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Abstract: The performance requirements for Global Navigation Satellite Systems (GNSS) are becom-
ing more demanding as the range of mission-critical vehicular applications, including the Unmanned
Aerial Vehicle (UAV) and ground vehicle-based applications, increases. However, the accuracy
and reliability of GNSS in some environments, such as in urban areas, are often affected by non-
line-of-sight (NLOS) signals and multipath effects. It is therefore essential to develop an effective
fault detection scheme that can be applied to GNSS observations so as to ensure that the vehicle
positioning can be calculated with a high accuracy. In this paper, we propose an online dataset
based faulty GNSS measurement detection and exclusion algorithm for vehicle positioning that takes
account of the NLOS/multipath affected scenarios. The proposed algorithm enables a real-time
online dataset based fault detection and exclusion scheme, which makes it possible to detect multiple
faults in different satellites simultaneously and accurately, thereby allowing real-time quality control
of GNSS measurements in dynamic urban positioning applications. The algorithm was tested with
simulated/artificial step errors in various scenarios in the measured pseudoranges from a dataset
acquired from a UAV in an open area. Furthermore, a real-world test was also conducted with
a ground-vehicle driving in a dense urban environment to validate the practical efficiency of the
proposed algorithm. The UAV based simulation exhibits a fault detection rate of 100% for both
single and multi-satellite fault scenarios, with the horizontal positioning accuracy improved to about
1 metre from tens of metres after fault detection and exclusion. The ground vehicle-based real test
shows an overall improvement of 26.1% in 3D positioning accuracy in an urban area compared to the
traditional least square method.

Keywords: GNSS; vehicle; urban positioning; fault detection and exclusion

1. Introduction

Unmanned aerial vehicles (UAVs) and ground vehicles are emerging mobile platforms
that can be beneficial to many mission-critical applications in smart cities. These include
delivery, search and rescue missions, and civil security [1]. In order to support these
mission-critical applications, the on-board navigation system, especially the Global Navi-
gation Satellite System (GNSS), is essential for providing accurate and reliable Positioning
Navigation and Timing (PNT) information. In practice, however, the accuracy and relia-
bility of GNSS positioning is always affected by a variety issues in urban areas, especially
in respect to pseudorange-based positioning. The increased positioning uncertainty that
arises from a mixture of faulty signals is a result of the signal challenges posed by urban
areas, mainly due to the NLOS/multipath effects from the surrounding environments
(e.g., skylines, canyons, tunnels, etc., seen in Figure 1). In addition, malfunctions in the
satellite clock, an incorrect modelling of orbits, the ionisation of satellite payload silicon
material, and inter-channel bias could also contribute to the excessive positioning errors [2].
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It is therefore very important to guarantee that the GNSS signals received from different
satellites are correct and accurate, since these are related to GNSS positioning performance
and integrity evaluation.
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In order to deal with this issue, a satellite navigation integrity monitoring scheme is
proposed within the receiver, i.e., a Receiver Autonomous Integrity Monitoring (RAIM)
system. This seeks to detect significant measurement errors arising from satellite mal-
functions, the propagation environment, and others, by the use of information including
redundant measurements, the geometrical configuration of satellites relative to the users,
and knowledge of nominal error behaviour [3].

In developing our proposed solution, we consulted the extensive existing literature
on GNSS quality control methods for RAIM type systems. One commonly used technique,
for example, is the signal weighting-based method [4]. The key idea of this method is to
use one or multiple variables (e.g., C/N0 or elevation angle or their combination, etc.) of
the observed pseudorange to obtain proportional weights and thus better-quality signals
in the positioning calculation. Furthermore, a number of algorithms for NLOS/multipath
classification and thereafter mitigation or exploitation have been developed in recent years
for environments such as urban areas. These strategies mainly include signal process-
ing, antenna design, and measurement-based modelling. Signal processing strategies
distinguish the multipath and LOS signals based on the different characteristics of the
correlation functions. The correlation aims to obtain an optimal approximation of the
signal range [5,6], and some correlator-related and Delay-Locked Loop (DLL) technologies
have been proposed for error mitigation, including narrow correlators, high-resolution
correlators, strobe correlators, shaping correlators, and Multipath Estimating Delay Lock
Loop (MEDLL), etc. [6,7]. Receiver signal processing techniques can help to separate out
the components of a multipath contaminated signal, but they are useless if there is no direct
LOS component. Antenna design strategies, meanwhile, include the use of antenna arrays,
choke-ring antennas, and other types of antennas to mitigate the multipath effects and
then improve the positioning performance [8,9]. Measurement-based strategies include
integrating GNSS observables, measurements, and satellite and signal information with
other information sources. For example, using the GNSS elevation angle, pseudorange
rate, C/N0, Doppler, etc., with the data from external aids such as Inertial Measurement
Units (IMU), map aiding, ray tracing, etc., to improve the positioning performance [10–12].

