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Abstract: 3D mesh denoising plays an important role in 3D model pre-processing and repair. A
fundamental challenge in the mesh denoising process is to accurately extract features from the noise
and to preserve and restore the scene structure features of the model. In this paper, we propose
a novel feature-preserving mesh denoising method, which was based on robust guidance normal
estimation, accurate feature point extraction and an anisotropic vertex denoising strategy. The
methodology of the proposed approach is as follows: (1) The dual weight function that takes into
account the angle characteristics is used to estimate the guidance normals of the surface, which
improved the reliability of the joint bilateral filtering algorithm and avoids losing the corner structures;
(2) The filtered facet normal is used to classify the feature points based on the normal voting tensor
(NVT) method, which raised the accuracy and integrity of feature classification for the noisy model;
(3) The anisotropic vertex update strategy is used in triangular mesh denoising: updating the non-
feature points with isotropic neighborhood normals, which effectively suppressed the sharp edges
from being smoothed; updating the feature points based on local geometric constraints, which
preserved and restored the features while avoided sharp pseudo features. The detailed quantitative
and qualitative analyses conducted on synthetic and real data show that our method can remove
the noise of various mesh models and retain or restore the edge and corner features of the model
without generating pseudo features.

Keywords: mesh denoising; anisotropy; normal voting tensor; feature classification; facet normal
filtering

1. Introduction

The 3D mesh model is widely used in 3D space measurement and positioning technol-
ogy, augmented reality (AR) and virtual reality (VR), auxiliary medical analysis, industrial
measurement, cultural heritage protection or restoration, etc. [1]. However, due to the
influence of the measurement environment, the limitation of data acquisition accuracy,
the 3D mesh data inevitably has different degrees of noise, which seriously affects the
surface accuracy of reconstruction. This poses a huge obstacle to the practical application of
the 3D mesh model, and it must be preprocessed by appropriate mesh denoising methods.
Therefore, we directly focus on the accuracy and integrity of feature recognition and feature
recovery in the process of denoising in this paper.

3D mesh denoising seeks to eliminate the noise on the surface, which has recently
become a major focus of 3D mesh pre-processing method research. The challenging nature
of mesh denoising is recovering the structural features of the surface without introducing
false features into the smooth area when evolving a noisy mesh to its unknown noise-free
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counterpart [2]. Many mesh denoising attempts directly filter vertex positions [3] or facet
normals followed by updating vertex positions [4]. However, vertex positions and surface
normals are both sensitive to noise, and they even become unreliable when the noise level
increases in denoising [2]. Recently, the GMNF method [5] was proposed to overcome
the noise sensitivity of facet normals. Nevertheless, it loses corners during the denoising
process, since the estimation of the guiding normals did not take sufficient account of the
vicinity of corners. Moreover, a local patch employed for normal estimation will exhibit
artifact pseudofeatures. These denoising methods make the indiscriminate application of
filtering and denoising, which makes structural features oversmoothed or produce artifacts
in the flat transition area in denoising results. More recently, with the development of
learning-based methodology, data-driven methods have been used in 3D mesh model
denoising [6], which do not need manual input to extract features. However, these methods
require paired data (noisy meshes with ground truths) for training, and the reliability
heavily depends on the initial training data set.

Feature points are an important representation of the geometric structure attributes of
3D models; they constitute the contour features of 3D models and highlight the boundary
and geometric structure of 3D scenes, which are the key basis for retaining and restoring
structural features in the process of 3D model mesh denoising. To better retain sharp
features, researchers began to explore feature-based denoising methods [7–9], they first
classify feature vertices and then apply different denoising strategies to update the vertex
position. However, due to the noise sensitivity of surface normals, the detected features
may suffer from information loss or confusion.

To address these issues, we propose building a fully automated pipeline that removes
the noise on the surface of a 3D model while preserving its structural features. Our pipeline
consists of three major modules, namely normal filtering, feature point classification
and vertex denoising. Our method first uses the guidance normal that considers the
angle characteristics to carry out joint bilateral filtering and filter the surface normal.
Subsequently, to accurately classify the non-feature points, feature edge points and feature
corner points, we adopt filtered face normals to calculate the normal vote tensor matrix
of vertices and use its eigenvalues to classify the vertices. Then, we apply an isotropic
neighborhood to update the non-feature points to denoise the non-characteristic regions
and to take into account the geometric corrugation lines. Finally, we utilize the local
support plane constraint of the feature points and the dihedral angle constraint of the
local sharp edges to denoise the feature region. Our method enables 3D mesh models
to obtain and restore geometric features and avoid producing sharp false features when
denoising. The experimental results on different data types, including CAD data, 3D scan
data and 3D mesh data reconstructed from oblique images show that our method achieves
significant and consistent improvement compared to all baseline methods by considering
scene structure characteristics. We summarize the contributions of the proposed method
as follows:

(1) A facet normal filtering method considering corner features is proposed, which
improves the robustness of the filtering algorithm by improving the guided mesh normal
filtering (GMNF) method. The experiments show that the proposed method can accurately
recover corner features.

(2) An accurate classification method for noise points was proposed based on the
normal voting tensor (NVT) of the vertex using filtered facet normals from noise mod-
els. It can accurately classify the feature points and non-feature points in the model to
avoid preprocessing the model and reduce the loss of detailed features when classifying
noisy vertices.

(3) An anisotropic stepwise vertex denoising method is proposed. Compared with
the traditional method, different strategies are used to design the vertex update strategy in
the non-feature area and the feature area, and the vertex position is updated step by step.
The local dihedral angle constraint is used to avoid smoothing and increase the sharpening
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of the local sharp edges during the denoising iterations. Therefore, the denoised model
maintains structural characteristics and reduces pseudofeatures as much as possible.

2. Literature Review

In this section, we briefly review the related work on 3D mesh denoising. We present
the isotropic and anisotropic 3D model denoising methods without going into detail,
aiming to summarize the current classic and commonly used methods.

2.1. Isotropic Mesh Filtering

Isotropic filtering methods do not consider the surface features or the directions of the
features, which will cause the model to shrink, blur or lose characteristics when filtering
noise. The early Laplacian-based method [10,11] is simple and efficient; the Laplacian
denoising method recursively moves each vertex of the mesh by a displacement equal to a
positive scale factor times the average of the neighboring vertices. However, there is an
inevitable mesh shrinkage problem. Taubin [12] sampled a surface signal low-pass filter
algorithm, which can remove noise while preserving the volume to a certain extent, reduc-
ing model shrinkage. The mean curvature flow [13] is used to process irregular surfaces,
and the method combining Laplace smooth flow and discrete mean curvature flow [14]
aims to reduce oversmoothing. Spectral methods for mesh processing and analysis [15]
use eigenvalues, eigenvectors, or eigenspace projections to separate 3D mesh data from
noise. The main disadvantage of these isotropic methods is the lack of consideration of the
geometric characteristics of the model; the characteristics of the model will be blurred or
lost when filtering noise. In our work, we designed an anisotropic denoising scheme to
better maintain the characteristics of the models.

2.2. Anisotropic Mesh Filtering

Since the method of isotropic model denoising did not consider the characteristics
of the model very well, later researchers studied many anisotropic denoising methods,
which considered the characteristics of the model, and the focus was on how to preserve
the model while denoising the geometric features.

Optimization-based methods. This kind of method formulates denoising as a vertex
optimization problem and seeks a denoised mesh that can best fit the input mesh and a set
of geometric priors of the ground-truth geometry [16]. However, these methods rely on
the geometric priors of the noise distribution. Liu et al. [17] proposed a noniterative global
optimization operator, which can maintain the characteristics of the original mesh without
shrinkage or deformation. Based on the sparsity optimization ideas that have prevailed
in image processing in recent years, X. Wu et al. [18] presented a variational algorithm
for feature-preserving mesh denoising. However, it produces a severe staircase effect,
especially for real meshes. The methods of [18,19] introduce step effects or prominent
features in flat areas; the method of Liu et al. [20] avoids this problem but smooths out
sharp features when the noise level increases. Zhong et al. [21] presented a normal filtering
model with three sparsity terms that can restore finer features. We differ in our approach
as we consider the problem of denoising as feature classification and preservation.

