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Abstract: Although remarkable progress has been made in salient object detection (SOD) in natural
scene images (NSI), the SOD of optical remote sensing images (RSI) still faces significant challenges
due to various spatial resolutions, cluttered backgrounds, and complex imaging conditions, mainly
for two reasons: (1) accurate location of salient objects; and (2) subtle boundaries of salient objects.
This paper explores the inherent properties of multi-level features to develop a novel semantic-guided
attention refinement network (SARNet) for SOD of NSI. Specifically, the proposed semantic guided
decoder (SGD) roughly but accurately locates the multi-scale object by aggregating multiple high-
level features, and then this global semantic information guides the integration of subsequent features
in a step-by-step feedback manner to make full use of deep multi-level features. Simultaneously, the
proposed parallel attention fusion (PAF) module combines cross-level features and semantic-guided
information to refine the object’s boundary and highlight the entire object area gradually. Finally, the
proposed network architecture is trained through an end-to-end fully supervised model. Quantitative
and qualitative evaluations on two public RSI datasets and additional NSI datasets across five metrics
show that our SARNet is superior to 14 state-of-the-art (SOTA) methods without any post-processing.

Keywords: salient object detection; semantic guidance integration; attention fusion; multi-scale
object analysis; edge refinement; optical remote sensing image

1. Introduction

In recent years, with the continuous improvement of aerial remote sensing and sensor
technology, it becomes more and more convenient to obtain very high resolution (VHR)
optical remote sensing images (RSI), which, to a certain extent, meets the urgent needs of
scene analysis and object detection in airborne earth observation tasks. Naturally, various
applications of RSI in the military and civilian fields have received a high degree of attention
from all walks of life, such as scene monitoring [1], ship detection [2], oil tank detection [3],
and military object discovery [4]. However, how to effectively improve the efficiency and
accuracy of scene analysis and rapid object detection of massive optical remote sensing
data with cluttered backgrounds is crucial for further exploration and application of RSI.

The goal of object-level salient object detection (SOD) is to locate and separate the
most attractive regions from the scene, which is a simulated representation of visual at-
tention mechanism [5]. Unlike visual fixation prediction, SOD focuses on segmenting
images to generate pixel-wise saliency maps [6]. Because of its low computational cost and
excellent scalability, SOD has aroused interest in many fields, including image retrieval [7],
object tracking [8], semantic segmentation [9], medical image segmentation [10], camou-
flage object detection [11], etc. In general, in the large-scale optical RSI with cluttered
background and intricate noise, only a small number of regions with great color, shape,
or texture differences can attract people’s attention. Therefore, the SOD for RSI aims to
segment these regions or objects of interest. As a fast and beneficial tool for massive
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information processing, the SOD method has been widely applied to various visual tasks
of RSI analysis, such as human-made object detection [3,12], change detection [13,14] and
ROI extraction [15,16]. Unlike NSI photographed on the ground, optical RSI is usually
directly captured by satellites, aircraft, or drones equipped with sensors, so the difference
in data acquisition methods makes it a big challenge for SOD from NSI to RSI: (1) RSI
coverage is broader, which leads to large changes in the spatial resolution and number of
salient objects in the RSI (or scenes without salient objects, such as the ocean, snow, and
forest). (2) The shooting angle of the overlooking makes the salient object in RSI have a
considerable difference in appearance compared with NSI, and the object also has various
directions. (3) Affected by different imaging conditions, RSI usually contains interference
information such as shadows, clouds, and fog, making the object’s background area more
cluttered and complicated.

To alleviate the above situation, in the previous SOD methods for RSI [17,18], a bottom-
up dense link method is usually used to integrate multi-level depth features to locate the
object area and filter the background noise. However, this non-discrimination treatment of
different features may introduce local noise so that the object area’s edge details can not be
restored. For example, the saliency prediction maps of LVNet [18] and MINet [19] in the
first and second rows of Figure 1 lose the edge information of the target (cars and buildings).
Besides, with the continuous downsampling of the input features by the backbone network
in feature extraction, the depth feature patterns of different levels will change, ignoring
the relationship between different attention maps and only splices from multi-level feature
maps is considered suboptimal.

RSI GT Ours DAFNet LVNet MINet EGNetDSS

Figure 1. Visual examples of our model and DAFNet [20], LVNet [18], MINet [19], DSS [21] and
EGNet DSS [22]. GT refers to the ground-truth map.

Further, compared with the NSI scene, the salient areas in RSI have more scale changes,
similar ambiguous appearance, and tedious topology information [20]. As shown in
Figure 1, in the prediction results of various SOD methods, most SOD methods will have
encounter unsatisfactory conditions, such as missed detection, error detection, and overall
inconsistency of the object. On the one hand, the result is that the saliency feature of the
local area (or attention activation patterns) suppresses the natural global saliency feature.
On the other hand, it is due to the difference of representation features in the same salient
area due to spatial distribution. Previous work has shown that the convolution operation
components that make up the network inevitably cause a local receptive field [23]. In re-
sponse to this limitation, feature pyramid [24,25], intermediate feature integration [22,26],
and atrous convolution [27] are the mainstream strategies. However, these methods usu-
ally do not consider the semantic features of long-distance, which may lead to salient
objects’ incompleteness.

