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Abstract: A set of open-source routines capable of identifying possible oil-like spills based on two
random forest classifiers were developed and tested with a Sentinel-1 SAR image dataset. The first
random forest model is an ocean SAR image classifier where the labeling inputs were oil spills,
biological films, rain cells, low wind regions, clean sea surface, ships, and terrain. The second one
was a SAR image oil detector named “Radar Image Oil Spill Seeker (RIOSS)”, which classified oil-like
targets. An optimized feature space to serve as input to such classification models, both in terms of
variance and computational efficiency, was developed. It involved an extensive search from 42 image
attribute definitions based on their correlations and classifier-based importance estimative. This
number included statistics, shape, fractal geometry, texture, and gradient-based attributes. Mixed
adaptive thresholding was performed to calculate some of the features studied, returning consistent
dark spot segmentation results. The selected attributes were also related to the imaged phenomena’s
physical aspects. This process helped us apply the attributes to a random forest, increasing our
algorithm’s accuracy up to 90% and its ability to generate even more reliable results.

Keywords: oil spills; image segmentation; random forest; synthetic aperture radar; feature selection

1. Introduction

The water contamination by oil and its derivatives is a matter of worldwide concern.
Most coastal marine ecosystems have complex structural and dynamic characteristics,
which can be quickly impacted by human activities [1]. Among these impacts, the oil
exploration industry is responsible for a large part of hydrocarbons’ insertion in coastal
environments. Annually, 48% of oil pollution in the oceans derives from fuel, and 29%
is crude oil [2]. According to the European Space Agency (1998), 45% of oil pollution
comes from operative discharges from ships. One of its main components is the polyaro-
matic hydrocarbons (HPAs). HPAs are hydrophobic chemical compounds that limit oil
solubility in seawater, furthering the association with solid particles [3]. Moreover, these
low molecular weight compounds have a high toxicity. Knowing their sources, behavior,
and distribution in the environment helps control human activities with the potential for
environmental contamination.

Mineral oil changes the sea surface’s physicochemical properties, reducing roughness
and the backscattering or echo of a radar pulse, creating a darker region in synthetic
aperture radar (SAR) images [4]. This process makes radar imaging an essential tool in oil
spill detection [5].

Remote Sens. 2021, 13, 2044. https://doi.org/10.3390/rs13112044 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4908-8846
https://orcid.org/0000-0001-7836-200X
https://orcid.org/0000-0003-0406-1006
https://orcid.org/0000-0001-7819-6646
https://www.mdpi.com/article/10.3390/rs13112044?type=check_update&version=1
https://doi.org/10.3390/rs13112044
https://doi.org/10.3390/rs13112044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13112044
https://www.mdpi.com/journal/remotesensing


Remote Sens. 2021, 13, 2044 2 of 22

The SAR’s ability to detect ocean targets is widely recorded in the bibliography [6–18].
According to [8], SAR presents an outstanding result in the operational detection of oil
spills among passive and active remote sensors. In addition to high spatial resolution and
data acquisition in cloud-covered areas, the analysis of targets in these images is related
to the backscattering of sea microwaves, based on the Bragg scattering theory, which is
dominant for incidence angles ranging from 20◦ to 70◦ [10,13,19].

The identification of dark areas in SAR imagery is challenging; however, it is a new
approach in the extraction of attributes and techniques for the classification of oil spills
and look-alikes [10]. In the past two decades, a lot of research on oil spill segmentation and
classification has been developed. Recently, [18] carried out a bibliometric analysis of the
last 50 years of oil spill detection and mapping. They observed that marine oil detection had
undergone a significant evolution in the past few decades, showing a strong relationship
between the technological computer development associated with the improvement of
remote sensing data acquisition methods. Their results also highlighted some of the applied
methodologies such as fractal dimension [20–22]; neural networks [23–28], combining deep
learning techniques, showed high accuracy for oil spills and look-alike detection and
segmentation with up to 90% accuracy. Its performance is better than conventional models
with deep learning semantic in detection and segmentation.

When analyzing the most used methodologies for detecting oil stains in SAR images,
we observed that complex data processing requires deep learning techniques. Authors
such as [29–31] and recently, Refs. [17,32] used segmentation followed by the deep belief
network, and [33] used hierarchical segmentation techniques for studies with SAR images.
We can also add that [10], in a more complex way, combines the process of scored points,
Bayesian inference, and the Markov chain Monte Carlo (MCMC) technique to identify
oil spills in RADARSAT-1 SAR images. The authors of [34] developed a new detection
approach using a thresholding-guided stochastic fully-connected conditional random field
model. According to the authors, experimental results on RADARSAT-1 ScanSAR imagery
demonstrated accurate oil spill candidates without committing too many false alarms.