Regularization-based methods. Regularizers are usually used to address ill-posed
problems. 3D mesh model denoising is an ill-posed problem in many cases due to sensing
limitations and non-uniform sampling operations. Ohtake et al. [22] combined Laplacian
flow with a function of the mean curvature to increase mesh regularity and reduce over-
smoothing, but operations that do not distinguish between all vertices will lose features.
The L0 [23] algorithm introduces a discrete differential edge operator and uses L0 mini-
mization to remove noise. Wang et al. [24] presented an approach for decoupling noise
and features on 3D shapes, using the proposed analysis compressed sensing optimization
algorithm to progressively decompose features and noise. In our work, we classified
feature vertices based on normal voting tensor using filtered normal.
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Filter-based denoising methods. This is currently a very common denoising method.
The bilateral filter method considers the spatial distance information and the similarity
of the normals to achieve the purpose of feature preservation and denoising. A bilateral
filter was first used for image filtering [25,26] owing to the edge-preserving property of the
bilateral filter, and it was later applied to 3D model denoising. The BM method [3] uses a
bilateral filter to directly calculate the distance that the vertex moves along its normal and
iteratively filters the noise gradually. The filtering speed is fast, but it easily loses sharp
structural features. The NoIter method [27] uses a bilateral filter to directly calculate the
coordinates of the vertices. Since the normal of the surface can express the local surface
orientation and the geometric characteristics to a large extent, many methods based on
filtering normals have been proposed. They are usually divided into two steps: filtering
the normal based on a bilateral filter and then updating the vertex position [4,5,28–30].
The principle of the GMNF method [5] is to use the consistency function to find the patch
with the most consistent normal in the neighboring triangles of the face of interest and
obtain the average unit normal of this patch as guidance for the face of interest. However,
it may introduce pseudofeatures, and its robustness to the retention and restoration of
corner features is not strong. To address this problem, Li et al. [31] improved the method:
they proposed a corner-aware neighborhood (CAN) scheme, using vertex-based CANs,
face-based CANs and edge-based CANs to select the patch of the face of interest, but this
method makes it more complicated to choose a patch. We differ in our approach as we
estimate the guide normal using the dual weight function. The RoFi method [32] filters
normals by bilateral filtering and uses Tukey’s biweight function as a similarity function in
bilateral weighting, which is a robust estimator that stops diffusion at sharp edges to retain
features and effectively removes noise from flat regions. These filtering-based methods
can preserve most of the clear features. However, due to the insufficient consideration of
structural features, it may produce false features. The authors in [33] proposed a highly
efficient approach for feature-preserving mesh denoising by a locally fast algorithm for
initial vertex filtering and an unstandardized bilateral filter. Our goal is different since
we focus on feature classification and preservation more effectively. The authors in [34]
introduced a two-stage scheme to construct adaptive consistent neighborhoods for guided
normal filtering. The authors in [2] proposed further choosing a more consistent sub-patch
to estimate the guidance normal. The authors in [35] developed a novel patch normal
co-filtering method from the nonlocal similarity prior, the guidance normal obtained
from the low-rank matrix recovery. We differ in our approach as we consider corner
features when estimating the guidance normals and apply an anisotropic stepwise vertex
denoising method.

Learning-based methods. Sometimes also called data-driven methods, deep neural
networks are usually used to process 3D (irregular) models. Wang et al. [16] suggested
a data-driven method for mesh denoising with cascaded nonlinear regression functions.
Similarly, Wang et al. [36] proposed a novel two-step data-driven mesh denoising approach.
Zhao et al. [37] designed a deep convolutional neural network (CNN) to replace guidance
normal generation and guidance filtering in GMNF [5]. Arvanitis et al. [38] extended this
method to 3D meshes, making the transition from face normals to pixels, and applied it
in 3D mesh denoising, but it may be sensitive to different noise patterns. X. Li et al. [6]
presented a deep normal filtering network (DNF-Net) for mesh denoising, which does
not need manual input to extract features. The authors in [39] proposed the use of a fully
end-to-end learning strategy based on graph convolutions, which investigated the ability
to learn directly from the normal information. When only using normal data, its robustness
remains to be tested. However, the main limitation is that the reconstruction accuracy of
important details heavily depends on whether they were initially included in the training
set. It is difficult to consistently apply noisy models generated by different levels of noise
and different sampling devices.

Feature-based methods. Common methods for feature recognition or the extraction of
meshes represented by vertices, edges and faces include curvature-based methods [40,41],
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methods based on topological connections or geometric features [2], learning-based meth-
ods [42] and methods based on normal tensor voting [43,44]. The method based on the
NVT easily classifies edge feature points and corner feature points, and it has been widely
used in mesh denoising technology. However, this method is more sensitive to noise, which
makes it very unreliable for the feature classification of noisy models. To solve this problem,
the ENVT method [45] calculates the voting tensor, uses the binary optimization quantum
element method (QEM) of eigenvalues to classify the feature points, uses the voting tensor
feature vector to filter the surface normals anisotropically, and finally updates the vertices
to adapt to the filtered face normals. The CPD method [9] is improved on the basis of the
ENVT method [45]. Because vertex normals are very sensitive to noise, it is challenging
to deal with noisy models. Wei et al. [7,8] first used the multiscale normal tensor voting
method to classify the feature vertices and used the segmented MLS method to update
the vertex position. Similarly, [46] first smooths the vertices and then classifies the feature
points. These feature classification methods based on the NVT can obtain more accurate
feature points after the initial denoising. Unfortunately, some details of the mesh model
may be lost after the initial denoising, resulting in the incomplete preservation of the final
model features. This classification scheme has difficulty identifying structural features
from noise, and its reliability decreases with increasing model noise intensity.

2.3. Conclusions of the Literature Review

In summary, most of the current algorithms can remove the noise on the surface of the
model, but the structure retention and restoration effect are still not satisfactory. The feature
classification method based on NVT is very sensitive to the disturbance of the normal,
which makes it impossible to classify feature points from the noisy model accurately. Our
goal was to classify feature points accurately, preserve and restore the scene structure of the
model when denoising, and avoid introducing pseudo features into the denoised model.
More specifically, in this paper, we first apply joint bilateral filtering to the face normals,
using the robust guidance normals; afterwards, classifying the feature points accurately
by using the filtered facet normal; finally, removing noise using the anisotropic vertex
denoising strategy with a local geometric constraint to retain the scene structure features of
the model and avoid pseudo features.

3. Methodology

We proposed a 3D mesh model denoising algorithm based on feature point classifi-
cation and anisotropic vertex denoising considering scene structure characteristics. The
flowchart of our algorithm is illustrated in Figure 1. The symbols used in the article are
shown in Table 1.
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Table 1. Summary of glossary.

