values of DM_CK
increased by 25.00% and 29.82%, and the values of Bias, MAE, and RMSE decreased by
78.89%, 36.09%, and 26.40%, respectively. Although the performance of spatial detail
of DM_CK is dramatically improved compared with that of Ori_GPM (Figure 5), the
evaluation indices of the two daily precipitation estimates are almost the same during
the whole study period, with only Bias reduced by 16.63%. The reason is that there is no
additional valid precipitation observation in the downscaling process. The accuracy of
Down_GPM was improved remarkably after merging with the gauge observations, which
significantly decreased the Bias, MAE, and RMSE, and increased the r and the KGE.

Table 2. Evaluation for quantitative indices of the Ori_GPM, Down_GPM, and DM_CK for daily precipitation estimates
from March 2016 to February 2018.

Title r 4 Title Bias Title MAE 5 Title RMSE 6 Title KGE 7 Title

Value IM 8 (%) Value
(%) IM (%) Value (mm) IM (%) Value (mm) IM (%) Value IM (%)

Ori_GPM 1 0.64 0 15.51% 0 2.32 0 6.17 0 0.56 0
Down_GPM 2 0.64 0 12.93% −16.63% 2.30 −0.86% 6.06 −1.78% 0.57 1.79%

DM_CK 3 0.80 25.00% 2.73% −78.89% 1.47 −36.09% 4.46 −26.40% 0.74 29.82%
1 Ori_GPM: the original GPM precipitation; 2 Down_GPM: the downscaled GPM precipitation; 3 DM_CK: the merged precipitation by CK;
4 r: correlation coefficient; 5 MAE: mean absolute error; 6 RMSE: root mean square error; 7 KGE: Kling–Gupta efficiency; 8 IM: improvement.

As shown in Figure 6, some specific rainfall events were selected to evaluate three
daily precipitation datasets in estimating daily precipitation. The rainfall events were
determined according to the division of flood events based on hydrological hydrographs
observed at the outlet streamflow gauge of the study area. The seven selected rainfall
events and some statistics are listed in Table 3. The selected rainfall events were distributed
from May to October, spanning the three seasons of spring, summer, and autumn, which
include the main rainfall seasons in the Hanjiang River Basin. Among the seven selected
rainfall events, Down_GPM and Ori_GPM had similar performance in estimating daily
precipitation, while DM_CK had the optimum accuracy in the three datasets (Figure 6).
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Figure 6. Evaluation for quantitative indices for the Ori_GPM; Down_GPM and DM_CK at the
specific rainfall events.

Table 3. Information of selected rainfall events.

Event Period Season No-Rain Fraction

No. (-) (-) (%)
1 22–25 June 2016 Summer 6.17
2 13–15 July 2016 Summer 4.32
3 24–28 September 2016 Autumn 9.88
4 2–3 May 2017 Spring 11.11
5 3–6 June 2017 Summer 3.09
6 23–27 September 2017 Autumn 3.70
7 5–7 October 2017 Autumn 3.09

The proportion of gauges with a cumulative rainfall of zero is listed as the no-rain fraction.

To compare the accuracy of precipitation estimation more intuitively, Taylor diagrams
of the three daily precipitation estimates and the gauge observations and the accumulated
monthly precipitation estimates were drawn. The closer the point is to the gauge observa-
tions, the higher the accuracy is. As shown in Figure 7, DM_CK has the highest accuracy,
while Ori_GPM and Down_GPM have similar performance.
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Figure 7. Taylor diagrams for daily precipitation and monthly precipitation of the gauge observation,
Ori_GPM, Down_GPM, and DM_CK across the entire period from March 2016 to February 2018.

The performance of the Ori_GPM, Down_GPM, and DM_CK were also evaluated for
the various precipitation intensities, as shown in Figure 8. For identifying rainfall events,
the three precipitation datasets had the same change regularities. The three precipitation
datasets identified no-rain events well, but the identification ability gradually decreased
with the increase of precipitation. The identification performance of Down_GPM was
practically identical to that of Ori_GPM for each various precipitation intensity. The
DM_CK remarkably enhanced the ability to identify rain events. Except for the last three
precipitation intensities (30~40, 40~50, and >50 mm) of the evaluation index FBI, the
detection ability of other precipitation intensities was significantly improved.