Although it is not the scope of our work, some techniques analyze different infor-
mation from backscattering, analyzing radar sensors’ specific characteristics. The au-
thor of [35] showed models that discriminate textures between oil and water using grey-
level co-occurrence matrix (GLCM)-based features. On the other hand, Refs. [16,36] used
polarization-dependent techniques to work with multipolarized data. The combination of
traditional analysis features with polarimetric data improved classification accuracy and
was able to correctly identify 90% of oil spills and, similarly, 80% of the data set, with an
overall accurate accuracy of 89%.

In order to develop a systematic process for detecting oil spills in SAR images, [37]
and [38–40] created three basic steps for methodological applications: (1) identification of
dark areas with low backscatter as a possible case of oil spills; (2) extraction of computable
image features; (3) classification methodologies that identify oil spills and separate the
possible look-alikes.

Features used in further image classification can be divided into two ways: manual
or automatic. For computational reasons, previous scientific studies tend to define and
select features manually in a process that used to be significantly slower and less accurate
than an automatic feature generation technique. The technological and computational
advancements of the last decades have made it possible to develop automated routines
and even more complex algorithms. References such as [37] used 9 features, Ref. [23]
used an 11-feature model, and [35] produced valuable results from these techniques. This
computational evolution can be seen in these references, which chronologically increased
the robustness of its methodology.

Automatic definition and selection of features is an appealing way to proceed with
both image classification and segmentation. These methods are generally linked to neural
network models, as their hidden layers’ output are trainable features calculated from the
input data. For example, Awad [41] mixed the k-means cluster analysis technique and self-
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organizing neural network maps to generate features to segment optical satellite images.
The computational evolution, coupled with heavy data processing abilities, provided the
evolution of deep learning models as an established option in the area. An important work,
developed with this approach, by [26], uses a multilayer perceptron (MLP) to classify oil
spill images. According to the author, the performance of the neural network segmentation
stage showed satisfactory results in relation to the edge detection or adaptive threshold
techniques, with an accuracy close to 93% with reduced feature set. Another example
is convolutional neural networks used by [42] for oil spill segmentation, while the same
technique is combined with many others and with the same aim in a bigger model in [43].

Although very appealing, neural networks of automatic feature generation and selec-
tion have a significant drawback: interpretability and explainability. Many of the relevant
computer vision applications (i.e., face recognition, human segmentation, and character
reading) are perfectly treatable without any physics. This is certainly not the case for
intrinsically physical-based problems and, therefore, not the case for oil spills in oceanic
and coastal waters.

For scientific reasons, the best classification features should lead to good classification
models and be relatable to the physical aspects of the problem. Neural networks are
famous for being “black boxes” because their hidden layer interactions and their outputs
(the automatically generated features) are not very understandable. As Michael Tyka says
in [44], “the problem is that the knowledge gets baked into the network, rather than into
us”. Therefore, our investigation manually defines a large feature space of 42 potentially
meaningful elements and presents selections of 11 SAR image features sorted by their
importance both in the case of general ocean phenomena classification and in the specific
case of an oil spill detector.

Based on the three-step methodology described by [38,39] and in the research carried
out by [18], we develop a new open-source methodology for detecting oil spills, written in
Python language and open access on GitHub (https://github.com/los-ufba/rioss accessed
on 27 March 2021). It follows the literature agreement on using machine learning to classify
SAR images, by making use of random forest models to predict image contents. Such
models were first defined by Breiman [45] as ensemble methods based on weak decision
tree classifiers and are known to have three main advantages when compared to neural
networks: they take significantly less time to be trained, they converge to reasonable results
with a smaller dataset size, and more importantly, they are much more interpretable, which
was part of our initial concerns [46].

The manuscript is outlined as follows: Section 2 describes the Material and Methods,
such as the description of the data used and the methodologies applied for data processing.
Section 3 shows the publishing of the trend results of the Radar Image Oil Spill Seeker
(RIOSS), followed by Discussion (Section 3) and concluding remarks.

2. Materials and Methods
2.1. Image Pre-Processing

The European Space Agency (ESA) Sentinel-1 A and B satellites were used to develop
our computational routines and apply the proposed methodologies described below. These
satellites have a C-band synthetic aperture radar (SAR) operating in the wide range and
TOPS mode [47]. With open access, Sentinel data support the authors’ idea of creating
open-source routines accessible to all users. We then propose developing an automatic
data acquisition and analyzing system for SAR images to study oil spills.