Fault Detection and Exclusion (FDE) algorithms are also widely used for RAIM, these
include: (1) range and position comparison methods [13]; (2) least squares residuals meth-
ods (LSRM) [14]; (3) parity space methods [15]; and (4) maximum slope (MS) methods [16].
Various extensions have been further developed from these basic methods. For example,
Brown applied an improved MS method, denoted as the slope-max-max method, by im-
posing a worst-case hypothetical two-failure requirement on RAIM to handle dual satellite
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failures [17]. Since the traditional RAIM algorithms are designed only for horizontal po-
sition monitoring, advanced RAIM (ARAIM) has emerged and therein the prospect of
handling any number of simultaneous significant measurement errors, as well as vertical
integrity monitoring [18]. Usually, FDE schemes entail both global and local tests, where
the global test is used to check for the presence of any fault (for which a minimum of five
satellites is required) and then the local test is used to identify the precise fault (for which
six satellites are required). A common approach to performing the global test is to use a test
statistic, based on the Normalised Sum of Squared Error (NSSE), checking whether or not
this variable, multiplied by a variance factor and by the degrees of freedom (n-p), follows
a centrally chi-squared distribution [19]. Basic FDE algorithms are able to detect and
exclude one fault in all measures, whereas more advanced recursive consistency checking
based methods are able to exclude multiple faults in the measures. Blanch et al. proposed
a greedy search and an L1 norm minimisation combinatorial method for multiple fault
detection and exclusion (FDE) with pseudorange errors above 20 m [20]. Similarly, Hsu
et al. used greedy and exhaustive methods to improve the consistency checking process of
the FDE [21]. These consistency check based FDE algorithms are only effective when at
least six satellites can be observed, however. In addition, although optimisation algorithms
are used for the subset search, the calculation efficiency is still a major issue with increased
satellite numbers. Kaddour et al. proposed a multi-faults detection algorithm based on an
observation projection on the information space [22]. The positioning estimation is then
calculated by excluding the pseudorange measurement faults from the information filter
process. In the designed Kalman Filter (KF) process, the state vector is based on the simple
difference, with the satellite with the highest elevation angle being the reference at each
epoch. In urban canyons, however, the rapid changes in reference satellites may lead to a
reduced performance of the algorithm.

For the weighting and FDE-based methods for RAIM discussed above, the current
signal weighting-based methods find it difficult to determine the weightings in urban areas.
For example, satellites with a lower elevation angle along the street direction may suffer
from less NLOS than satellites with higher elevation angles in the crossing street direction.
The current FDE algorithms are also not robust enough in these kinds of situations. Some
of the algorithms use the single fault assumption, which is not suitable for urban vehicle
positioning because the environment changes rapidly and individual satellites can therefore
be associated with faulty signals at one instant, and not at the next instant. This means that
the fault associated with the current satellite may be gone in the next epoch but then it may
reappear again with either the same or a new satellite in the next epoch. Thus, the single
fault assumption is not realistic in urban areas.

In addition, most of the multiple fault detection algorithms require at least six satellites
for the FDE, which is difficult to achieve in an urban context. Furthermore, the huge number
of subsets in the consistency check reduce the calculation efficiency of these algorithms.
This is a big issue in the context of fault detection for vehicle positioning since the detection
of faults, and the consequent recalculation of the solution, needs to be completed fast
enough so as not to exceed the necessary reaction time for the vehicles, especially for
vehicle applications that involve live subjects.

In this context, this paper proposes a new faulty GNSS measurement detection and
exclusion algorithm for the dynamic positioning of vehicles in urban environments. The
proposed algorithm has a dual-dynamic online dataset generation scheme, which contains
the latest features of the pseudoranges in the urban areas and is therefore able to achieve a
high accuracy and fast fault detection and exclusion in dynamically changing environments.
The proposed algorithm can be operated with only four satellites and is sensitive to small
faults, which are suitable for urban areas where there is often poor access to satellites. The
contributions are summarised below.

1. The development of a new faulty GNSS measurement detection and exclusion algo-
rithm to achieve simultaneous multi-fault detection and exclusion, which is sensitive
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to small pseudorange faults and therefore could improve the accuracy and integrity
of the urban positioning.

2. The design of two dynamic online datasets (i.e., a real-time normal dataset and a
“non-trusted” dataset) within the algorithm to ensure that the latest features of the
fault pseudoranges in the changing environments are always available. In particular,
a sliding window, based on the pseudorange KF innovations from satellites in the
normal satellite’s dataset, is designed to check satellites maintaining normal data,
while detector D, which is generated based on the difference between the predicted
pseudorange and the observed pseudorange using data from satellites in the faulty
satellite’s dataset, is designed for checking faulty satellites or those just coming
into view.

3. A test and a validation of the efficiency of a proposed algorithm using simulations with
simulated/artificial step errors in various scenarios on the measured pseudoranges
from a dataset acquired from a UAV in an open area, and a real-world test with a
ground-vehicle in a dense urban environment.

2. GNSS FDE Algorithm for Urban Positioning
2.1. System Framework

The flowchart for the proposed FDE-based positioning algorithm is presented in Figure 2.
Before a mission is assigned, it is necessary to conduct an initialisation of the receiver using
a Suggestion Range Consensus (S-RANCO) [23], in a relative open sky area, which could
be satisfied frequently in urban areas. The purpose of the initialisation is to use this method
aimed at multi-faults as the reference to create the initial datasets, using the measurements
from these satellites with both “normal” and “fault” measurements, identified and labelled
from the onboard GNSS receiver (as described in Section 2.2, algorithm initialisation).
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The “normal” measurements are stored in the dataset named “Set I” and the “non-
trustable” measurements are stored in the dataset named “Set II” (this initially contains
only satellites with faulty measurements, but during the operation it will contain “new”
satellites that did not exist at last epoch, which may or may not have faulty measurements),
shown in Figure 3 as an example. During the operation, once a new observation (which
means the satellite is observed at a specific epoch) is received, a judgement is carried
out to check whether this satellite has already been tracked in Set I, in which case the
observed information is added to Set I (contains tracked satellites), otherwise the observed
measurements are added in Set II (contains faulty satellites and newly observed satellites).
Although the sliding window and the detector are applied separately for fault detection,
fault removal and recovery, Set I and Set II are then constantly updated according to
the detection results at each epoch with satellites re-assigned between the sets by the
proposed algorithm
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In particular, the sliding window, whose size is changeable, is executed based on the
KF innovations of the observed pseudoranges in Set I. The satellite with a faulty measure-
ment at a specific epoch is determined by an evaluation of the variance of innovations
within the adaptive window. The determination of the window should meet two require-
ments: (1) the final window should contain the maximum number of normal satellites
observed, and (2) the variance of the innovations within the final window is less than the
predetermined threshold (details described in Section 2.4).