As the amount of precipitation increased, RMSEs and MAEs of three daily precipita-
tion datasets gradually increased and had similar variation patterns. The RMSEs and MAEs
of the merged precipitation dataset (DM_CK) were smaller than those of the other two
precipitation datasets in the various precipitation intensities, indicating that the accuracy
of DM_CK was significantly improved.

In addition, the abilities of the three daily precipitation datasets were verified to
capture the time series variation of the daily precipitation at the gauge positions, as shown
in Figure 9. Among the three daily precipitation datasets, Down_GPM and Ori_GPM had
a similar ability to capture the time series variation of daily precipitation. For DM_CK
compared with the other two kinds of precipitation, r was improved, and MAE and RMSE
were decreased, which indicated that the merged results could capture the time series
variation of daily precipitation well and remarkably enhanced the temporal uniformity
between the gauge observations and daily precipitation datasets.
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Figure 9. Evaluation for quantitative indices of the Ori_GPM, Down_GPM, and DM_CK for daily precipitation estimates at
gauge positions from March 2016 to February 2018.

The three monthly precipitation estimates from March 2016 to February 2018 were
evaluated. Table 4 and Figure 10 show the overall performance of the three precipitation
datasets and the variation of evaluation indices with time, respectively. The monthly pre-
cipitation estimates from Down_GPM had a similar performance to those from Ori_GPM.
Among the three precipitation datasets, the DM_CK had the optimum accuracy for esti-
mating the monthly precipitation. Compared with Ori_GPM, the merged precipitation
noticeably improved the accuracy for estimating the monthly precipitation, reducing RMSE
and MAE by 12.53% and 19.94%, respectively. However, the improvement was less than
those at the daily time scale. In addition, these improvements are volatile over time; in
some months, the accuracy actually decreased. For example, although the r of monthly
precipitation estimates in February 2017 had increased, MAE and RMSE had increased
(Figure 10). These results are caused by two reasons. First, the daily precipitation was
accumulated into monthly precipitation, which offset the accuracy improvement on the
daily time scale to some extent. Second, a low correlation between the downscaling precip-
itation estimates (Down_GPM) and the gauge observations may lead to errors when using
cokriging for merging process, resulting in a decrease in DM_CK accuracy.

Table 4. Evaluation for quantitative indices of the Ori_GPM, Down_GPM, and DM_CK for monthly precipitation estimates
from March 2016 to February 2018.

r Bias MAE RMSE KGE

Value IM (%) Value (%) IM (%) Value (mm) IM (%) Value (mm) IM (%) Value IM (%)

Ori_GPM 0.85 0 15.51% 0 26.88 0 41.58 0 0.72 0
Down_GPM 0.83 −2.35% 12.93% −16.6% 28.25 5.10% 42.56 2.36% 0.70 −2.78%

DM_CK 0.87 2.35% 2.73% −82.40% 21.52 −19.94% 36.37 −12.53% 0.74 5.71%
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Figure 10. Evaluation for quantitative indices of the Ori_GPM, Down_GPM, and DM_CK for monthly precipitation
estimates with the time variation from March 2016 to February 2018.

4.3.2. Evaluation on the Basin Scale

The performance of the three precipitation datasets in estimating the basin average
daily precipitation (BADP) was shown in Figure 11. Ori_GPM and Down_GPM overes-
timated the BADP by less than 15 mm and underestimated BADP by more than 15 mm.
For the three statistical indices, no significant difference was found between Ori_GPM
and Down_GPM, indicating similar performances in estimating BADP. Compared with
Ori_GPM, the accuracy of the merged precipitation had been significantly improved, re-
ducing its RMSE and MAE by 90.46% and 93.08%, respectively (Table 5). Compared to
Ori_GPM, the merged precipitation was close to the 1:1 line, indicating that it had optimal
consistency with the gauge observations.