The SAR data can be downloaded at the Copernicus Open Access Hub portal (https:
//scihub.copernicus.eu/ accessed on 27 March 2021), in single look complex (SLC) format,
5 × 20 m spatial resolution, 250 km imaging range, level 1 processing, georeferenced,
with satellite orbit, and altitude provided in zero-Doppler slant range geometry. The
interferometric wide swath (IW) acquisition system is considered the main monitoring
range for areas over the ocean, while the VV polarization, which has a better relationship

https://github.com/los-ufba/rioss
https://scihub.copernicus.eu/
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Remote Sens. 2021, 13, 2044 4 of 22

between noise and interference in relation to HH, is used for the identification of oil on the
sea surface.

Processing level 1 data did not make all the corrections necessary, and pre-processing
steps needed to be carried out for future analyses on the classifying routines. Our code
was developed in Python 3.7 environment, making it possible to apply the SNAP Sen-
tinel toolboxes software’s pre-existing Python routines. Sentinel-1 IW SLC products are
composed of overlapping layers in azimuth for each sub-swath, separated by black lines
removed by the deburst process. Subsequently, the images’ radiometric calibration was
performed, with data conversion to sigma-zero. The SLC image was then converted to a
multilook one. Multiple looks were created by averaging the range and azimuth resolution
cells, improving the radiometric resolution, degrading the spatial resolution, and reducing
the noise and approximate square pixel spacing after being converted from slant range to
ground range. Multilook processing generates a product with a nominal image pixel size.
This pixel is created by averaging the range and/or azimuth resolution cells, generating an
improvement in radiometric resolution despite degrading the spatial resolution. At the
end, the image has an approximate square pixel spacing and less noise.

2.2. Image Classification Steps

This work was based on the methodology of [37], which had three main steps to oil
spill detection: image segmentation, feature extraction, and classification. Our method
initially uses the technique of separating the image into block, then applies a mixed adaptive
thresholding segmentation to identify possible dark targets in the SAR images that will be
later discussed. Adaptive thresholding algorithms are both simple and previously validated
techniques [48] in oil spill segmentation. Subsequently, we performed the calculation of
a set of image features for each given block and give them as input to a random forest
model that was fitted to classify their associated block. The general classifier was trained to
identify 7 classes: oil spill, biological film, rain cells, low wind regions, sea, ship presence,
and terrain. On the other hand, the trained oil detector was a 2-class classifier and tried
to predict oil probabilities in input data, being trained on 2 classes: oil spill and sea,
the latter describing every image block that does not contain an oil spill. The features
used to train both the classifiers and the detector’s random forest models were selected
from 42 features belonging to 5 main categories: shape, complexity, statistical, gradient
dependent, and textural features. These features were later reduced to 19 in order to
eliminate data redundancy and unnecessary computational costs.

Image augmentation is a technique frequently used in machine learning. It is a process
of slightly changing dataset images into a set of variations [49] before training or testing
an algorithm, so that learning is maximized at each sample. In practice, applying this
methodology multiplies the training and testing datasets to define more accurate models.
The images used were rotated to 15, −30, 60, and −75◦ to apply the image augmentation
concept and roughly quintuple our training and dataset testing.

After the training step, applying the classification methodology followed the so-called
Radar Image Oil Spill Seeker (RIOSS) algorithm flow chart (Figure 1). An input SAR image
was sectorized in blocks employing a pooling routine. For each block, dark regions were
segmented, a set of features was computed, and an oil spill probability was calculated with
the trained random forest model, and, if any block was given a higher oil probability than
a pre-defined threshold value (T), the system operator received a warning.
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Figure 1. Flux diagram for RIOSS, the proposed automatic oil spill monitoring system.

2.3. Image Segmentation

The black spot segmentation classified every image point in one of the two classes:
foreground or background. The foreground class consisted of pixels belonging to oil spills
and any look-alike phenomena, such as wind features, rain cells, and upwelling events. On
the other hand, the background class encompassed the ocean’s sea surface, ships, terrain,
and other features.

There are many two-class segmentation algorithms, the simplest one being global
thresholding. A constant digital value is chosen as a threshold between classes (i.e., black
and white pixels). Although functional, this algorithm has limitations in SAR image
segmentation due to a significant gradient of digital values as the acquisition angles
diverge from zenith. For this reason, many works choose reasonably more complex
techniques, ranging from adaptive thresholding schemes [48] to convolutional neural
network architectures [42], to accomplish this task.