Symbols Glossary

fi Face i, fi = {vi0, vi1, vi2}
Ai Area of face i
ci Centroid of face i
vi Vertex i
v(t+1)

i New coordinate of vertex i in the tth iteration
ni Normal vector for face i
n′fi

Filtered normal of face i for the first time in each iteration
n′′fi

Filtered normal of face i for the second time in each iteration
gi Guidedance normal vector for face i
Pm

fi
The mth patch of the face fi

Tij Dual weight function
NFfi

Set of neighboring faces of face i
NFvi Set of neighboring faces of vertex i
NFisot

vi
Set of isotropic neighbor faces of vertex i

Tvi Tensor voting matrix based on the normals at vertex i
V f j

Normal voting component of the face f j
λij Eigenvalue of Tvi , j = 1, 2, 3
êij Unit eigenvector of Tvi , j = 1, 2, 3
τ Feature classification threshold
Vf Set of non-feature vertices
Ve Set of shape edge vertices
Vc Set of corner vertices
ρ Normal angle threshold
Cij The jth supported neighborhood of feature point vi, j = 1, 2, 3
pj The jth supported plane of feature point
Pvi Set of supported planes of feature point vi
βi Dihedral angle constraint threshold, i = 1, 2
αi Coefficients of the constraint terms, i = 1, 2, α1 + α2 = 1
Ks The spatial kernel
Kr The range kernel
σs Variance parameter of Ks
σr Variance parameter of Kr

Nmean
Average facet normal difference between the denoised mesh and the
ground-truth mesh

Dmax
Maximum distance from the resulting mesh vertices to the ground-truth
mesh surface

Dmean
Average distance from the resulting mesh vertices to the ground-truth
mesh surface

n f ilter Number of iteration filtering facet normals, total number of iterations
nupdate Number of times the vertices are updated in each iteration

3.1. Facet Normal Filtering

In this section, we introduce a facet normal filtering method considering corner features.

3.1.1. Guidance Normal Considering Corner Features

Given a target noisy 3D mesh model, our goal is to filter facet normals using estimated
guidance normals, similarly to the GMNF method [5]. For the mth patch Pm

fi
of the face of

interest fi, we measured the consistency of its normals using the function:

H(Pm
fi
) = D(Pm

fi
) ∗ R(Pm

fi
), (1)

where D(Pm
fi
) measures the maximum difference between two face normals from the patch:

D
(

Pm
f i

)
= max

f j , fk∈Pm
fi

∥∥nj − nk
∥∥ (2)
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and R(Pm
f i ) is a relative measure of edge saliency in the patch:

R
(

Pm
fi

)
=

maxej∈Em ϕ
(
ej
)

ε + ∑ej∈Em ϕ
(
ej
) , (3)

where ε is a small positive value used to avoid division by zero, Em is a set of mesh edges
with both incident faces contained in the mth patch Pm

f i of face fi, and ϕ(ej) measures the
saliency of an edge ej using the difference between the normals of the two incident faces
f j1, f j2:

ϕ
(
ej
)
=
∥∥nj1 − nj2

∥∥. (4)

Note that a small value of ϕ(ej) indicates similar face normals within the patch, while
a small value of R(Pm

fi
) indicates similar saliency among all interior edges of the patch.

However, after selecting a patch according to the consistency measuresH, for a face of
interest occupying the entire angular position, the GMNF method [5] cannot obtain a suitable
patch, and its calculated guidance normal will lead to incorrect guidance. For a convenient
explanation, we take the clean model in Figure 2 as an example, where red is the face of
interest, blue is the center face of the corresponding patch, and the center face of the patch in
Figure 2a is the current face of interest. Although the GMNF method [5] can choose the patch
shown in Figure 2a,c,f–h or Figure 2i, this is possible because according to Equation (7) of
GMNF [5], the consistency measures H of these patches are the smallest and are equal.
However, regardless of which of these patches is selected, the calculated guidance normal
cannot be used as the correct guide. This is because according to Equation (11) of GMNF [5],
the guidance normal is the average normal of all faces in the patch according to the area
weighting. The weights of all normals in the patch are almost the same (including normals
that have a larger angle with the face of interest), which will cause incorrect guidance and
eventually lead to the loss of corner features, as shown in Figure 3c.

(a)H = 0.282843 (b)H = 0.471405 (c)H = 0.282843 (d)H = 0.471405 (e)H = 0.471405

(f)H = 0.282843 (g)H = 0.282843 (h)H = 0.282843 (i)H = 0.471405 (j)H = 0.282843

(k) We use the displayed facet normals in the patch to estimate the guidance normal.

Figure 2. Patches construction and guidance normal calculation of the face of interest (red) located at the corner position.
(a–j): The candidate patches of the GMNF method [5] and the consistency measure H. (k): We calculate the guidance
normal in the selected patch (assumed to be (c)) using our dual weight function.

To address this problem, we propose using a dual weight function to calculate the
guidance normal of the selected patch, as shown in Equation (5). For the situation in
Figure 2, when the face of interest selects a patch that crosses the fluted line or the corner
feature, the guidance normal calculated by Equation (5) can filter out the internal normals
that have a large deviation from the face of interest. Through the filtering effect of the
parameter ρ, regardless of which patch with the most consistent internal normal is selected,
we can obtain the correct guidance normal. For example, if the patch shown in Figure 2c
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is selected, we only need to use the isotropic normal shown in Figure 2k to calculate the
guidance normal, which prevents the interest normal from being guided incorrectly. On the
other hand, for areas that are flat or less variable, the normals inside the patch are more
consistent and closer to the normal of interest, and the guidance normal calculated by
Equation (5) is the same as that of Equation (11) of the GMNF method [5]. Therefore,
the proposed dual weight function can adaptively obtain stronger and more accurate
guidance normals.

The guidance normal gm corresponding to the mth patch of the triangle of interest is:

gm =
∑ f j∈Pm

fi
Tij Ajnj∥∥∥∥∑ f j∈Pm

fi
Tij Ajnj

∥∥∥∥ (5)

Tij is a dual weight function. When the angle between the face normal of interest and
the face normal nj is within the angle threshold ρ, Tij is set to 1; otherwise, it is set to 0.
Here, ρ ∈ [0, 1] is a threshold determined by the user, which is used to control averaging
and has the default value ρ = 0.5. The dual weight function makes the guidance normal
more robust and avoids corner feature loss, as shown in Figure 3e. When the face of interest
fi chooses the mth patch, the guidance normal of the patch is regarded as the guidance
normal of the face of interest; that is, gi = gm:

Tij =

{
1 if nj · ni ≥ ρ

0 if nj · ni < ρ
(6)

We compare the improved results with the GMNF method [5]. To conduct ablation
studies, the comparative experiment in Figure 3 only differs in the method of calculating the
guidance normal. The method of filtering the surface normal and updating the vertices is
the same, and the number of iterations and other parameters are the same. In Figure 3 shows
the CAD model with noise, Figure 3b shows the result of GMNF [5], and Figure 3c shows
the result using the isotropic neighborhood to calculate the guidance normal. Figure 3d
shows the denoising ultimately obtained by calculating the adaptive isotropic guidance
normal. Figure 3e shows the denoising of gi calculated using our dual weight function
Equation (6). The average normal angular differences between (b)–(e) and (a) are 21.0551◦,
0.691454◦, 2.1604◦, and 0.652975◦, respectively. It is clear that our method can avoid losing
corner features in the process of denoising, and the result is closer to the original model. If
directly using the isotropic neighborhood of the faces to calculate the guidance normals,
for the non-flute corner area, the calculation of the guidance normal will not consider the
larger neighborhood; it might be very close to the face normal of interest, and the facet
normals in the non-featured areas will have a lower degree of filtering and a slower filtering
speed, which will make it difficult to quickly denoise a flat or less variable area.

(a) Original (b) Noisy (c) GMNF [5] (d) Isotropic gi (e) Ours

Figure 3. Comparison of denoising results using different guidance normals.

3.1.2. Joint Bilateral Normal Filtering

We perform the normal face filtering process using a joint bilateral filter similar to
GMNF [5], which is a nonlinear filter, and it computes the output using the Gaussian
kernels Ks and the range kernel Kr of the input as follows:
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n′fi
=

1
W fi

∑
f j∈NFfi

AjKs
(
ci, cj

)
Kr
(
gi, gj

)
nj, (7)

where gi is a guidance normal of face fi, Aj is the area of f j, cj is the centroid of f j,
W fi

= ∑ f j∈NFfi
AjKs

(
ci, cj

)
Kr
(
gi, gj

)
, and NFfi

is the set of faces in a neighborhood of fi,
which can be defined in a topological neighborhood or geometric neighborhood with
reference to GMNF [5]. For meshes with highly non-uniform sampling, the size of the
faces is not uniformly distributed. It may happen that the geometric neighbors of some
faces are empty or that there are very few geometric neighbors. In this case, the geometric
neighbors cannot fully express the geometric shape of the current triangle. If the number of
geometric neighborhoods NFfi

6 3, then NFfi
takes the 1-ring topological neighborhood.