Then, the satellites inside of the window are considered as normal satellites and kept
in Set I, while those outside are flagged as faulty satellites and are moved to Set II.

The detector D, is created based on the difference in the observed pseudoranges of
the satellites in Set II and the predicted pseudoranges, calculated based on the real-time
position obtained from the positioning solutions of the satellites in Set I at the current epoch,
and the measurement information of the satellites in Set II, to check whether these satellites
(already in Set II or newly observed satellites in Set II) are normal or not (Section 2.5). The
D results are then compared with the threshold T to determine whether the satellite is still
presenting faulty data or recovering to normal, and the movement of the corresponding
satellites between the sets will be carried out accordingly. Once the faulty satellite in Set II
is excluded, the |D|, the absolute value of D, immediately drops below the threshold. If
the |D| value remains below the threshold for two consecutive epochs, we will move the
satellite back to Set I where it would be used at that epoch for the positioning calculation.
The threshold determination for D is described in Section 2.5 as well.

The final positioning will be the output if the usable number of satellites in Set I (NSet I)
is equal to or greater than four.
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2.2. Algorithm Initialisation

As described above, our proposed process requires an initialization process in a rela-
tive open sky area using the S-RANCO based algorithm. The S-RANCO based algorithm is
designed for multi-fault detection and exclusion, and the available measurements in open
sky are less likely to have faults. Therefore, it is possible to detect the faulty measurements
based on the test statistics resulting from the collected pseudoranges in relative open areas.
Thus, the Initial Set I and II are represented as follows:

Initial Set I = {SV1 SV2 · · · SVn} (1)

Initial Set II =
{

SV′1 SV′2 · · · SV′m
}

(2)

where Initial Set I contains the set of satellites returning normal data during the initialisation
process, and SV1 to SVn represent the ID of these satellites, from 1 to n. Meanwhile, Initial
Set II contains the set of satellites returning faulty measurements, and SV′1 to SV′m represent
the ID of these satellites, from 1 to m. All the historical measurements are included in the
sets for the specific satellites, including the raw measurements of pseudorange, satellite
position, etc.

2.3. Pseudorange Change Based Transition Model

Before a description of the fault detection and exclusion model, the transition model
for the GNSS measurements needs to be designed. The pseudorange is one of the most
important observations in GNSS, and the accuracy of the pseudorange contributes sig-
nificantly to the accuracy of the positioning. In the case of the satellites returning faulty
data, the associated NLOS, multipath and satellite clock errors are expressed in the form of
pseudorange errors. The pseudorange measurement is merely the travel time scaled by the
speed of light in a vacuum, and can be expressed as:

ρ = r + c
(

dtR − dtS
)
+ Iρ + Tρ + ερ (3)

where r is the geometric range between the user position and the satellite position; Iρ

and Tρ reflect the delays related to the transmission of the signal through the ionosphere
and troposphere, respectively; dtR, dtS and ερ are the receiver clock error, satellite clock
error and other modelled or unmodelled errors, respectively. According to Equation (3), in
epochs k− 1 and k, the pseudorange measurement can be expressed through Equation (4)
and Equation (5), respectively:

ρk−1 = rk−1 + c
(

dtRk−1 − dtSk−1
)
+ Iρk−1 + Tρk−1 + ερk−1 (4)

ρk = rk + c
(

dtRk − dtSk
)
+ Iρk + Tρk + ερk (5)

The satellite clock bias dtS, tropospheric error Tρ, ionospheric error Iρ, and other
measurement errors ερ (e.g., ephemeris error), only change a little within a short time
instant and hence can be neglected based on the time-differenced model [24]. Time-
differenced pseudorange measurements can be expressed as follows, using Equation (4)
and Equation (5):

∆ρk = ρk − ρk−1 = ∆rk + c∆dtRk + ∆ερ (6)

where ∆ρ and ∆r are the changes in the pseudorange and the geometric range between
two measurement epochs; ∆dtRk is the variation of the receiver clock errors at two adjacent
epochs. The remaining measurement error, which is not removed through calculating the
time differences, is denoted with ∆ερ. These residual errors are considered to be negligible
for the purposes of this process, however. ∆rk in k epoch can be represented as:

∆rk = rk − rk−1 =
∣∣∣XS

k − XR
k

∣∣∣− ∣∣∣XS
k−1 − XR

k−1

∣∣∣ = →r k ·
(

XS
k − XR

k

)
−→r k−1 ·

(
XS

k−1 − XR
k−1

)
(7)
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where rk and rk−1 are the geometric ranges between the receiver position and the satellite
position at two epochs, k and k− 1; XS

k and XS
k−1 are the satellite position vectors at two

epochs; XR
k and XR

k−1 are the receiver position vectors, and
→
r k and

→
r k−1 are the unit vectors

pointing to the satellite from the receiver position. We consider that
→
r k is approximately

equal to
→
r k−1 due to the remote distance between the satellite and the receiver. Therefore,

when the two epochs are very close together in time, we can obtain:

∆rk =
→
r k ·

(
XS

k − XR
k

)
−→r k ·

(
XS

k−1 − XR
k−1

)
=
→
r k ·

(
∆XS − ∆XR

)
(8)

where ∆XS and ∆XR are the changes in the geometric range of the satellite and the receiver
between two epochs in an Earth Centred Earth Fixed (ECEF) coordinates frame.