The fast approach of adaptive thresholding methods was chosen, as segmentation
was a second-order interest here. Two variants were combined into the segmentation
solution: a cleaner one and a noisier mask. These two were then summed up, blurred, and
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applied to a final global thresholding. One of the binarization methods was the locally
adaptive thresholding, which slid a window through the input image and returned a black
pixel depending on its inner pixels’ mean and standard deviation. Two parameters were
required: window size and a bias value multiplied by the standard deviation term of the
threshold function, which controls how much local adaptation was wanted [50,51].

The other binarization method was the Otsu thresholding. This is a non-parametric,
automatic binary clustering algorithm that maximizes inter-cluster variance in pixel val-
ues [51]. Both binarization algorithms were implemented in OpenCV, a C++ library built for
real-time computer vision applications. After an extensive parameter search, local and Otsu
thresholding were mixed when local thresholding used a window size of 451 × 451 pixels2,
and a bias value of 4 was used for the locally adaptive thresholding algorithm. The input
images were low-passed filtered before segmentation for removing inconsistent data.

2.4. Feature Extraction and Selection

For classification, input SAR images were sectorized into blocks of 512 × 512 px2. A
big feature space with 42 elements was created from these blocks and divided into five
main groups: statistics, shape, fractal geometry, texture, and gradient-based. The feature
space is described in Table 1.

Table 1. Features used grouped in five main categories, along with their acronyms and calculation description.

Group Feature Acronym Calculation

Statistics

Image mean mean Mean image value

Foreground mean fgmean Mean dark spot value

Background mean bgmean Mean background value

Image standard deviation std Image value’s standard deviation

Foregrond standard deviation fgstd Dark spot values’ standard
deviation

Background standard deviation bgstd Background values’ standard
deviation

Image skewness skew Image values’ skewness

Foreground skewness fgskew Foreground values’ skewness

Background skewness bgskew Background values’ skewness

Image kurtosis kurt Image values’ kutosis

Foreground kurtosis fgkurt Dark spot values’ kurtosis

Background kurtosis bgkurt Background values’ kurtosis

Foreground-to-background mean ratio fgobgmean Ratio between foreground and
background means

Foreground-to-background standard
deviation ratio fgobgstd Ratio between foreground and

background standard deviations

Foreground-to-background skewness
ratio fgobgskew Ratio between foreground and

background skewnesses

Foreground-to-background kurtoses ratio fgobgkurt Ratio between foreground and
background kurtoses

Image Shannon entropy entropy Shannon entropy calculated over
the image

Segmentation mask’s Shannon entropy segentropy Entropy of the segmentation mask
generated
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Table 1. Cont.

Group Feature Acronym Calculation

Shape

Foreground area fgarea Dark spot area

Foreground perimeter fgper Dark spot perimeter

Foreground perimeter-to-area ratio fgperoarea Dark spot perimeter-to-area ratio

Foreground complexity complex
P/
√

(4πA), where P and A are,
respectively, the foreground’s

perimeter and area

Foreground spreading spread

λ2/(λ1 + λ2), where λ1 and λ2 are
the two eigenvalues of the

foreground coordinates’
covariance matrix and λ1 > λ2

Fractal geometry

Power spectral density function-based
fractal dimension psdfd

Fractal dimension as calculated by
the image’s frequency

components’ energy decay

Segmentation mask’s box-counting-based
fractal dimension bcfd Fractal dimension as calculated by

box counting

Semivariogram-based fractal dimension svfd Fractal dimension as calculated
from the image semivariogram

Box-counting-based lacunarity bclac Image lacunarity as calculated by
box counting

Segmentation mask’s box-counting-based
lacunarity segbclac Segmentation mask’s lacunarity

as calculated by box counting

Texture

Image correlation corr Image correlation from grey level
co-occurrence matrix (GLCM)

Segmentation correlation segcorr Segmentation mask correlation
from GLCM

Image homogeneity homo Image homogeneity from GLCM

Segmentation mask homogeneity seghomo Segmentation mask homogeneity
from GLCM

Image dissimilarity diss Image dissimilarity from GLCM

Segmentation dissimilarity segdiss Segmentation mask dissimilarity
from GLCM

Image energy ener Image energy from GLCM

Segmentation mask energy segener Segmentation mask energy from
GLCM

Image contrast cont Image contrast from GLCM

Segmentation contrast segcont Segmentation mask contrast from
GLCM

Gradient

Maximum image gradient gradmax Maximum value of image
gradient

Mean image gradient gradmean Mean value of image gradient

Median image gradient gradmedian Median value of image gradient

Gradient mean to median ratio gradmeanomedian Ratio between mean and median
gradient values