The Gaussian kernel Ks and the range kernel Kr are Gaussian functions evaluated on the
basis of the Euclidean distance:

KS
(
ci, cj

)
= exp

(
−
∥∥ci − cj

∥∥2

2σ2
s

)

Kr
(
gi, gj

)
= exp

(
−
∥∥gi − gj

∥∥2

2σ2
r

)
,

(8)

where σs and σr are variance parameters. The kernel values quickly fall off with increasing
distance values.

3.2. Feature Point Classification

The accuracy of the feature point classification method based on the normal voting
tensor depends on the reliability of the normals participating in the voting in the model.
In order to reduce the unreliability caused by noise fluctuations, effectively improving
the accuracy of feature classification, we calculate the normal voting tensor matrix of the
vertices using the filtered facet normals in the previous step.

3.2.1. Feature Vertex Detection

NFvi is the set of faces in a neighborhood of the vertex vi. Consider vi and its nearest
triangles f j, f j ∈ NFvi ; Tvi is defined as a tensor voting matrix based on the normals at
vertex vi of the triangular mesh [43], V f j

is the normal voting component of the face f j,
and the unit filtered normal of f j is n′f j

= (x, y, z):

V f j
= n′f j

n′Tf j
=

 x2 xy xz
xy y2 yz
xz yz z2

 (9)

The normal voting tensor matrix Tvi of a vertex vi on a mesh can be defined by the
unit filtered normals of its neighbor triangle f j, f j ∈ NFvi :

Tvi = ∑
f j∈NFvi

µ f j
V f j

= ∑
f j∈NFvi

µ f j
n′f j

n′Tf j
, (10)

where µ f j
is the weight of triangle f j [8]:

µ f j
=

A
(

f j
)

A(NFvi )maxm

· exp

− m ·
∥∥∥c f j
− vi

∥∥∥
maxm

(∥∥∥c f − vi

∥∥∥)
, (11)

where m is the number of facet rings around the vertex vi, A(NFvi )max represents the maxi-
mum area of all facet areas A

(
f j
)

from the vertex’s mth-ring facets, c f j
is the centroid of f j,

and max
∥∥∥c f − vi

∥∥∥ denotes the maximum distance between the barycenters of the mth-ring
facets and the vertex vi. Facets with larger areas, closer topological connections, or smaller
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distances to the central vertex contribute more to tensor voting. Tvi is a symmetric positive
semidefinite and can be represented as

Tvi = λi1êi1êT
i1 + λi2êi2êT

i2 + λi3êi3êT
i3

= (λi1 − λi2)êi1êT
i1 + (λi2 − λi3)

(
êi2êT

i2 + êi3êT
i3

)
+ λi3

(
êi1êT

i1 + êi2êT
i2 +êi3êT

i3

) (12)

where λi1 ≥ λi2 ≥ λi3 ≥ 0 are its eigenvalues and êi1, êi2, êi3 are the corresponding unit
eigenvectors. According to the eigenvalues [47], the vertices can be classified into the face
type, sharp-edge type, and corner type. Both sharp-edge-type and corner-type vertices
are called feature vertices. The voting process produces a dense tensor map, which is
then decomposed into two dense vector maps. In 3D, each voxel of these maps has a
2-tuple (s, ê), where s is a scalar indicating feature intensity and ê is a unit vector indicating
direction [43].

Face (Vf ): λi1 ≥ τ, λi3 ≤ λi2 ≤ τ, s = λi1 − λi2, ê = êi1 indicates the normal direction.
Sharp edge (Ve): λi1 ≥ λi2 ≥ τ, and λi3 ≤ τ, s = λi2 − λi3, ê = êi3 indicates the

tangent direction.
Corner (Vc): λi1 ≥ λi2 ≥ λi3 ≥ τ, s = λi3, ê is arbitrary.
τ is a feature detection parameter set by the user to ensure the quality of the recognized

features. For a model with greater noise, the value should be set larger. We compute
the normal voting tensor using the filtered normal to classify the feature points of the
noisy model.

3.2.2. Weak Feature Recognition and False Feature Elimination

Isolated feature elimination [44]: If there are no other feature points in the n-ring (n
has a default value of 3) neighbors of a feature point, the feature point is an isolated feature
point, which can be removed.

Pseudo-corner feature elimination: The feature intensity can be represented by the
feature value of the vertex tensor matrix. The feature intensity of each feature point is not
necessarily the same. In the same model, the feature intensity of the feature corner point
is greater than the feature edge point, and the greater the feature intensity is, the more
obvious the feature. If there are two adjacent corner points, the feature intensity s of the
true corner feature is larger than that of the false corner feature.

Weak feature point recognition: The direction vector ê of the shape edge points in
the direction of the side line, as shown in Figure 4; the positive direction of ê is displayed
in red, and the reverse direction is displayed in blue. If the non-feature point has two
neighboring feature points and the vector formed by this point and the two feature points
is within a certain angle of the direction vector of the corresponding feature point, we set
it to 30◦; then, the non-feature point is recognized as a weakly shaped edge point. The
vertex pointed to by the arrow in Figure 4b is not successfully recognized; according to
weak feature recognition, in (c), we recognize this as a feature point.

(a) (b) (c)

Figure 4. Weak feature point recognition: (a) initially recognized feature points; (b) eigenvectors of
the tensor matrix at each feature point; and (c) weak feature points are identified.

3.3. Anisotropic Vertex Update

Since we classified the vertices, we need to consider different features of the vertices
distributed in different positions. For the update of the non-feature points, we consider
the average pulling force of the neighbor filtered normal to it. For the feature points,
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in addition to the average tensile force of the neighbors filtered normal to them, since we
first denoise the non-feature area so that the flat supporting neighborhood on both sides of
the feature edge can describe the edge geometry more accurately, we consider the tension
of the supporting neighborhood point set (which is fit to obtain the supporting plane) of
the feature point.

3.3.1. Non-Feature Vertex Update

The neighborhood of a vertex is important information for estimating the feature of
a vertex. The traditional neighborhood of an interest vertex is used to indiscriminately
search for the K-ring neighbors or geometric neighbors. In the high-frequency area and the
cross-feature area, some neighborhood faces and vertices differ greatly from the features
of the interest vertex. When the neighborhood surface normal acts on the interest point,
it easily causes the feature to be oversmoothed. Therefore, for non-feature points located
in a flat area, we use the isotropic neighbors of the non-feature points to achieve efficient
denoising and feature retention. We choose isotropic geometric neighbor faces to preserve
the geometrical neighborhood. We adopt the iterative scheme from [4] for the non-feature
vertex update:

v(t+1)
i = v(t)i +

1∣∣∣NFisot
fvi

∣∣∣ ∑
fk∈NFisot

fvi

n′fk

(
n′fk

(
c(t)k − v(t)i

))
, (13)

where v(t)i is the set of original vertex coordinate, (t) represents the tth iteration, n′fk
is

the filtered normal of face fk, c(t)k is the centroid of face fk, and
(

n′fk
· nvi > ρ

)
, where ρ

defaults to 0.6. ck is the centroid of fk. NFisot
vi

is the set of isotropic neighbor faces of vertex
vi, and ni is the normal of vertex vi.