According to Equation (6) and Equation (8), we can obtain:

∆ρk =
→
r k ·

(
∆XS − ∆XR

)
+ c∆dtRk + ∆ερ (9)

If the acceleration of the vehicle (such as a UAV) is a in a specific direction, then the
difference of the position change between two adjacent epochs is a∆t2, where ∆t is the
time interval. When ∆t is 0.1 s, taking a = 10 m/s2 as an example, the corresponding
value is 0.1 m, which is small enough and can be neglected within the fault detection
algorithm. It is to be noted that the proposed algorithm is for civil applications in urban
areas; these vehicles (e.g., UAVs and ground vehicles) have low accelerations (e.g., less than
10 m/s2). Here, the movement of the vehicle can be considered as a continuously linear
motion at a constant speed in a very short time (e.g., within 1 s). Similarly, the movement
of the satellites can be considered as a linear motion at a constant speed in a very short
time (e.g., within 1 s), because of their stable circular motion. Therefore, our algorithm is
applicable for the sharp turn of a vehicle in urban areas since it can be considered as an
accelerated motion.

It is to be noted that ∆dtRk may change during the consecutive two epochs. Here, we
have defined the changes of ∆dtRk between epoch k and k− 1 as ∆2dtRk (in the unit of s).
The hypothesis test is designed for two alternative transition models used in the Kalman
filter, which will be described in Section 2.4.

For H0: the ∆2dtRk is 0, according to (9) and the described motion principles above.
The transition model can be defined as:

∆ρk = ∆ρk−1 + ∆ε (10)

and H1: the ∆2dtRk is not 0.

∆ρk − c∆
.

dtRk = ∆ρk−1 + ∆ε (11)

where ∆ε is the random noise.

2.4. Sliding Window Based Fault Detection for Set I

The fault detection for the pseudoranges in Set I is based on the well-known KF
approach, which has been applied in many applications to obtain an optimal estimation
accuracy with a low computation complexity [25]. With the transition models established
in Section 2.3, the state vector (Equation (12)) and observation vector (Equation (13)) are
designed based on Equations (10) and (11) and are as follows:

X = [∆ρ] (12)

For H0:
Zk = [ρk − ρk−1] (13)
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and H1:
Zk =

[
ρk − ρk−1 − c∆2dtRk

]
(14)

The state transition equation and measurement equations are in Equation (15) and
Equation (16).

Xk = Φk,k−1Xk−1 + wk−1 (15)

Zk = HXk + vk (16)

where,
Xk is the state vector X in the time epoch k.
Xk−1 is the state vector X in the time epoch k− 1.
Φk,k−1 is the transition matrix, which is equal to the 1× 1 identity matrix.
wk−1 is the process noise W in the time epoch k−1 with the covariance matrix Q.
Zk is the measurement Z at the time epoch k.
Vk is the measurement noise V in the time epoch k with the covariance matrix R.
H is the measurement mapping matrix, which equals to 1× 1 identity matrix.
The innovation sequence, ek, which is the difference between the observed value and

the KF predicted value, is generated in order to detect the faults in the data from each
satellite in Set I:

ek = Zk − HkX̂k,k−1 (17)

where, X̂k,k−1 is the pseudorange change propagation from the time epoch k− 1 to k. ek
follows a white Gaussian sequence in a long time period. Over short timeframes, however,
its mean and standard deviation vary according to the velocity, the quality of the receiver,
the elevation of the satellites, and the condition of the troposphere, ionosphere, etc. [26].

In the proposed algorithm, we first use the transition model of the KF to predict the
pseudorange change of the observed satellites. In this prediction step, we assume the
∆dtRk does not change initially, which means ∆2dtRk is 0. At the same time, we obtain the
observed pseudorange change. With the difference between the observed pseudorange and
the predicted pseudorange changes (i.e., the innovation ek), we evaluate the results based
on the proposed check algorithm, i.e., sliding window. Both the real faulty measurement of
the satellite and ∆2dtRk result in the changes of the observed ∆ρ, and they have different
characteristics for both cases. For example, the change of ∆ρ caused by NLOS is not equal
for all satellites, because NLOS signals are received from different directions in urban areas,
while the ∆2dtRk will cause an equal length to every satellite in the change of ∆ρ, further
resulting in the almost equal ek . Therefore, we can use the variance S2 of ek to determine
the case at that epoch. If the S2 is less than a specific determined threshold, we can consider
that the changes of ∆ρ are caused by the receiver clock. Otherwise, we can consider that
the changes of ∆ρ are caused by a real fault, such as NLOS. The S2

k can be expressed
as follows:

S2
k =

1
n− 1 ∑n

i=1

(
ei

k − ek

)2
(18)

Here, n is the number of satellites; ei
k is the KF innovation of each satellite at k epoch;

ek is the mean of all the KF innovations detected at the k epoch, and S2
k is the variance.