The authors of [20] showed how to calculate 2D gridded data fractal dimension from
their power spectral density (PSD) amplitude decaying rate across the frequencies. In this
work, we demonstrated fractal dimension distributions for images, with oceanographic
features, using three different calculation methods: one from the PSD, as described by [20]
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and as a feature here abbreviated as psdfd; a second method used the basic box-counting
technique described by [52], accounting for image self-similarity (bcfd); and the last method
was a semivariogram based on fractal dimension, abbreviated as svfd, explored in the
work of [53]. The latter method was computationally expensive to calculate raw data,
so a heavy image resampling (to 5%) was applied before its evaluation. Another fractal
geometry descriptor was lacunarity, which accounted for spatial gappiness distribution in
an image. It was calculated via a box-counting algorithm, as previously used along with
fractal dimension in a classification problem by [54] with satisfactory results.

Foreground and background average and standard deviations could not be calculated
in some blocks of images when they had no foreground and background pixels. To continue
using these features, such uncommon average and standard deviations were set as fixed
constants, respectively, 0 and −1, to differ from the rest. Non-finite foregrounds to average
background values were also set to −1. A small portion of blocks (1.3%) were associated
with non-finite entropies. These values were chosen to be set to –1, ensuring the use of
the feature. Lacunarity of segmentation masks and foreground-to-background standard
deviations and skew ratios could not be calculated in most parts of the dataset (89%) as
their denominators were frequently close to 0, leading to their feature space exclusion and
therefore 39 elements remaining.

Data redundancy is a common phenomenon when one works with so many features;
thus, a step was taken to filter them based on their absolute linear correlations and physical
explainability. Similar features were grouped into high-value blocks around a hierar-
chical clustering diagonal and then applied to the features’ absolute correlation matrix.
The hierarchical clustering implementation used was SciPy’s [55], using the Euclidean
distance metric.

2.5. Decision Tree Classifiers

Decision tree classifiers were the basis for random forest classification models. A
decision tree partitioned a feature space into class domains. It took a vector of features
as input into its root node, then partitioned the tree into two branches, representing two
different classes. It asked if one of the vector features was more significant than the node
constant. The input vector then walked through its branch until reaching another node.
There, one of its features was confronted again as being greater or lesser than a constant
value. The input vector kept walking through its branches and nodes until it reached
a leaf or final node, where the feature vector was finally classified between one of the
considered classes.

Training a decision tree was carried out by choosing, for each of its partitioning nodes,
the two splitting classes, the splitting feature and the splitting constant used. Sequentially,
this process considered each feature and every two-class combination for each node and
optimized a number, S, to be a constant that best split the part of the dataset that entered
such a node in two classes. In practice, S was chosen so that the impurity measure (i.e.,
entropy or the Gini index) was minimized. The combination chosen for the node was the
one that achieved minimum node impurity. The nodes were continually created until a
maximum value or minimum impurity was acquired for each leaf. After training a decision
tree, it is possible to measure feature importance to classification, as shown in [56].

2.6. Random Forest Classifiers

Random forests are bagging ensemble methods based on decision trees, first proposed
by [45] and applied to remote sensing data by [57,58]. The idea behind these models is
to generate many trees trained on random subsets of the dataset so that each tree node
can only choose a feature from a random subset of m elements from the full features. The
forest output is taken as the mode of its trees’ outputs. As decision trees are considered
weak classifiers, meaning that they usually offer considerable variance, using many of
them in random forests often generates robust, lower variance models. The author of [57]
explained that the number of user-defined parameters in random forest classifiers was
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significantly less and more straightforward to define than other methods such as support-
vector machines. Classification of feature importance can also be obtained from this
model. This was performed by taking original dataset feature vectors, permuting one of
the features to create unknown fake vectors, and passing both groups of vectors through
the forest. The mean prediction error difference between the original and the fake vectors
was taken as feature importance for each of the classes. Averaging these differences for all
classes yielded an overall feature importance measure [56] as m = 6. Finally, RF models can
predict classification probabilities from each tree’s predictions in the forest, which predict
oil presence probability in SAR image sectors.

2.7. Metrics and Cross-Validation

After the models such as the random forests were trained, it was helpful to evaluate
their correctness. This was carried out by defining metrics. Two of them were used here:
accuracy and precision. When training a seven-label classifier, mean accuracy was chosen,
as it has no intrinsic class bias. It is defined as a ratio between accurate predictions and the
total number of predictions. It ranges from 0 (no correct predictions) to 1 (every prediction
was correct). Although it was an effective metric, it was not the best one for an oil detector.
It is much more dangerous to classify an oil image as a typical sea surface image than
throwing a false positive alert, where the algorithm claims to have found oil but is actually
looking at a clean sea surface image. For this reason, precision is a better metric in this
case. Its definition is a ratio between accurate positive predictions (oil images predicted as
oil) over every positive oil prediction (sum of correct sea and oil predictions). Optimizing
our classification model through this metric biases it to the oil label. These metrics were
defined in [59].

