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Continuous increases in the human population and human activities have resulted in
remarkable changes in the composition of the atmosphere since the industrial revolution.
Climate change and air pollution are two major consequences of such changes. The
scientific understanding of these two issues requires a variety of observations of the
atmosphere on different platforms. Among them, satellite remote sensing has added a new
dimension to these observations because of its advantages in global coverage, frequent
revisit time, and consistently improved quality in recent decades. Particularly, the remote
sensing of greenhouse gases has already illustrated promising applications related to
climate change studies. Remote sensing data are also becoming more and more widely
used in the monitoring of air pollution, which helps to identify variations of air pollutants in
space and time and untangle the underlying mechanisms responsible for these variations.

This Special Issue (SI) aims to invite contributions on recent advances in remote
sensing of greenhouse gases, particle matters, and polluted gases, as well as the applications
of these remote sensing data for climate change and air pollution studies. With the six
papers finally selected and published in this SI, four of them are associated with the
satellite observations of column-averaged CO2 dry air mole fraction (XCO2), its validation,
and the analysis of XCO2 trend using satellite observations in conjunction with ground-
based observations and model simulations [1–4]. The other two papers focus on the
satellite observation of aerosol and its application on air pollution study, with one on
the validation of satellite-observed aerosol optical depth (AOD) from the Visible Infrared
Imaging Radiometer Suite (VIIRS) onboard S-NPP, and the other on the use of the AOD
from the Advanced Himawari Imager (AHI) onboard the Himawari-8, a geostationary
satellite, in order to estimate surface fine particulate matter (PM2.5) concentrations and
analyze its spatiotemporal variation over central East China [5,6].

The COVID-19 pandemic is projected to cause a significant decrease in annual CO2
emissions, which was up to 8% globally in 2020 (see [1] and reference therein).
Sussmann et al. [1] used the ground-based XCO2 measurements from the Total Carbon
Column Observing Network (TCCON) to explore if the decrease in CO2 emissions can be
detectable by the TCCON measurements in terms of CO2 concentrations. A method was
used to fit the XCO2 trends in multiple sites and to derive the annual growth rates of XCO2.
It was found that the range of XCO2 growth rates for 2012–2019 was between 2.00 and 3.27
ppm/yr, with a mean uncertainty of 0.38 ppm/yr. In fact, the TCCON measurements were
historically high for XCO2 in April 2020, suggesting some combined influences from multi-
ple factors of XCO2. By separating these influences, the authors concluded that TCCON
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observations could provide a readily available basis to potentially detect COVID-19-related
reduction in XCO2 of −0.3 ppm in 2020, with a detection delay well below 1 year. For
better quantifying the land and ocean sinks that dominate the interannual variability, a
reduction of the forecast uncertainties is required through improved terrestrial ecosystem
models and ocean observations.

Space-borne measurements of XCO2 data from multiple satellites, ground observa-
tions, and model simulations were inter-compared over the Mount Zugspitze region of
Germany in Yuan et al. [2]. The satellite data include the Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography sensor (SCIAMACHY) on the Environmental
Satellite (ENVISAT) from 2002 to 2012, the Fourier Transform Spectrometer of the Thermal
and Near-infrared Sensor for Carbon Observation Sensor (TANSO-FTS) on the Greenhouse
Gases Observing Satellite (GOSAT) since 2009, and measurements from the Orbiting Car-
bon Observatory 2 (OCO-2) satellite since July 2014. The ground-based measurements
and model simulations include the continuous in situ CO2 measurements over the Global
Atmospheric Watch (GAW) site at Zugspitze, the co-located column-averaged XCO2 from
TCCON, and the outputs from the National Oceanic and Atmospheric Administration
(NOAA) Carbon Tracker model. It was found that the mean annual growth rates among
the datasets agree well with a value of ~2.2 ppm yr−1 over a 17-year period (2002–2018).
However, the column-averaged measurements exhibited smaller seasonal amplitudes and
clearly delayed phases based on the seasonal maximum and minimum values. This study
demonstrated that, by using consistent data processing routines with proper data retrieval
and gap interpolation algorithms, the trend and seasonality of XCO2 can be well extracted
from all these measurements.