Remote Sens. 2021, 13, 2040 17 of 22

Remote Sens. 2021, 13, 2040 17 of 22 
 

 

observations than the estimation of BADP. This is especially the case for both Ori_GPM 

and Down_TRMM, where the r increased from 0.87 to more than 0.98. The reason is that 

the positive and negative errors will counteract each other in the process of daily precipi-

tation, accumulating into monthly precipitation. Ori_GPM and Down_GPM overesti-

mated the most precipitation on the monthly scale. Consistent with this, the performance 

of Ori_GPM was nearly equivalent to Down_GPM, and the merged precipitation had a 

better performance than Down_GPM. Compared with Ori_GPM, the accuracy of DM_CK 

was significantly improved. The MAE and RMSE were reduced by 84.13% and 81.68%, 

respectively (Table 5). The accuracy improvement of BAMP was less than that of BADP. 

  

(a) (b) 

Figure 11. Scatterplots of BADP: basin average daily precipitation (a) and BAMP: basin average monthly precipitation (b) 

from the Ori_GPM, Down_GPM, and DM_CK against the gauge observations from March 2016 to February 2018. 

Table 6 further assesses the performances of the three daily precipitation datasets in 

detecting rainless events of RADP. Ori_GPM and Down_GPM had the same ability to 

detect rainless events. Compared with Ori_GPM, DM_CK had significantly improved the 

ability to identify no-rain events, with a POD of 1. 

Table 6. Evaluation for categorical indices of BADP from the Ori_GPM, Down_GPM, and DM_CK 

in identifying the no-rain events over the study area from March 2016 to February 2018. 

 POD 1 FAR 2 FBI 3 CSI 4 

Ori_GPM 0.9217 0.1308 1.0604 0.8094 

Down_GPM 0.9219 0.1287 1.0580 0.8114 

DM_CK 1 0.0232 1.0238 0.9768 
1 POD: probability of detection; 2 FAR: false alarm ratio; 3 FBI: frequency bias index; 4 CSI:critical 

success index. 

4.4. Discussion 

Compared with previous studies [22,23,26], which only use one or two environmen-

tal variables (NDVI and DEM), the six environmental variables (LSTnight, LSTday, LSTDN, 

NDVI, elevation, slope, and aspect) were adopted to construct the RF downscaling regres-

sion model in this study. The response relationship between vegetation and precipitation 

has been widely discussed [56–58]. The distribution of vegetation types on the underlying 

surface can affect the latent heat flux into the atmosphere, which will significantly affect 

the humidity of the lower atmosphere, thereby affecting the development of moist 

Figure 11. Scatterplots of BADP: basin average daily precipitation (a) and BAMP: basin average monthly precipitation
(b) from the Ori_GPM, Down_GPM, and DM_CK against the gauge observations from March 2016 to February 2018.

Table 5. Evaluation for quantitative indices of BADP and BAMP from the Ori_GPM, Down_GPM, and DM_CK over the
study area from March 2016 to February 2018.

r MAE RMSE KGE

Value IM (%) Value (mm) IM (%) Value (mm) IM (%) Value (mm) IM (%)

Ori_GPM 0.87 0 1.30 0 2.62 0 0.77 0
BADP 1 Down_GPM 0.87 0 1.26 −3.08% 2.57 −1.91% 0.78 −1.91%

DM_CK 0.999 14.83% 0.09 −93.08% 0.25 −90.46% 0.97 25.97%
Ori_GPM 0.98 0 12.54 0 16.98 0 0.84 0

BAMP 2 Down_GPM 0.98 0 10.94 −12.76% 15.94 −6.12% 0.85 1.19%
DM_CK 0.999 1.94% 1.99 −84.13% 3.11 −81.68% 0.97 15.48%

1 BADP: basin average daily precipitation; 2 BAMP: basin average monthly precipitation.

As shown in Figure 11, for estimating the basin average monthly precipitation (BAMP),
the three daily precipitation datasets had a higher consistency with the gauge observa-
tions than the estimation of BADP. This is especially the case for both Ori_GPM and
Down_TRMM, where the r increased from 0.87 to more than 0.98. The reason is that the
positive and negative errors will counteract each other in the process of daily precipita-
tion, accumulating into monthly precipitation. Ori_GPM and Down_GPM overestimated
the most precipitation on the monthly scale. Consistent with this, the performance of
Ori_GPM was nearly equivalent to Down_GPM, and the merged precipitation had a bet-
ter performance than Down_GPM. Compared with Ori_GPM, the accuracy of DM_CK
was significantly improved. The MAE and RMSE were reduced by 84.13% and 81.68%,
respectively (Table 5). The accuracy improvement of BAMP was less than that of BADP.