In order to validate our model, the k-fold method was used. This method split the
dataset into k-groups and used each one of them once as data testing, which is used for
evaluating the model after it is trained, while the remaining are joined and fed the model
in training. Each of the trained models was evaluated based on the accuracy or precision
of their respective data testing. The model’s metric was computed as an average of the
calculated metrics. By proceeding this way, the model’s metric evaluation was always
performed on untrained data to tell when overfitting occurred [60].

3. Results and Discussion

Black spot segmentation results can be seen in Figure 2. The Otsu thresholding tended
to obtain cleaner results and delineates the darker regions of the images from the bright
background well. In contrast, local thresholding could identify more subtle variations,
although it was usually very noisy in this application. These remarks are seen in Figure 2A,
where the top left region is captured with noise by local thresholding, while it is better
chosen by Otsu’s method. In comparison, the top right oscillating features with lower
contrast in the original image were better delineated by local thresholding than Otsu’s. The
sum of the outputs and the median filter mask were used to calculate the target mask with
oil. We have found out that by adding up both output and median filtering methods, the
results gave more significant masks, as shown in both Figure 2A,B.
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Figure 2. Segmentation methodologies applied in an SAR (σ0) image, according to the algorithms: local thresholding, the
Otsu thresholding, summed outputs, and median filtered mask for Test Case 1 (A) and Test Case 2 (B).

One thousand one hundred thirty-eight image blocks with 512 × 512 pixels were used
to analyze the classification models’ features and training. This number was multiplied
by rotating images and using them as new samples, usually called image augmentation,
which increased our dataset’s size to 5125 images [61]. This number included 829 oil
spills, 1002 biofilms, 454 rain cells, 1009 wind, 685 sea surface, 665 ships, and 1355 terrain
images. While every image was used in the two-class problem, only a maximum of
700 images was used for each class to obtain a roughly balanced training set to the seven-
class model and avoid higher bias values. For the feature selection part, the three different
fractal dimension distributions can be seen in Figure 3. The semivariogram-based fractal
dimension was applied to a 5% resampled version of the image array. The process could
become operational, being the slowest routine with the highest computational cost in all
stages of the project.
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Figure 3. Probability density functions (PDFs), relative likelihood curves with the normalized area
calculated for three different fractal dimension distributions: box counting (A), power spectral (B),
and semivariogram (C).

From all the considered fractal dimension estimators, the one that better separated
the distribution peaks was calculated from the power spectral density function [20]. It was
possible to observe the power spectrum-based fractal dimension’s PDF values with an
acceptable separation between the target classes analyzed in the SAR image. The results
showed good discrimination of oil spills from the sea surface, even without a detailed
analysis of the backscatter coefficient. It allowed for a robust initial location of oil spills.

The semivariogram-based method showed the worst results for this application, as its
distributions overlap more than the ones produced with other methods (Figure 3B). We
understand that this behavior might be influenced by Dekker’s low sampling rate [62,63].
On the other hand, slight sampling changes did not sensibly transform the curves. Studying
it across hundreds of images would require higher computational power, which is out of
the scope of this investigation.

After data analysis, high redundancy was found in the 42 variables’ set. This dataset
characteristic was minimized using the famous hierarchical clustering method, initially
described by [63]. When applied to the absolute correlation matrix, it created blocks of
correlated features around its principal diagonal (Figure 4).
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Figure 4. Dataset’s absolute correlation matrix with hierarchical clustering dendrograms.

The highly correlated variables in each block were excluded until the maximum
feature-to-feature absolute correlation was below 80%. This process leads the correlation
matrix to resemble an identity matrix (a zero-redundancy case). Therefore, in Table 2, we
list the correlated features along with ones removed.

Table 2. Correlated feature groups and selection performed. Both foreground (fgkurt) and back-
ground (bgkurt) kurtoses were removed, as they were always close to each other and showed no
significant distinction among various image phenomena.

Correlated Group Maintained Features Removed Features

1 complex segcorr, fgperoarea, fgper, seghomo,
segcont, segdiss, bcfd

2 entropy ener, homo, gradmax, cont, diss

3 None fgkurt, bgkurt

4 gradmean gradmedian

5 psdfd corr, std, svfd, gradmeanomedian

6 segentropy fgarea

A way of visualizing so many features is by plotting their first two principal com-
ponents, which together explain 40% of the dataset variance [64]. We could see that sea
surface and terrain images form distinct clusters. Thus, contrastingly, rain, wind, biofilm,
and ship feature domains overlap (Figure 5).
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Terrain and ocean images form distinct groups throughout the dataset, while oil and its look-alikes
share roughly the same class domain.