A global XCO2 dataset was constructed by He et al. [3]. To construct such a long-
term spatiotemporal continuous XCO2 dataset using different satellite observations with
different temporal periods and spatial coverage, a precision-weighted spatiotemporal
kriging method was applied. Using satellite data from ENVISAT/SCIAMACHY, GOSAT,
and OCO-2, a globally mapped XCO2 (GM-XCO2) with a spatial resolution of 1◦ × 1◦every
eight days from 2003 to 2016 was generated. The predicted GM-XCO2 precision is improved
in most grids compared with the conventional spatiotemporal kriging results, especially
during the satellites overlapping period the precision is improved by 0.3–0.5 ppm. A
comparison with TCCON measurements shows that the precision of GM-XCO2 in nine
of the twelve TCCON sites examined is within 1.0 ppm, with an average absolute bias
of 0.92 ppm, and the standard deviation of the difference for all twelve sites is 1.05 ppm.
This method has potential applications for integrating and mapping XCO2 from multiple
satellite sensors.

For a better understanding of CO2 variation trends in Asia, Mustafa et al. [4] compared
the model outputs from the NOAA CarbonTracker model with two datasets: one is the
GOSAT data from September 2009 to August 2019, and the other is OCO-2 data from
September 2014 to August 2019. The results show that XCO2 from GOSAT is higher than
the CarbonTracker model by 0.61 ppm, whereas the OCO-2 XCO2 is lower than the model
by 0.31 ppm over Asia. Overall, the model demonstrates a good agreement with GOSAT
and OCO-2 in terms of spatial distribution, monthly averaged time series, and seasonal
climatology. However, larger uncertainties exist in the southwest part of China. These
results suggest that CO2 data from either the model or the satellite observations from
GOSAT and OCO-2 can help to understand the role of CO2 in the carbon budget and its
impact on climate change at regional to global scales.

As for the second topic of this SI, i.e. the use of remote sensing data in the monitoring
of air pollution, there are many published research studies on the use of moderate resolution
imaging spectroradiometer (MODIS) AOD products, the conversion of the AOD to estimate
PM2.5 or PM10, and analysis of air pollution events based on AOD or estimated PM2.5,
especially in China in the past decade. Here, Wang et al. [5] evaluated the AOD products
from VIIRS, a difference sensor onboard on S-NPP, and produced at NOAA. The ground-
based measurements used were from the Campaign on Atmospheric Aerosol Research
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Network of China (CARE-China). Compared with ground-based observations at six sites,
Wang et al. [4] found the performance of the retrievals in five of the six sites examined
was satisfactory, but the AOD retrievals with the dust model show poor consistency as
compared to the retrievals obtained from the other models. The poor AOD retrieval with
the dust model was also verified by a comparison with the MODIS aerosol product. Further
analysis of the ground-based Ångström exponent (α) values shows that for α in the range
between −0.6 to 1.0, the dust model percentage exceeds 40%, but in VIIRS retrievals,
the values of α are centered around 1.1 for the “dust” aerosol model that it used. This
mismatching of the aerosol model can partly explain the low accuracy of VIIRS retrievals
at one of the six sites. The use of an appropriate aerosol model in the retrieval, especially
the dust model, was recommended as a key step to improve the AIRS AOD products.

While many previous studies have focused on estimating daily PM2.5 concentrations
using polar-orbiting satellite data (e.g., from MODIS), which are inadequate for under-
standing the daily evolution of PM2.5 distributions in an area of interest, Liu et al. [6] used
the AOD from Geostationary satellite Himawari. By developing an ensemble learning
model incorporated with AOD from Himawari and meteorological variables from the
ERA-Interim reanalysis, Liu et al. [6] derived the hourly PM2.5 concentrations and analyzed
its spatial agglomeration patterns over central East China. Overall, the estimated PM2.5
concentrations agree well with ground-based data. It was found that the satellite-based
PM2.5 concentrations over central East China display a north-to-south decreasing gradient
with the highest concentration in winter and the lowest concentration in summer, and
concentrations are higher in the morning and lower in the afternoon. High-frequency
spatiotemporal PM2.5 variations from this study can help to improve our understanding of
the formation and transportation processes of regional pollution episodes.

In summary, this Special Issue has provided an enhanced understanding of remote
sensing of XCO2 in terms of detecting the impact of COVID-19 [1], mapping XCO2 [3],
and validating XCO2 products from SCIAMACHY, GOSAT, and the OCO-2 satellite over
Asia [4] and the Zugspitze Region [2]. For the remote sensing of air quality, a new
methodology is presented for the retrieval of hourly PM2.5 from a geostationary satel-
lite, Himawari [6], and the need to improve dust AOD retrieval in the VIIRS products is
highlighted [5].

This Special Issue would not have been possible without the hard work of all authors
and reviewers. We also would like to extend our sincere appreciation to the Editorial Office
of Remote Sensing for their professional and excellent management work.
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