The distribution of the S2
k value is in Figure 4. When the value of S2

k is smaller than the
threshold (under the confidence level of 99.9%) (Gatti, 1984), which is 5.11 and 23.53 for
UAVs and ground vehicles in urban areas from a priori data, respectively, in this paper,
we can consider that these measurements of satellites are not faulty. However, when
non-zero ∆2dtRk and real faults occur simultaneously, the S2

k will become much bigger than
the threshold too. If we consider all the satellites as faulty, the satellite availability will
be degraded in a real-world situation. In order to solve this problem, assuming that N
satellites are received by the receiver at epoch k, to find the satellite which includes both
the non-zero ∆2dtRk and the real faults from those only containing non-zero ∆2dtRk , an
adaptive sliding window is designed as follows.
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1. Sort all of the ei
k (I = 1, 2 . . . N) of satellites in Set I at epoch k from the smallest (left)

to the largest (right), shown in Figure 5.
2. Use a sliding window for the smallest four ei

k and then calculate the S2
k of the

current window.
3. If the S2

k is above the threshold, we will discard the first ei
k in the window (flagged as

the fault satellite) and move one step of the window to the right side with the window
size unchanged. Then the new S2

k will be further checked with the threshold. This
process will be stopped until all ei

k have been checked or S2
k is less than the threshold.

For the former, we consider that there is no satellite that can be used to calculate the
position of the receiver at this epoch, and all of the satellites at this epoch will be
moved to Set II. For the latter, go to the next step.

4. If the S2
k is within the threshold, the satellites in the window can be used for position-

ing. Therefore, we consider them as satellites only containing non-zero ∆2dtRk . In
order to improve the positioning performance, it is preferable to use as many satellites
as possible. Then the window size (e.g., four) will be extended to the right side with
one more ei

k, which means the next innovation will be included in the window. Then
the S2

k of this new window will be checked with the threshold again. If the S2
k is still

within the threshold, we will repeat the process of step 4. If the S2
k is greater than the

threshold, as the newly added ei
k results in the big deviation of the S2

k , then all of the
ei

k on the right side of this one will be flagged as faulty satellites. The process will be
turned to step 5.

5. Finally, the satellites inside of the window will be considered as normal satellites and
those outside of the window will be flagged as faulty satellites. The faulty satellites
will then be put into Set II and the normal satellites will be put into Set I. The mean
value of the innovations for all normal satellites, ek, can be regarded as the value
of c∆2dtRk at this epoch. Once a non-zero ∆2dtRk is confirmed, we substitute ek for
c∆2dtRk in Zk for this epoch and the filtering process will be repeated. However,
for the next epoch, the ∆2dtRk . in Zk will still be set as zero initially for the filtering
process until a non-zero ∆2dtRk is detected again.
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2.5. Faulty Measurement Monitoring Algorithm for Set II

Because the vehicle is moving relatively fast in NLOS/multipath-affected urban envi-
ronments, the visibility of the satellites changes frequently. This means that newly observed
satellites may suffer from the effects of NLOS or multipath, while the satellites originally
in Set II may return to normal. Detector D is therefore created for real-time fault status
monitoring. Specifically, the satellites in Set I for a given epoch are used to calculate the
position and the receiver clock error. We then combine them with the modelled ionospheric,
tropospheric errors, the Klobuchar model and the Saastamoinen model, respectively, with
parameters from the ephemeris data, and the positions and clock errors of the satellites
in Set II to predict the pseudoranges of these satellites, respectively. The predicted pseu-
dorange and the observed pseudorange are then compared. The pseudorange prediction
equation is:

ρ̃tk = r̃ + c
(

d̃tR − dtS
)
+ Ĩρ + T̃ρ (19)

where, ρ̃tk is the predicted pseudorange, and r̃ is the distance between the satellite po-
sition and the vehicle position calculated by the satellites in Set I. d̃tR is the estimated
receiver clock error. Ĩρ and T̃ρ are the ionospheric and tropospheric errors estimated by the
models. By subtracting the observed pseudorange ρtk from the predicted pseudorange ρ̃tk ,
we obtain:

Rk = ρtk − ρ̃tk (20)

Then we define the detector D for each faulty or newly observed satellite as follows:

Dj = (Rj
k − µj)/σj (21)

where j is the satellite number; µj and σj are the a priori mean and standard deviations of
Rj

k. The |D| is then compared with the threshold T to determine whether the satellite still
has a faulty measurement or has recovered to normal. The faulty satellites remain in Set II
while the normal ones are moved to Set I.

The a priori data we used for each satellite in the simulation (open area) and real
experiment (urban) are empirical models with 0 m mean and 0.7 m standard deviations,
and 0 m mean and 4 m standard deviation normal distributions respectively. The a priori
data are obtained from previous UAV tests and ground vehicle tests.

After the normalization in (21), the distribution of the detector D can be considered
to follow a standard normal distribution. Figure 6 is an example of the distribution of the
detector D from the real UAV flight test. In general, the detection threshold T is determined
according to the 3σ principle [27]. However, in a real case, we can choose a larger value of
T based on the requirement of the system positioning accuracy. However, the minimum
value of T should be no less than the 3σ value. By using this strategy, some minor errors are
inevitable in the pseudorange measurements. Nevertheless, it is not necessary to remove
all errors completely, since where errors are small enough not to affect our positioning
results, removing those satellites so as to rely on a smaller number of satellites with poor
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geometries for positioning would risk enlarging positioning errors. For this reason, it is
critical to achieve a trade-off between the satellite number and the pseudorange quality in
the determination of the threshold. Therefore, we set T = 10, which is much bigger than
the 3σ value (i.e., 3).
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3. Simulation of Faulty Measurements in the UAV Flight Test