The Python machine learning library scikit-learn [65] implementations were used
to create and train decision tree and random forest models. Both random forests had
60 decision trees and a max depth equal to 7 to avoid overfitting. For the seven-class (oil,
biofilm, rain cell, wind, sea surface, ship, and terrain) image labeling problem, the decision
tree and random forest models depicted an accuracy of 79% and 85%, respectively (right to
total predictions ratio on test set). On the other hand, the oil detector (two-class problem)
was evaluated with 86% precision (correct oil classifications to overall correct classifications
on test set) by decision trees, while it yielded 93% when the random forest model was
applied. The feature importance for the seven and the two-class problems can be seen
in Figure 6. The confusion matrix from which the random forest models’ metrics were
calculated are shown in Figure 7, normalized to predictions. The oil detector (Figure 7A)
shows overall good results, as the low values off-diagonal show a low error rate. The seven-
class labeler (Figure 7B) solves a more difficult task, experiencing the biggest problems
when trying to identify biofilms and rain images from other look-alikes. As previously
seen in Figure 5, oil-spill, biofilms, rain cells, and low wind conditions are very close. Rain
cells are often correctly classified, yet many times other classes are misinterpreted as one of
them. The classifier also misinterpreted some of the ship images as terrain, which can be
explained by some images taken at ports with little land cover content.
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We perceived that using just the 11 (out of 18) most important features for each model
maintained their metrics. Moreover, 10 from these 11 features were almost the same in
both models but with distinct internal importance: pseudo-spectral density function-based
fractal dimension (psdfd), lacunarity (bclac), gradient mean (gradmean), mean, skewness
(skew), Shannon entropy (entropy), kurtosis (kurt), segmentation mask’s Shannon entropy
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(segentropy), segmentation mask’s energy (segener), and background mean (bgmean).
Other than that, the feature used was the foreground mean (fgmean) in the case of the
seven-class model and complexity (complex) in the case of the oil detector.

A keynote here was that both models’ feature sets showed significant relevance to the
attributes of pseudo-spectral density functions based on: fractal dimension (psdfd), lacunar-
ity (bclac), gradient mean (gradmean), mean, skewness (skew), Shannon entropy (entropy),
kurtosis (kurt), segmentation mask’s Shannon entropy (segentropy), segmentation mask’s
energy (segener), and background mean (bgmean). On top of that, some classification
methodologies were tested and validated, such as logistic regression, neural networks,
fractal dimension, and the decision forest. Even with minor results, these methodologies
helped us understand the backscattering mechanisms and how the spatial behavior of σ0
could affect the oil classification.

The seven-class feature classifier results can be seen in Figure 8. We can see that
although there was noise in the classification output, the model could surely help an event
interpretation in SAR images. Our algorithm correctly delineates the oil spill between
various blocks classified as ocean waters but sometimes classifies blocks around the spills
with a low wind label (gray, Figure 8D). Rain cells were also well highlighted. The ship
that caused this accident near the Corsica island (2018) is also found (dark magenta) in the
same image. Our model correctly identified the wind feature but had some classification
noise, mainly in some blocks that resemble oil response or rain cells (Figure 8E). Along
with some classification variance, our models dealt with the SAR image’s image borders,
as there are noisier and invalid values present for both scanning method and geolocation
reasons. This can affect some of the calculated features and, therefore, interferes with the
random forest model’s behavior. A valid concern about the seven-class trained model was
that it was biased not to classify rain cells correctly, as our dataset lacked enough images
with these phenomena.

Our oil spill probability results can be seen on the oil spill images in Figure 9. The
random forest detector algorithm was able to generalize oil spill responses compared to
other image classes. The probability maps were close to zero on ocean sections, while it
grew to higher values only in black-spotted positions with oil characteristics. The case in
Figure 9A, where the central oil spot is highlighted by the algorithm (Figure 9C) and the
case of the lower-sized oil portion at 43.5◦ N 9.45◦ E (Figure 9A), is successfully marked.
Although probability was plotted, automated monitoring systems using this algorithm
can set a probability threshold to warn an operator when an image is likely to present
an oil spill. As the two-class model was already optimized with an oil-biased estimator
(precision), the dataset unbalance, with a similar number of images for each class, was a
minor setback. Contrarily, an authentic dataset critique is that it was mainly composed
of enormous, catastrophic oil spill events. The produced oil detector had a bias towards
classifying only major oil spills. Figure 9B shows other oil spill signature in the SAR image,
while Figure 9D shows our models response when applied to it. The overall probability
assessment over oil spills reveals good segmentation of the oil spill from the generated
maps. It is clear from the examples shown that spot contours are more easily recognized
than their central regions when the oil is significantly dispersed.
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detector model (C,D).