In Figure 5, we use different neighborhoods to update non-feature points, and update
feature points using all the neighborhoods just like GMNF [5]. As shown, with isotropic
neighborhoods, corrugated lines and corners can be better preserved during noise re-
moval. For the non-feature points near the feature, isotropic neighborhoods can reduce
the influence of the vertices near the feature line from the triangle on the other side of the
corrugated line and prevent the step corners from being rounded and blurred, as shown in
Figure 5c. On the other hand, for flat non-characteristic areas, there is little difference in
using isotropic neighbors; for noisy non-characteristic areas, using isotropic neighborhoods
can reduce the negative influence of noise triangles and make local areas tend to become
flat more quickly.

(a) (b) (c)

Figure 5. Comparison results for non-feature point updating: (a) noisy model; (b) the result without isotropic neighborhoods;
and (c) our result with isotropic neighborhoods.

3.3.2. Feature Vertex Update

(1) Clustering the supported neighborhood of the feature vertex.
The positions of the feature points are affected by their support areas, which can fit the

corresponding local support plane, and the local support planes work together to form a
feature line or a feature angle. We cluster the support neighborhood of feature point using
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its eigenvector of tensor matrix. Since the tensor matrix of the vertex is a symmetric and
positive semidefinite matrix [45], the eigenvectors of the matrix are orthogonal to each other,
corresponding to the main direction of the ellipsoid, and the eigenvalues encode the size
and shape of the ellipsoid, as shown in Figure 6.

Figure 6. The eigenvectors and eigenvalues of the tensor matrix. The eigenvectors correspond to the
principal directions of the ellipsoid/ellipse, and the eigenvalues encode the size and shape of the
ellipsoid/ellipse.

The directions of the three feature vectors êi1, êi2, and êi3 do not necessarily satisfy the
right-hand rule, nor do they all point from the model surface to the outside of the model.
As shown in Figure 7a, red represents êi1, green represents êi2, and blue represents êi3.
For non-feature points, êi1 does not necessarily point to the outside of the model, and it
may be opposite to the normal of the vertex. For shape edge points, êi1 and êi2 may be in
the opposite direction from the normals of the region elements adjacent to both sides of
the edge (we call the feature point the “supporting neighborhood”). For feature corners,
the directions of êi1, êi2, and êi3 may also be opposite to the normal directions of their
supporting neighborhoods. We use the vertex normal to correct the directions of êi1, êi2,
and êi3. When the angle between the eigenvector and the normal of the point is greater
than 90◦, it is reversed. The corrected result is shown in Figure 7b.

(a) (b) (c)

Figure 7. Correcting the direction of the feature vector: (a) original eigenvectors; (b) corrected
eigenvectors; and (c) clustering results (green) after denoising the non-feature vertices.

At this time, the eigenvectors êi1 and êi2 of the shape edge point voting matrix are
consistent or close to the orientation of the support neighborhoods; then, we can use its
feature vector to cluster the vertices of the support neighborhoods. They are clustered
into two categories close to êi1 and êi2, namely Ci1 and Ci2. For the corner points, we
can similarly cluster their supporting neighborhoods into three categories close to êi1,
êi2, and êi3, named Ci1, Ci2, and Ci3. The clustering results (green) after denoising the
non-feature vertices are shown in Figure 7c. Since the positions of the non-feature points
were updated, the noise in these areas was reduced. At this time, using them to fit the plane
can yield a more accurate plane that fits the model surface. If the number of vertices of a
certain cluster is less than 2, it is considered unreliable and does not constitute a support
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plane. Each support plane has a pulling force for the feature point of interest, and this
pulling force is defined as ∆vi2.

(2) Rolling guidance normal filtering for the neighbor facet normal.
After updating the non-feature area, we need to recalculate the filtered normals of

the neighboring faces of the feature points. In the feature classification step, the geometric
features with larger scales are identified as shape edge points and corner points. When
removing noise, we need to retain the larger geometric features locally. Inspired by the
RGNF [29] method, we use the last filtered normal as a new guidance signal to filter the
neighbor facet normals of the feature points to remove small-scale noise and retain large-
scale structural features. It is similar to Equation (7) in Section 3.1.2, and the filtered face
normal is:

n′′fi
=

1
W fi

∑
f j∈NFfi

AjKs
(
ci, cj

)
Kr

(
n′fi

, n′f j

)
nj. (14)

After updating the non-feature points, the centroid and normal of the face will be
updated. nj is the current normal of face f j, and n′fi

is the last filtered normal in the current
iteration. The larger the difference between n′fi

and n′f j
is, the larger the scale of the feature,

the smaller the value of Kr, and the smaller the extent of filtering. In each iteration, more
large-scale features are retained or restored. Figure 8 shows the comparison results of
updating the feature points with different normals. Figure 8a shows the noisy SharpSphere
model; Figure 8b shows the result of using the current normal to directly update the
feature points without filtering the normals again, which makes it difficult to restore the
geometric features of the model; Figure 8c shows the result of using the guidance normals
to update the feature points without filtering the normals again, which means the guidance
normal will introduce pseudofeatures; Figure 8d shows the result of directly updating the
feature points with the last filtered facet normals in Equation (7), where the edges may be
incorrectly connected and some geometric shapes will be lost; Figure 8e update feature
points using a approximate faltered normal n′′fi

in Equation (14), where n′fi
is replaced

by the guidance normal gi and then updating the feature points, which loses some of
the feature corners; and Figure 8f shows our result, obtained by using the filtered facet
normal n′′fi

in Equation (14) to update the feature vertices. Our results retain or restore
more geometric features.

(a) (b) (c) (d) (e) (f)

Figure 8. Comparison of the denoising effects of the updated feature points using different facet
normals: (a) the noisy mesh; (b) update feature points using the current facet normals; (c) update
feature points using the guidance normals; (d) update feature points using the last filtered facet
normals in Equation (7); (e) update feature points using a approximate faltered normal n′′fi

in
Equation (14), where n′fi

is replaced by the guidance normal gi; (f) our result.

(3) Feature vertex update based on local constraints.
For the feature point set Vec = Ve ∪ Vc, we update the positions of Vec according to

both the neighbor facet filtered normal and its neighbor normal fields. After updating the
non-feature vertices, the model has more accurate flat areas, which can provide a more
stable support plane for Vec.

For real noisy data, such as 3D reconstruction models based on oblique images and
scan data, the current commonly used denoising methods often smooth details or sharp
features because not all vertices are treated differently. The GMNF method also has the
problem of introducing pseudofeatures. Our goal is to keep as much of the larger local
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features as possible in the local neighbors and avoid introducing pseudofeatures that are
too sharp locally by controlling the strength of feature restoration.

We use the increase and decrease in the dihedral angle of the local sharp edges to reflect
the smoothness and sharpness of the local features during feature point denoising. For
models with no noise or low noise, local sharp edges can be distinguished by the normals
of the triangles where the edges are located. Since the facet normal of the noise model
is very sensitive to noise and unreliable, we can apply the accurate feature points to find
the sharp edge, and the edge eij

(
Vi, Vj

)
formed by two adjacent feature points Vi, Vj is

treated as a local sharp edge. For example, in the case of Figure 9, its corresponding 2D
section is shown in Figure 9b. The dihedral angle of an edge is defined as the angle of the
facet normals on both sides. During the update of vertex Vi, the sharp edge in Figure 9c
may be smoothed. At this time, the dihedral angle of the edge eij

(
Vi, Vj

)
decreases. We

use the parameter β1 to limit the value of dihedral angle reduction; it may also happen
that the sharp edges in Figure 9d become spikes, in which case the dihedral angle of edge
eij
(
Vi, Vj

)
will become larger, and we use the parameter β2 to limit the value of the dihedral

angle increase. We use Equation (15) to update the feature points. When there is a local
sharp edge that does not meet the constraints, the feature points are not updated to prevent
local sharp edges being smoothed and sharp pseudofeatures being introduced.