The simulation of faulty measurements scenarios in the UAV flight data was to test the
proposed fault detection and exclusion algorithm. The UAV flight test data was collected
in Nantou City, Taiwan, with the flight route shown in Figure 7. The raw pseudorange
measurements were collected from a dual-frequency GNSS receiver, Trimble BD 982, with a
sampling rate of 10 Hz. The UAV used in the test was an AXH-E230 from AVIX Technology
and was flown semi-automatic. It is equipped with intelligent autopilot system AJC and a
smart power control module system to perform an autonomous intelligent navigation flight
mission. The speed of the UAV was less than 10 m/s during the flight and the height was
about 60 m AGL (with the ground elevation around 120 m). The reference trajectory used in
the experiment was obtained from close range photogrammetry providing centimetre-level
positioning accuracy using the on-board VLP-16 Velodyne Lidar. Four defined fault scenarios
were added to the real trajectory: a single step error for Scenario 1 and multiple step errors
for Scenarios 2, 3 and 4. The details for the four scenarios are described in Table 1.
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Table 1. The defined scenarios.

Scenarios Fault Satellites
Numbers Duration Time (s) Number of Test Error Sources

1 Single-fault 10 100 10~50 m range error added to one satellite
with an interval of 10 m

2 dual-fault 10 100 10~50 m range error added to two satellites
with an interval of 10 m respectively

3 dual-fault 0.1 100
20 m and 50 m errors added to two satellites
respectively and 100 m c∆2dtRk added to all

satellites at one epoch

4 multi-fault 0.1 1
−60 m, −40 m, 20 m, 30 m and 60 m errors
added to 5 satellites respectively and 100 m
c∆2dtRk added to all satellites at one epoch

In Scenario 1, we conducted one hundred durations of the experiment for each value
of the range error added in the observed satellites. For every randomly chosen satellite
at each time, pseudorange errors of between 10 and 50 metres were added in a specific
time duration of 10 s. The reason for not considering errors less than 10 m is that these
would not contribute significant positioning errors in the pseudorange-based positioning
calculation. The proposed algorithm can be used for satellite quality control if less than five
satellites are observed at one epoch. Nevertheless, for the purposes of this experiment, we
only chose epochs with more than six satellites observed so as to ensure sufficient satellites
for calculating the positioning solution.

Figure 8 is an example of the fault detection results for satellite SV10. For the step
errors added in SV10 during epoch 4000–4100, the sliding window could be triggered to
detect the fault. This would move SV10 to Set II and then the detector D would be applied
to monitor the ongoing quality of SV10 in Set II. Once the faulty satellite SV10 is excluded,
the value of D will immediately drop below the threshold. Afterwards, we moved the
SV10 back to Set I, in which the pseudorange measurements were used for the positioning
calculation at that epoch. It is indicated in the results in Table 2 that the proposed algorithm
could achieve a 100% correct detection rate for pseudorange errors above 10 m. It is also
indicated that the proposed algorithm is superior to the S-RANCO based algorithm in the
correction detection rates, which are 66% for a 20 m pseudorange error and 0% for a 10 m
pseudorange error.
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Table 2. Comparison of algorithms performance with various values of error sources in Scenario 1.

Error Source (m) Number of Test Correct Detection Rate
(Proposed Method)

Correct Detection Rate
(S-RANCO Based)

10 100 100% 0%
20 100 100% 66%
30 100 100% 100%
40 100 100% 100%
50 100 100% 100%

In Scenario 2, we again conducted one hundred iterations of the experiment for each
defined fault case. For both of the randomly chosen two satellites, 10 m, 20 m, 30 m, 40 m or
50 m pseudorange errors were added in specific time epoch durations, i.e., the errors could
start from any epoch and last for 10 s during the test. Because in this scenario there were
two satellites with errors in a given epoch, we chose those time epochs where more than
six satellites were observable. The proposed algorithm is based on every single satellite
and is therefore very effective in detecting simultaneous errors in two satellites. Here
we have defined a valid successful detection as occurring only when the faults in each
of the two satellites are detected. From Table 3, it is shown that the proposed algorithm
achieved a 100% correct detection rate in the case of two satellites with simultaneous errors,
while the counterparts of the S-RANCO based algorithm are 0%, 9%, 52%, 98% and 100%
corresponding to the increasing pseudorange errors. The detailed comparison of this is
summarised in Table 4. The proposed algorithm also has the advantage of being able to
detect faults even when only four satellites are available, and it is also very sensitive to
small faults, neither of which is the case with the S-RANCO based algorithm. The only
disadvantage of the proposed algorithm is that it requires historical information or an
initialisation process.

Table 3. Comparison of algorithms performance with various values of error sources in Scenario 2.

Error Source (m) Number of Test Correct Detection Rate
(Proposed Method)

Correct Detection Rate
(S-RANCO Based)

10 100 100% 0%
20 100 100% 9%
30 100 100% 52%
40 100 100% 98%
50 100 100% 100%

Table 4. Comparison between the proposed method and S-RANCO based method.