The random forest generated oil spill probability maps from images that do not contain
oil spills are seen in Figure 10. The SAR images in Figure 10A,B show, respectively, rain and
wind cells, while Figure 10C,D present their oil probability. These dark-spot look-alikes
demonstrate similar SAR signature to oil spills but are still not highlighted by our model.

The selected attributes were cognitively detectable and could be later related to the
imaged phenomena’s physical aspects. This process helped us apply the attributes to a
random forest, increasing our algorithm’s accuracy and its ability to generate even more
reliable results.
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4. Conclusions

The occurrence of an oil spill in the ocean can make the incident almost uncontrollable
due to the dynamics of the environment, reaching up hundreds of kilometers long, as
occurred on the northeast coast of Brazil in 2019. Thus, the development of projects
for identifying and monitoring oil spills on the ocean surface has scientific, economic,
and environmental importance. Among the main difficulties described, we highlight the
acquisition of reliable examples for training classifiers and the importance of adjusting
contextual parameters for specific geographic areas. In this way, we developed and tested
a set of open-source routines capable of identifying possible oil-like spills based on two
random forest classifiers.

The first algorithm consists of an ocean SAR image classifier, labeling inputs as
containing oil, biofilm, rain cell, wind, sea surface, ship, or terrain characteristics. This
routine was developed with a classifier capable of circumventing the problems associated
with look-alikes for a robust statistical analysis of the gradients associated with these
features’ backscattering.

The second algorithm was developed to create an SAR image oil detector called Radar
Image Oil Spill Seeker (RIOSS). RIOSS was responsible for identifying oil spill targets on
marine surfaces using Sentinel-1 SAR images. Our aim was constituting an optimized
feature space to serve as input to such classification models, both in terms of variance
and computational efficiency. It involved an extensive search from 42 image attribute
definitions based on their correlations and classifier-based importance estimative. Mixed



Remote Sens. 2021, 13, 2044 19 of 22

adaptive thresholding was performed to calculate some of the features studied, returning
consistent dark spot segmentation results.

In general, the model’s development suffered from dataset biases and other errors
associated with the classification system. We observed that the general seven-class model
was potentially affected by dataset unbalance, reducing the random forest’s effectiveness.
Simultaneously, the oil detector managed to achieve compelling oil detection values on
the marine surface (94% effectiveness). Being aware of these facts was crucial before
implementing the automatic oil or other phenomena detection systems described here.
There are several valuable improvements carried out in our methodology beyond its open-
source characteristic: here, we deal with modern Sentinel-1 high resolution products, not
only source codes but trained classification models, so that users do not need to develop
their own dataset in further studies. Our system also lists an optimized set of interpretable
image features, selected exactly for detecting oil spills from look-alikes. We propose a
combined analysis approach, based on two models. One of them alarms about high oil
spill probabilities, while the other points to the most probable look-alikes in case of a
false positive. Such a tool provides the interpreter with useful information to better tackle
ambiguous situations.

Our future challenges are dealing with boundaries and borders on SAR images on
RIOSS. The absence of data in the external portions of a radar image still causes some pitfalls
in our current version. We are currently working on tackling this problem. Concurrently, we
are developing another code that will run in parallel with RIOSS that receives information
about a possible oil occurrence, downloading wind and altimetry data from the Sentinel-3
satellite. This information is augmented by ocean current velocities, temperature, and
salinity information from the Copernicus Marine Service sea surface Global Ocean Physics
Analysis and Forecast (1/12◦) model, which is updated daily. Understanding the ocean
dynamics of a region impacted by an oil spill is essential for fast decision making to control
the incidents.

Further studies are needed to classify oil spills by their nature and decomposition
level, which can be carried out to deepen and improve our proposed methodology. Our
idea is to keep the open-source code algorithm so that other works extend our study to
various remote sensors to expand the tools and use RIOSS in studies of past oil spills. These
future steps are part of an ongoing project recently funded by the Brazilian Navy; the
National Council for Scientific and Technological Development (CNPQ); and the Ministry
of Science, Technology, and Information (MCTI), call CNPQ/MCTI 06/2020—Research and
Development for Coping with Oil Spills on the Brazilian Coast—Ciências do Mar Program,
grant #440852/2020-0.
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