(a) (b) (c) (d)

Figure 9. Variation in the local sharp edge eij

(
Vi, Vj

)
during the denoising of feature point Vi: (a) 2D

display of the sharp edges; (b)–(d) 2D representation of the dihedral angle changes; (b) the original

state in (a); (c) the dihedral angle of edge eij

(
Vi, Vj

)
becomes smaller and the characteristic becomes

weaker; and (d) the dihedral angle of the edge eij

(
Vi, Vj

)
becomes larger and the feature is sharpened.

We update the positions of the shape edge points according to both the neighbor facet
filtered normal and its support neighbor fields. The positions of the feature points are
first affected by the tensile force ∆vi1 of the neighboring filtered facet normals, and the
correction amount for this part is expressed by Equation (16). Second, the feature points are
also affected by the support neighborhoods, and these two sides of the edge line correspond
to the local support plane. The distance from these planes produces a second part of the
tensile force ∆vi2. The correction amount for this part can be expressed by Equation (17),
as shown in Figure 10. Similarly, there are three local support neighborhoods and three
planes for the corner points, and the correction amount due to the distance from these three
support planes is also expressed by Equation (17):

v(t+1)
i = v(t)i + α1∆vi1 + α2∆vi2 (15)

∆vi1 =
1

|NFvi |
∑

fk∈NFvi

n′′fk

(
n′′fk

(
c(t)k − v(t)i

))
(16)

∆vi2 = ∑
pj∈Pvi

−
(

npj v
(t)T

i + dj

)
npj (17)

where (t) represents the tth iteration, v(t+1)
i is the new position of the current vertex v(t)i ,

α1 and α2 are user-set parameters, and α1 + α2 = 1. The first correction amount α1∆vi1
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in Equation (15) represents the pulling force of the filtered neighbor normals toward the
feature point, and the second correction amount α2∆vi2 represents the pulling force of the
support planes toward the feature point. pj ∈ Pvi represents one of the support planes of
the feature point vi, and dj is the distance from the feature point vi to the support plane pj.

Figure 10. Schematic diagram of the tensile forces of the local support neighborhoods on the feature
point. dj is the distance from the feature point vi to the support plane pj, and npj is the normal
of the jth plane. The tensile forces of the support planes on the shape edge point vi are shown in
Equation (17).

4. Results

To verify the effectiveness of our algorithm, we utilized models using different data
types, such as CAD data, 3D scan data and 3D models reconstructed from oblique images
using the oblique photogrammetry method. The experimental content includes two parts:
qualitative assessment and quantitative evaluation.

We contrast our method with the nine most closely related mesh denoising meth-
ods, which are the bilateral mesh denoising method (BM) [3], the noniterative, feature-
preserving mesh smoothing method (NoIter) [27], the Fast method [28], the local scheme
of bilateral normal filtering (BNF method) [4], the L0 method [23], the GMNF method [5],
the ENVT method [45], the RoFi method [32] and the CPD method [9]. To make our com-
parison fair, some results are provided by these authors, and the unprovided data are
obtained through experiments with the code provided by the authors. All these algorithms
were implemented with the same software and hardware environments as ours, and we
aimed to tune the parameters of each method to obtain the best results.

4.1. Parameter Tuning

There are eight parameters to be modulated in our algorithm, which are the two
standard deviations σs and σr in the bilateral filter (Equation (8)), the number of iteration
filtering facet normals (n f ilter), the total number of iterations, the number of times the
vertices are updated in each iteration (nupdate), the normal angle threshold (ρ) for calculating
the guidance normal, and the feature point classification threshold (τ). The greater the noise
is, the greater τ should be to identify the features in the noise. The dihedral angle constraint
threshold (β1 and β2) for updating the feature points is defined as 15◦. The coefficients of
the constraint terms (α1 and α2) when updating the feature points are defined as α1 = 0.8.
When the flute structure of the model is dominant, α1 can be reduced to better restore the
local geometric structure. Our parameter settings refer to the GMNF method, and σs is
set as the average distance between neighboring face centroids across the whole mesh [4].
For all results in this paper, we employ geometric neighborhoods for applying the filter
unless stated otherwise. σr controls the influence of the normal deviation; the larger the
value is, the greater the degree of smoothing. With a large number of experiments, and as
suggested in the GMNF method [5], we can set the following thresholds: r ∈ [2σs, 3σs],
σr ∈ [0.3, 0.6], n f ilter ∈ [1, 75], nupdate ∈ [1, 30], τ ∈ (0, 1.5].
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4.2. Qualitative Assessment Experiments
4.2.1. Qualitative Comparison of the Feature Vertex Classification Results

We classify the feature points in the noisy model according to our improved NVT
method in Section 3.2.2. We contrast the feature vertex classification results with NVT on
five different noisy models in Figures 11–13, namely (1) a CAD model with Gaussian noise
(the first line in Figure 11 and the fourth line in Figure 11; (2) a CAD model with random
Gaussian noise (the second line in Figure 11; (3) a CAD model with impulse noise (the
third line in Figure 11); (4) a real scan model (the fifth and sixth line in Figure 11); and (5) a
real 3D model of oblique image reconstruction (Figures 12 and 13). The noise intensities
from the first line to the fourth line in Figure 11 are, respectively: σe = 0.4le, σe = 0.4le,
σe = 0.5le, σe = 0.3le, where le is the average edge length. The non-feature points, feature
edge points and feature corner points are colored in blue, green and red, respectively, in
the feature classification results.

Gaussian τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.1

Random τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.1

Impulse τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.35

Gaussian τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.1

Scan τ = 0.05 τ = 0.06 τ = 0.07 τ = 0.06

Scan τ = 0.08 τ = 0.1 τ = 0.2 τ = 0.07
(a) Noisy (b) Mean curvature (c) NVT (d) Ours

Figure 11. Comparison of feature point classification for the CAD and scan model.
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(a) Noisy

(b) NVT result

(c) Our result

Figure 12. Comparison of feature point classification results for the City model reconstructed from oblique images.

(a) Noisy

(b) NVT result

(c) Our result

Figure 13. Comparison of feature point classification results for the Village model reconstructed from oblique images.

As shown in Figure 11, the NVT method could not accurately classify the feature points
of a noisy model regardless of whether it was Gaussian noise, random noise or impulse
noise; for local regions with uneven sampling, such as the Block model, the NVT method
could not correctly classify the feature points. However, our improved NVT method can
accurately classify feature points from non-uniformly sampled regions. For the real scan
models with low noise intensity, as shown in Figure 12, even if the noise intensity is not
large, the NVT method cannot accurately classify the feature points. In contrast, our results
can extract accurate structural features from real data with low noise intensity. For the
3D model generated by oblique images, as shown in Figures 12 and 13, in the partially
enlarged images (regions 1 and 2 in Figures 12 and 13), the partially flat regions have no
geometric structure but were mistakenly identified as structural features. By comparing the
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overall feature extraction effect, it can be seen that our method can obtain more accurate
and comprehensive features than the NVT method.

4.2.2. Qualitative Comparison of the Mesh Denoising Results

We show the comparison of the denoising results for the CAD model in Figure 14,
the real noise of the scanning model in Figure 15, and the real noise of the oblique im-
age reconstruction model in Figures 17–19, and compared the denoising results of nine
popular algorithms.

In Figure 14, from top to bottom are the denoising results of Block, SharpSphere,
Fandisk, Cube, Twirl and Julius model. In Figure 15, from top to bottom are the denoising
results of angle and iron model. Note that to make a fair comparison, we enumerated
the dense sample set in the parameter space of each method and selected the best result
from the sample parameters. Some results of the algorithm (such as GMNF [5], ENVT [45],
RoFi [32] and CPD [9]) are provided by the author. By analyzing and comparing the results,
we can obtain the conclusions below.

Noisy BM NoIter Fast BNF L0 GMNF RoFi Ours
Figure 14. Comparison of the denoising results for the CAD model with additive Gaussian. The
results From left to right: [3–5,23,27,28,32] and ours.