Table 6 further assesses the performances of the three daily precipitation datasets
in detecting rainless events of RADP. Ori_GPM and Down_GPM had the same ability to
detect rainless events. Compared with Ori_GPM, DM_CK had significantly improved the
ability to identify no-rain events, with a POD of 1.
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Table 6. Evaluation for categorical indices of BADP from the Ori_GPM, Down_GPM, and DM_CK in
identifying the no-rain events over the study area from March 2016 to February 2018.

POD 1 FAR 2 FBI 3 CSI 4

Ori_GPM 0.9217 0.1308 1.0604 0.8094
Down_GPM 0.9219 0.1287 1.0580 0.8114

DM_CK 1 0.0232 1.0238 0.9768
1 POD: probability of detection; 2 FAR: false alarm ratio; 3 FBI: frequency bias index; 4 CSI:critical success index.

4.4. Discussion

Compared with previous studies [22,23,26], which only use one or two environmental
variables (NDVI and DEM), the six environmental variables (LSTnight, LSTday, LSTDN,
NDVI, elevation, slope, and aspect) were adopted to construct the RF downscaling regres-
sion model in this study. The response relationship between vegetation and precipitation
has been widely discussed [56–58]. The distribution of vegetation types on the underlying
surface can affect the latent heat flux into the atmosphere, which will significantly affect
the humidity of the lower atmosphere, thereby affecting the development of moist con-
vection [6]. The response relationship between precipitation and vegetation usually lags
2–3 months [59–61], so this study established the relationship between precipitation and
vegetation on a seasonal scale. In this study, the land surface temperature was introduced
as environmental variables to downscale GPM precipitation. Trenberth et al. [62] found
the covariability between precipitation and surface temperature on a global scale. Over
land, there is a negative correlation between surface temperature and precipitation in
general [62]. Evaporation on the wet ground is likely to bring away part of the energy,
resulting in a drop in temperature. Moreover, the clouds will also block the sun, reducing
the energy provided on the ground and causing the temperature to drop further. Thus, the
precipitation–LST relationship is adopted for downscaling the satellite precipitation [21,24].
The DEM is widely used for downscaling the satellite precipitation [19–22]. As the eleva-
tion increases, due to the uplifting effect of the terrain, the air mass will rise and expand,
thereby increasing the humidity of the air mass to form precipitation [63]. In addition,
slope and aspect are related to the prevailing wind orientation, determining the potential
relative excess or deficiency of moisture [64].

Therefore, using these six variables can describe the relationship between environ-
mental factors and rainfall from different perspectives compared to studies [22,23,26] only
using one or two variables, which will help to build a more accurate regression downscaling
model. As shown in Figure 4, the RF regression model constructed from the proposed six
environmental variables and precipitation has a high accuracy of estimating precipitation
and can be used in the downscaling process. Compared with the original GPM precipitation,
the accuracy of downscaled GPM precipitation is guaranteed (Tables 2 and 4–6).

In this study, the daily satellite precipitation data is from the GPM_3IMERGDF, derived
from the half-hourly GPM_3IMERGHH (GPM IMERG Final Precipitation L3 Half Hourly
0.1◦ × 0.1◦ V06). The GPM_3IMERGHH combines the multi-satellite data for the month
with GPCC (Global Precipitation Climatology Centre) gauge analysis for month-to-month
adjustment. The GPCC provides gridded gauge analysis products, including the different
spatial resolutions of 0.5◦, 1◦, and 2.5◦. In this study, the gauge data were collected in
160 daily rain gauges from the Hanjiang Bureau of Yangtze River Commission of Hubei
Province. The sources of these two types of gauge data are different. Therefore, the errors
from the gauge data applied in the GPM_3IMERGDF do not need to be considered in
this study.