Proposed Method S-RANCO Based Method

Historical information required Yes No
Simultaneous multiple faults detection Yes Yes
The minimum number of SVs required

for fault detection ≥4 ≥5

The minimum number of SVs required
for fault exclusion ≥4 ≥6

Sensitive to small faults Yes No

In Scenario 3, in order to test the performance of the proposed algorithm under the
condition where various multipath/NLOS errors mixed with non-zero ∆2dtRk , the 20 m
and 50 m errors were added to both of the randomly chosen two satellites, while 100 m
c∆2dtRk was added to all the available satellites at a specific epoch. We conducted one
hundred iterations of this experiment for defined fault cases at epochs where more than six
satellites were observable. The valid successful detection was the same as Scenario 2. In
Table 5, it is presented that the proposed algorithm achieved 100% correct detection for
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the case of two satellites with simultaneous errors and a non-zero ∆2dtRk . Table 6 shows
the details of how our sliding window worked as an experiment. The value of S2

k is very
small when the window does not contain the ei

k with both errors and a non-zero ∆2dtRk ,
but it would increase a hundredfold when the window includes an ei

k of a faulty satellite.
Therefore, the proposed algorithm is able to detect the satellite with only a non-zero ∆2dtRk

and the satellite with both a fault and a non-zero ∆2dtRk .

Table 5. Comparison of algorithms performance with various values of error sources in Scenario 3.

Error Source (m) Number of Test Correct Detection Rate
(Proposed Method)

Correct Detection Rate
(S-RANCO based)

20 and 50 100 100% 100%

Table 6. An example of windowing results in Scenario 3.

Satellite ID 20 25 15 32 10 24 12 21

c∆2dtRk (m) 100 100 100 100 100 100 100 100

Step error (m) 0 0 0 0 0 0 20 50

ek (after sorting) 99.43 99.46 99.63 99.85 99.92 101.11 119.38 149.35

S2

0.04 / / / /

0.05 / / /

0.39 / /

54.55 /

319.01

Scenario 4 was designed to evaluate the proposed algorithm under the condition
where the normal satellites were less than 4. Errors of −60 m, −40 m, 20 m, 30 m and 60 m
were added to five satellites, respectively, and a 100 m c∆2dtRk was added in all satellites
received at this epoch. Table 7 depicts an example of the windowing process. It is clear
that the value of S2

k for each of the four satellites is above the threshold, and thus cannot be
used for positioning. In this scenario, the proposed algorithm can still be effective, but the
positioning cannot be calculated due to insufficient normal satellites at the epoch.

Table 7. An example of windowing results in Scenario 4.

Satellite ID 12 15 32 10 24 20 21 25

c∆2dtRk (m) 150 150 150 150 150 150 150 150

Step error (m) −60 −40 0 0 0 20 30 60

ek (after sorting) 89.38 109.63 149.85 149.92 151.11 169.43 179.35 209.46

S2

914.28 / / / /

/ 413.66 / / /

/ / 91.87 / /

/ / / 206.65 /

/ / / / 595.31

In order to further investigate the effectiveness of the proposed algorithm for the
final positioning results, we calculated the positioning solutions for the epochs with faulty
satellites and compared them with the results of different fault detection and exclusion
methods, which are the S-RANCO and proposed algorithms. The Root Mean Square Error
(RMSE) was used to evaluate the positioning results with these FDE algorithms applied one
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hundred times. Table 8 shows the positioning results with and without these algorithms
in Scenario 1. It is indicated that the 3D position accuracy RMSE was 4.47 m with the
proposed algorithm applied, while without the FDE, it was 13.79 m, 24.15 m, 34.15 m,
45.00 m and 55.44 m for the single satellite with faults of 10 m, 20 m, 30 m, 40 m and
50 m. The results of the S-RANCO based method were not as good as the results of the
proposed method. The details are shown in Table 8. The positioning results with and
without FDE algorithms in Scenario 2 are shown in Table 9. It is indicated that the 3D
positioning accuracy was 10.79 m after the proposed FDE was applied, while it varied
from 27.94 m to 126.52 m with the various magnitude of errors added in the simulation in
Scenario 2. The results of the remaining method are shown in Table 9. Table 10 indicates
the 3D positioning accuracy with FDE was 2.70 m in Scenario 3, exhibiting an improvement
of 93.6% over the positioning results without FDE.

Table 8. The RMSE (m) of positioning results for Scenario 1.

Single Step Error (m) 10 20 30 40 50

East
Without FDE 2.31 4.21 6.10 8.00 9.90

S-RANCO 2.31 1.60 0.61 0.61 0.61
Proposed method 0.61 0.61 0.61 0.61 0.61

North
Without FDE 1.19 3.48 5.78 8.08 10.38

S-RANCO 1.19 1.81 1.04 1.04 1.04
Proposed method 1.04 1.04 1.04 1.04 1.04

Up
Without FDE 13.54 23.53 33.53 43.54 53.55

S-RANCO 13.54 11.96 4.31 4.31 4.31
Proposed method 4.31 4.31 4.31 4.31 4.31

Horizontal
Without FDE 2.60 5.46 8.40 11.37 14.35

S-RANCO 2.60 2.42 1.20 1.20 1.20
Proposed method 1.20 1.20 1.20 1.20 1.20

3D
Without FDE 13.79 24.15 34.56 45.00 55.44

S-RANCO 13.79 12.20 4.47 4.47 4.47
Proposed method 4.47 4.47 4.47 4.47 4.47

Table 9. The RMSE (m) of positioning results for Scenario 2.