Noisy BM NoIter Fast BNF L0 GMNF ENVT Ours

Figure 15. Comparison of the denoising results for the scan model. The results From left to
right: [3–5,23,27,28,45] and ours.
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First, our method performs well in preserving or restoring the characteristics of the
noise model. The Block model, the SharpSphere model and the Twirl model in Figure 14 all
have sharp corners and some curved edges. It can be seen from the local magnification and
comparison that our results accurately remove all noise of the Block model while retaining
rounded edges and truly restore the corners; retain the smooth continuous surface and
sharp corners of the SharpSphere model; and rarely make the sharp corners of the Twirl
model thicker or thinner. Our results better retain angled lips of the angle model in
Figure 15. Compared with the prevalent methods, in addition to effectively eliminating
noise, our method can more accurately retain the feature edges of the noise model.

Second, our method does not easily introduce pseudofeatures. For the Fandisk model
in Figure 14, our result accurately removes all noise and does not produce any false features
in the umbilical region, while retaining sharp features and corners; the similar results are
shown in the nose of the local enlarged area of the iron model in Figure 15. However,
the results for the L0 method [23], GMNF method [5] and RoFi method [32] introduced
pseudofeatures on the originally smooth transition surface.

Third, our method is less sensitive to the sampling rate and sampling irregulari-
ties. The Cube model and the Block models in Figure 14 have partial irregular sampling.
From the perspective of partial placement, our method can produce more ideal results
while preserving the geometric features of different sizes.

Fourth, our method is relatively stable and has a certain degree of robustness. In con-
trast to the CPD algorithm [9] in Figure 16, we did not introduce convex points on the
surface of the model. The CPD method [9] uses the vertex normals to calculate the normal
tensor voting matrix and uses the normals of the vertices to update the vertex position.
However, the normals of the vertices in the noise are very unreliable, which results in more
common drifting spots.

(a) Noisy (b) CPD (c) ENVT (d) Ours

Figure 16. Comparison of the denoising results for the scan model. The results From left to right: [9,45]
and ours. The gargoyle model is corrupted by 3D scanner noise.

Fifth, our algorithm can consider the structural characteristics of the scene. The 3D
models reconstructed based on oblique images, such as building models, have a very
rich linear scene structure. We removed the noise on the surface of the three groups of
models (the Village model in Figure 17, the Villa model in Figure 18, and the City model in
Figure 19) and partially magnified the prominent structures in them compared with the
GMNF method before improvement. By comparing the overall display effect, it can be seen
that both the GMNF algorithm and our method can smooth and remove the noise on the
surface of the model. However, the GMNF algorithm sharpens the scene structure of the
model as a whole, as shown in the partial regions in Figures 17 and 19. In addition, it can
be seen from the partial magnified area of the Villa model in Figure 18 that our algorithm
can consider the structural features of the scene and preserve the geometric structure of the
building in the model, such as the corners of the tiles and walls of the building.
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(a) Noisy

(b) GMNF result

(c) Our result

Figure 17. Comparison of the denoising results for the Village model reconstructed from oblique images.

(a) Noisy

(b) GMNF result

(c) Our result

Figure 18. Comparison of the denoising results for the Villa model reconstructed from oblique images.
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(a) Noisy

(b) GMNF result

(c) Our result

Figure 19. Comparison of denoising results for the City model reconstructed from oblique images.

4.3. Quantitative Evaluation Experiments

From the above visual comparison, we can infer that our method is generally better
than the state-of-the-art methods. To distinguish them objectively, we compared the
denoising results with the ground-truth model and measured the fidelity of the denoising
results. We evaluate the denoised mesh quality with the following metrics: (1) The average
normal difference Nmean (in degrees) between the facet normals of the denoised mesh and
the ground-truth facet normals; (2) The maximum distance Dmax and the average distance
Dmean from the resulting mesh vertices to the ground-truth mesh surface. We compare
these metrics on different models and illustrate them via statistical data (see Tables 2–4).

Table 2. The average normal difference Nmean (in degrees) between the facet normals of the denoised mesh and the
ground-truth facet normals. The lowest value per row is highlighted in bold.

Model Noisy BM [3] NoIter [27] Fast [28] BNF [4] L0 [23] GMNF [5] RoFi [32] Ours

Block 33.7185 14.4753 13.8501 14.4753 5.30624 4.97352 3.77320 5.22034 3.18393
Fandisk 28.4211 11.1113 9.81795 4.04264 3.34944 5.52852 2.62181 2.44769 1.37350

SharpSphere 33.0070 16.7373 17.3618 11.8920 6.70474 12.9565 9.53772 9.05684 8.43270
Julius 23.9629 10.2910 7.63005 7.01017 6.00205 7.97741 6.50926 7.70099 6.42512
Cube 21.0551 8.71710 7.48375 2.02613 1.38315 1.82864 0.69145 2.42332 0.593294

Pyramid 19.2730 5.81730 4.66767 0.68221 0.84914 3.51391 0.51771 1.35993 0.504128
jointSharpEdges 33.6741 13.7765 13.2518 10.5136 8.25214 2.13461 3.35048 2.47633 2.28357

Table 3. The maximum distance Dmax from the resulting mesh vertices to the ground-truth mesh surface. The lowest value
per row is highlighted in bold.

Model Noisy BM [3] NoIter [27] Fast [28] BNF [4] L0 [23] GMNF [5] RoFi [32] Ours

Block 1.24700 0.86231 0.68534 0.60524 0.60328 0.60257 0.30105 0.60313 0.30061
Fandisk 0.12625 0.08283 0.08349 0.05911 0.05895 0.08276 0.04153 0.04161 0.04150

SharpSphere 0.45456 0.44946 0.33997 0.44865 0.22433 0.33649 0.33760 0.39257 0.33257
Julius 0.00792 0.00790 0.00790 0.00789 0.00790 0.00790 0.00790 0.00789 0.00788
Cube 0.08521 0.06631 0.04955 0.03227 0.01602 0.06350 0.02119 0.03186 0.01589

Pyramid 0.03197 0.02104 0.02125 0.01587 0.01587 0.03156 0.01590 0.01578 0.01583
jointSharpEdges 0.02117 0.01793 0.01194 0.01181 0.01181 0.01177 0.01181 0.00884 0.01179
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Table 4. The average distance Dmean from the resulting mesh vertices to the ground-truth mesh surface. The lowest value
per row is highlighted in bold.

Model Noisy BM [3] NoIter [27] Fast [28] BNF [4] L0 [23] GMNF [5] RoFi [32] Ours

Block 0.19502 0.08608 0.08632 0.05385 0.03436 0.13168 0.03559 0.11360 0.01988
Fandisk 0.02151 0.00842 0.01017 0.00424 0.00321 0.01345 0.00457 0.00447 0.00118

SharpSphere 0.06948 0.02864 0.03005 0.03235 0.00773 0.06397 0.01811 0.02110 0.01455
Julius 0.00022 0.00004 0.00005 0.00002 0.00004 0.00004 0.00002 0.00003 0.00001
Cube 0.01892 0.00954 0.01109 0.00437 0.00177 0.01029 0.00483 0.00605 0.00526

Pyramid 0.00292 0.00104 0.00203 0.00015 0.00015 0.00102 0.00001 0.00010 0.00000
jointSharpEdges 0.00338 0.00091 0.00112 0.00075 0.00078 0.00122 0.00085 0.00029 0.00028

4.3.1. Quantitative Comparison of the Normal Difference

It can be seen from Table 2 that for most models, the results obtained by our algorithm
are generally less different from the surface normals of the original model. However,
the SharpSphere model is an exception because it restores sharp features and weakens
the dihedral sharpening constraint. In this way, although the sharp features of the real
mesh are successfully restored, sharp artifacts are also induced in the concave area of the
SharpSphere model, resulting in a higher normal difference. The jointSharpEdges model
processed by the L0 method [23] has a greater degree of denoising and a greater degree
of smoothness, and its overall normal is closer to the original surface. However, it can be
seen from the visualization results that due to excessive smoothing, it smooths the right
angles, resulting in a loss of features. The same is true of the Julius model processed by the
BNF method [4]. The degree of denoising is greater, and the overall result is closer to the
original surface, but the eyes become blurred.