Data fusion refers to the process of fusing data from multiple sources to obtain more
accurate and valuable information than any single data source [65]. Traditional rain gauges
can provide relatively accurate rainfall values on the point scales, but they are not accurate
for estimating continuous spatial precipitation distributions on a large scale [10]. The
satellite precipitation observation data provides reliable precipitation estimates and reflects
more spatial distributions than the rain gauge data, but their accuracy is limited. Therefore,
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combining the advantages of gauge observations and satellite precipitation observations,
fusing the observation information of the two to obtain a reasonable precipitation estimate
for the study area is worth studying.

In the previous studies, Chen et al. [66] employed area-to-point kriging (ATPK) for
downscaling the monthly TRMM product, then integrating the downscaled precipitation
with the gauge observations using geographically weighted regression kriging (GWRK).
Chen et al. [48] downscaled the TRMM precipitation by geographically weighted regres-
sion (GWR) then used kriging with external drift (KED) to fuse the downscaled TRMM
precipitation with gauge observations. Chen et al. [50] used geographically weighted ridge
regression (GWRR) to fuse four downscaled satellite precipitation by GWR with gauge
observations. This study introduced the random forest model from machine learning
algorithms and the cokriging method in geostatistics to construct a downscaling– merging
scheme. Compared with previous downscaling algorithms such as GWR, the random
forest model is not sensitive to multivariate collinearity and can handle high-dimensional
data without dimensionality reduction. Therefore, in the downscaling process, the random
forest model does not need to consider the collinearity between environmental variables
and eliminates high-dimensional data (multiple environmental variables) processing. Cok-
riging was first employed for the fusion of radar rainfall data and gauge observations
data [52]. In this study, it was proved to be suitable for the fusion of downscaled satellite
precipitation data and gauge observations data. The results show that the accuracy of the
fusion precipitation product has been significantly improved (Tables 2 and 4–6).

For the fusion of satellite precipitation and gauge observation, increasing the dis-
tribution density of gauges is conducive to improving the fusion results quality [66–68].
Nevertheless, this improvement will be limited when the gauge density reaches a critical
threshold [30]. Concerning the various fusion algorithms, the optimal gauge density is
different for the optimal fusion results, worthy of further study.

5. Conclusions

In this study, a downscaling–merging scheme was used to merge the downscaled
results with gauge observations to obtain high-resolution and high-quality daily precipita-
tion datasets within a specific range. In the downscaling process, the RF regression model
was employed to establish a statistical downscaling model. The cokriging method was
used to merge the gauge observations with the downscaling precipitation results. Taking
the Danjiangkou Reservoir in the Hanjiang River Basin as the study area, the feasibility
of this method was verified by using the GPM daily precipitation data and the gauge
observations from 1 March 2016 to 28 February 2018. According to the research results, the
following conclusions were drawn:

1. The downscaling–merging scheme can efficiently generate high-resolution (0.01◦) and
high-quality daily precipitation datasets over a large scale.

2. The RF downscaling model established on a seasonal scale can accurately reflect the
correlation between GPM precipitation and environmental variables, and the regres-
sion relationship is relatively stable. The downscaling daily precipitation datasets not
only preserved the original spatial distribution pattern of satellite precipitation data
but also significantly improved their spatial details.

3. The downscaling daily precipitation data based on the RF model improved the spatial
resolution of the original GPM daily precipitation data and had almost the same
accuracy as the original GPM daily precipitation data.

4. After the merging process, the accuracy of Down_GPM was significantly improved,
MAE and RMSE were reduced by 36.09% and 26.40% respectively, and the detection
ability of precipitation events was also improved.

In summary, the proposed downscaling–merging scheme based on RF and cokriging
can successfully improve the spatial resolution and accuracy of daily precipitation estima-
tion. In the future, studies should strive to obtain high-resolution precipitation datasets at
higher time resolutions (hourly or subhourly) to adapt to more application scenarios.
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