Double Step Error (m) 10 20 30 40 50

East
Without FDE 1.52 2.60 3.69 4.78 5.88

S-RANCO 1.52 2.06 2.08 0.79 0.77
Proposed method 0.77 0.77 0.77 0.77 0.77

North
Without FDE 3.79 8.71 13.63 18.55 23.47

S-RANCO 3.79 8.53 11.11 1.65 0.58
Proposed method 0.58 0.58 0.58 0.58 0.58

Up
Without FDE 27.64 51.76 75.90 100.04 124.19

S-RANCO 27.64 50.40 55.85 13.71 10.74
Proposed method 10.74 10.74 10.74 10.74 10.74

Horizontal
Without FDE 4.09 9.09 14.12 19.15 24.19

S-RANCO 4.09 8.78 11.30 1.83 0.96
Proposed method 0.96 0.96 0.96 0.96 0.96

3D
Without FDE 27.94 52.56 77.20 101.86 126.52

S-RANCO 27.94 51.16 56.98 13.83 10.79
Proposed method 10.79 10.79 10.79 10.79 10.79
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Table 10. The RMSE (m) of positioning results for Scenario 3.

Step Error (20 and
50 m) East North Up Horizontal 3D

Without FDE 11.52 18.66 36.00 21.93 42.15
S-RANCO 0.19 2.02 1.78 2.03 2.70

Proposed Method 0.19 2.02 1.78 2.03 2.70

4. Ground Vehicle Test in Deep Urban Environments

The real field test with a ground vehicle was used to further validate the proposed
algorithm in the simultaneous multi-fault environments, i.e., the deep urban environment.
A ground vehicle with an onboard dual-frequency GNSS receiver, Pwrpak E1, with a
sampling rate of 1 Hz, was conducted to collect the raw GNSS data for around half
an hour in Kaohsiung City, Taiwan. Although the dual-frequency GNSS receiver was
used for the data collection, only the single frequency (i.e., L1) measurement data were
used for the positioning. The reference trajectory of the vehicle position used in the
experiment was post-processed with the commercial software NovAtel Inertial Explorer
from the onboard real-time kinematic (RTK) GNSS and a navigation-grade IMU (RQH)
integration. The positioning performance using the proposed FDE algorithm on the
pseudorange measurements from the collected raw GNSS data was then evaluated with
the reference trajectory.

The test trajectory is illustrated in Figure 9 and the vehicle velocity ranges between 0
and 30 m/s. The positioning accuracy performance using the proposed algorithm is shown
in Figure 10. The numerical analysis of the accuracy in terms of RMSE is shown in Table 11.
As we will never know the “real” fault of the received measurements, the final positioning
results were analyzed to evaluate the performance of proposed FDE algorithm.
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Table 11. Positioning accuracy results from the urban test.

RMSE (m) Traditional Singe
Point Positioning

S-RANCO Based
GNSS Positioning

Algorithm
Improvement (%)

Proposed FDE Based
GNSS Positioning

Algorithm

Improvement
(%)

East 8.406 7.621 9.34% 5.845 30.47
North 6.375 6.996 −9.74% 5.883 7.72

Up 21.906 20.577 6.07% 15.938 27.24
Horizontal 10.550 10.345 1.94% 8.293 21.39

3D 24.314 23.031 5.28% 17.967 26.10

The proposed algorithm demonstrates the effectiveness of the positioning accuracy
improvement in urban areas. From Table 11, it can be seen that the improvement in the
positioning accuracy from the FDE based GNSS positioning algorithm is 30.47%, 7.72% and
27.24% in East, North and Up directions when compared with that from traditional single
point positioning. The horizontal and 3D positioning accuracy has been improved to 8.3 m
and 18.0 m from 10.6 m and 24.3 m, respectively, with improvements of about 21% and
26% using the proposed FDE algorithm. In contrast, the S-RANCO based algorithm only
shows limited capability in improving the performance of GNSS positioning results, with
only 1.9% and 5.3% improvements in horizontal and 3D, respectively. What is worse, the
positioning error enlarges by 9.7% in a North direction. It is indicated from Figure 10 that
for the epochs around 300 s, the proposed algorithm can even provide an improvement of
up to about 80% in both horizontal and height positioning results, while the S-RANCO
based algorithm cannot acquire such achievement. The overall improvement of about
26% is because the NLOS does not exist at each epoch. Our algorithm cannot improve the
positioning accuracy of the epochs without NLOS, therefore the improvement of partial
epochs would be reduced by using the whole epochs to calculate the positioning accuracy.

5. Conclusions

We have proposed a new faulty GNSS measurement detection and exclusion algorithm
for vehicle positioning. The simulation test with various satellite pseudorange errors
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demonstrates the effectiveness of the proposed algorithm, with a fault detection rate of
100% for the scenarios of single and multi-satellite measurement faults. It is demonstrated
that four satellites are enough for the proposed algorithm to be used for fault detection,
which is very useful in urban navigation. The horizontal positioning RMSE has been
improved to 1.2 m, 0.96 m, and 2.03 m with the proposed algorithm in Scenarios 1, 2 and 3,
respectively. The corresponding 3D RMSE is 4.47 m, 10.79 m, and 2.70 m. This compares
to accuracies in the tens of metres (horizontal) and more than 100 metres (3D) based on
the pseudorange errors introduced in the satellites. The results from a real deep urban
test with a ground vehicle show that the proposed algorithm provideds a horizontal and
3D positioning RMSE of 8.1 m and 17.5 m using only the single frequency pseudorange
measurements. The proposed algorithm has both horizontal and 3D improvements of
about 21% and 26% compared to the traditional single point positioning method.

The main issue with the proposed algorithm is that an initialisation is required. In
addition, as the historical information from the initialisation is required to generate the test
statistics, loss of lock during the test will affect the performance of the algorithm. A task for
future research, therefore, is to design a more robust initialisation scheme that integrates
with the IMU for operations in urban environments.
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