4.3.2. Quantitative Comparison Of Distance

For most of the models, our method achieves better results than the current popular
algorithms, according to the maximum distance Dmax and average distance Dmean from
the resulting mesh vertices to the ground-truth mesh surface shown in Tables 3 and 4.
Among them, the normal line of the Julius model of BNF [4] denoising is closer to the
original model, but the distance from the vertex to the original model is not the closest.
This is because when more noise is removed, the model shrinks, and the average distance
from the original model becomes larger. This is also true when our method denoises the
cube model. As a result, the average normal of the model is closer to the original normal.
However, due to the greater degree of denoising, the model shrinks as well, so the average
distance is not the smallest.

4.3.3. Quantitative Comparison of Running Time

Table 5 provides the running time comparison for the shown examples, on a PC with
an Intel Core i7-8550U CPU. The processing time of the algorithm is related to the number
of iterations. Since the algorithm has many steps and each iteration has to perform a feature
point classification, our denoising process is inferior in efficiency. This is the problem we
are prepared to solve in the future.

Table 5. Running time comparison.

Model Vertices Faces NoIter [27] L0 [23] GMNF [5] Ours

Block 8771 8771 17550 22 90 867
Fandisk 6475 12,946 14 98 33 307

Cube 1906 3808 5 24 10 45
angle 24,556 48,090 61 314 25 213
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4.4. Discussion

The qualitative and quantitative comparisons help in analyzing the capabilities of all
comparison algorithms. It can be seen that the BM method [3] can denoise models with
low noise intensity, such as scanning models, but it is not suitable for handling large noise,
and the feature retention effect is not ideal. The smoothing effect of the NoIter method [27]
is better, and it can handle low-intensity noise; the denoising ability decreases with the
increase in noise intensity, it is suitable for processing scanning noise, and the feature
retention effect is not ideal. The Fast method [28] is suitable for dealing with various
types of noise, and the denoising ability is strong, which can retain features to a certain
extent; the BNF algorithm [4] is suitable for processing various types of noise. It has a
strong denoising ability and good feature retention performance; this basic algorithm is
not ideal for non-uniform noise processing. The L0 algorithm [23] has a strong denoising
ability and can yield a very smooth model. It retains large-scale structural features to a
certain extent but may introduce false features to deal with non-uniform noise. The GMNF
algorithm [5] has a strong denoising ability and can be retained to a certain extent or
restore sharp features but often introduces false features, which may lose angular features,
and it can handle non-uniformly sampled noise. The RoFi algorithm [32] has a strong
denoising ability and can handle a variety of noise; fewer triangles are flipped, and the
feature retaining ability is strong, but it may introduce false features. The CPD method [9]
is unstable and easily causes flying spots on the surface of the model. Our algorithm can
handle a variety of features, handle non-uniform noise, consider the structural features
of the scene, and retain or restore features with strong reliability, and it does not easily
introduce false features.

The comparison of qualitative and quantitative experiments helps in analyzing our
algorithm intuitively and objectively. Comparing Tables 2–4 in the quantitative analysis, it
can be seen that when it is necessary to move closer to the surface of the original model,
most of the algorithms can achieve this by increasing the degree of denoising, but this is
often accompanied by the loss of the structural features of the model, such as in the BNF
algorithm and L0 algorithm. We show that our approach outperforms the state-of-the-art
methods in terms of Nmean (average normal difference), Dmax (maximum distance differ-
ence) and Dmean (mean distance difference) in the denoised mesh versus the ground-truth
mesh. Comparing the qualitative analysis results, we can see that we retain more structural
features. Through experiments on three typical 3D mesh model data sets with different
noise, the experimental conclusions are as follows: (1) The improved feature classification
method proposed in this paper is suitable for different noisy models. Compared with the
original NVT method, our method reduces the number of false feature points and can
classify more real structural feature points; (2) The denoising algorithm proposed in this
paper can remove a variety of noise, deal with non-uniform noise, and retain and restore
the structural features of the model. Compared with the original GMNF method, we take
into account the corner features. Compared with the current popular denoising algorithms,
our method can remove the noise on the surface of the mesh model while more realistically
taking into account and retaining the structural features of the scene. At the same time,
the false features are reduced. However, from the experiments, we also found that our
method still has room for improvement. Our algorithm needs to set some parameters based
on experience, and the parameter setting process is not sufficiently automatic; and our
algorithm needs to classify and extract feature points and update the vertices step by step,
which takes considerable time. In future research, the execution efficiency of the algorithm
can be further improved, and more refined and faster 3D mesh denoising can be achieved.

The limitations of the algorithm are presented as follows. Firstly, when a detail with
characteristic size D is sampled on the object surface and the noise of the sample is D/2
or larger, the limitations of the algorithm are: (1) the result of feature classification is not
real. According to the Nyquist–Shannon theorem [48], in this case, the geometric sampling
will appear as an aliasing phenomenon, and the geometric structure of the surface will be
distorted, so the features obtained by our algorithm is the substitute of the real features;



Remote Sens. 2021, 13, 2145 24 of 26

(2) The denoising results will lose the scene structure. Since denoising is an ill-posed
problem, our algorithm cannot accurately recover the real structures from the distorted
noise model; Secondly, our denoising method cannot deal with small holes in noisy meshes
well. Figure 20c illustrates such an extreme case, where the noise around the holes is not
removed as expected. However, small holes do not affect the classification of feature points,
as shown in Figure 20b. In addition, in Figure 16, the denoising result of the low-intensity
noisy model is almost not affected by small holes.

(a) Noisy (b) Feature points (c) Denoised

Figure 20. Denoising meshes with small holes.

5. Conclusions

Noise removal in 3D model denoising is a research hotspot in the field of 3D recon-
struction. The denoising algorithm based on bilateral filtering does not fully consider the
structural features in the scene, resulting in the structural features of the optimized model
being smoothed, missed and overly sharp. Feature classification helps in performing
anisotropic mesh denoising that takes the geometric structure into account. However,
the feature classification method based on the NVT is very sensitive to noise, and it is
difficult to accurately classify the structural feature points of the model in a noisy scene.
This research makes full use of accurately classified structural feature points and proposes
an anisotropic mesh model denoising algorithm. It has three main parts: (1) The filter facet
normals of the mesh; (2) A classification of the feature points based on the improved NVT
method; and (3) The anisotropic update vertices of the mesh.

In general, we propose a 3D mesh Pre-processing method based on feature point clas-
sification and anisotropic vertex denoising considering the scene structure characteristics.
Compared with the GMNF method and the current popular denoising algorithm, this
study’s method achieves the following three goals: (1) Improving the estimation method
of the guided normal and improving the robustness of the GMNF method to filter the
normal to a certain extent; (2) Improving the accuracy of the classification feature points
of the noise model (helping to accurately consider the real scene structure of the model);
and (3) Retaining the geometric structure features to the greatest extent and reducing the
pseudosharp line structure. This method provides a new solution for 3D model denoising.
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Abbreviations
The following abbreviations are used in this manuscript:

NVT Normal voting tensor
BM The bilateral mesh denoising method [3]
NoIter The noniterative, feature-preserving mesh smoothing method [27]
Fast Fast and effective feature-preserving mesh denoising [28]
BNF The local scheme of bilateral normal filtering method [4]
L0 Mesh denoising via L0 minimization [23]
GMNF Guided mesh normal filtering [5]
RoFi Robust and high fidelity mesh denoising [32]
CPD Constraint-based point set denoising [9]
ENVT Mesh denoising based on normal voting tensor and binary optimization [45]
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