Inspired by the above challenges, we propose a semantic-guided attention refinement
network (SARNet) for SOD of optical RSI. The motivation of the method comes from the
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empirical fact that for the object search of large scene RSI, we usually scan the whole image
and locate the ROI roughly and quickly through the visual attention mechanism, and then
accurately infer and identify the boundary details according to the location guidance
and combined with the local information around the region. Therefore, we regard the
object’s accurate positioning and the boundary details as the two keys of SOD in the RSI
scene. The proposed method first uses the semantic guidance decoder (SGD) to integrate
multiple high-level side-out features to locate the object and guide low-level information
refinement. The parallel attention fusion (PAF) module combines cross-level and global
semantic guidance features to refine the object boundary gradually. Overall, our main
contributions are summarized as follows:

(1) We design a novel semantic-guided attention refinement network (SARNet) for SOD
in optical RSI. The network has better robustness and generalization through the high-
level semantic information guidance and top-down boundary refinement strategy to
improve scale-varying objects’ saliency detection performance;

(2) The proposed semantic guided decoding (SGD) module combines several high-level
feature representations to improve the semantic feature differences in long-distance
space. Simultaneously, the accurate salient area location information is used to guide
the subsequent multi-level feature fusion;

(3) The proposed parallel perception fusion (PAF) module models global semantic in-
formation and cross-level features to fill the differences between different visual
representation levels and gradually restore salient objects’ edge details;

(4) We compare the proposed methods with 14 SOTA approaches on two challenging op-
tical RSI datasets and additional NSI datasets. Without bells and whistles, our method
achieves the best performance under five evaluation metrics. Besides, the model has a
real-time inference speed of 47.3 FPS on a single GPU. The code will be available at
https://github.com/laoyezi/SARNet (accessed on 29 May 2021).

The rest of this article is organized as follows. Section 2 discusses the work related to
the saliency detection of NSI and RSI, as well as the attention mechanism in SOD. Section 3
describes in detail our proposed network architecture, including SGD and PAF modules.
Section 4 introduces the experimental settings, including datasets, evaluation metrics,
and implementation details. The proposed method was compared with the 14 SOTA
method qualitatively and quantitatively, and then the ablation of the key components
was studied. Finally, Section 5 summarizes the research work and points out our future
research direction.

2. Related Works

In this section, we first introduce some representative SOD models designed for NSI
in Section 2.1, then examine the SOD model specifically for optical RSI in Section 2.2,
and, finally, describe some related attention mechanisms for SOD in Section 2.3.

2.1. Saliency Detection for NSI

In the past two decades, we have witnessed the diversified development of the
theoretical system of SOD and the rapid improvement of detection performance under
the heatwave of deep learning. Early works were mainly devoted to studying hand-made
features, such as color transform-based model [28], sparse representation [29,30], low-
rank decomposition [31], and graph-based model [32] and so on, their effectiveness and
efficiency limit these methods. In the past five years, the SOD method based on convolution
neural network (CNN) has been widely and deeply explored [5,33]. Initially, Li et al. [34]
used the multi-level context features of CNN to infer the saliency of image segments.
Zhao et al. [35] combined local and global context information to rank the superpixels.
Compared with traditional models, these methods significantly improve performance,
but are still limited by low-resolution prediction results. Consequently, to overcome the
above deficiency, most current methods use full convolution network (FCN) to predict
pixel-level saliency. Deng et al. [36] proposed a recursive residual refinement network

https://github.com/laoyezi/SARNet
https://github.com/laoyezi/SARNet
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(R3Net), which uses the cross-level features of the integrated FCN with alternating residual
refinement blocks. In order to highlight the complementarity of object features and edge
features, Zhao et al. [22] proposed an edge guidance network for SOD. Pang et al. [19]
proposed to use aggregation interaction module in the decoder to integrate adjacent-level
features to avoid a large amount of noise caused by sampling operations.

2.2. Saliency Detection for RSI

Compared with many SOD methods for NSI, only a few works are devoted to the
SOD of optical RSI. Usually, SOD is used as an auxiliary tool for RSI image analysis, such
as airport detection [12,37], oil tank detection [3], region change detection [13], and ROI
extraction [16]. With the in-depth research on SOD, some SOD works on optical RSI have
appeared in recent years. Considering the internal relationship of multiple saliency cues,
zhang et al. [16] developed an adaptive multi-feature fusion method for saliency detection
of RSI. Huang et al. [29] proposed a novel SOD method by exploring sparse representation
based on contrast weighted atoms. In the CNN-based method, Li et al. [18] used the SOD
of optical RSI by constructing a tow-stream pyramid module and a nested structure with
encoding-decoding. In another related work, Li et al. [17] designed a parallel processing
structure network for optical RSI by using intra-path, cross-path information, and multi-
scale features. Recently, Zhang et al. [20] merged low-level attention cues into high-level
attention maps and combined the global upper and lower attention mechanism to propose
a SOD framework for optical RSI. Although these methods effectively improve optical RSI’s
saliency detection performance, they do not treat different levels of feature information
separately, ignore the complementarity between cross-level features, and lack filtering and
attention to practical features.

2.3. Attention Mechanism in SOD

In recent years, attention mechanism (AM) has gradually become an essential factor in
network structure design and has been deeply studied in many fields [38]. AM simulates
the human visual system, which only pays attention to a part of the scene’s prominent area
rather than the whole region. This mechanism improves the efficiency of data processing
and the pertinence of the target. In other words, AM is a resource allocation mechanism
that reallocates fixed resources according to the importance of the object of concern. In the
network, AM needs to allocate the resources that can be understood as the weight scores
of different dimensional features, such as channel domain attention [39], spatial domain
attention [40], mixed domain attention [41], and position-wise attention [42].

This suitable mechanism is also widely used in the field of SOD. Kuen et al. [43]
proposed a recurrent attentional convolution-deconvolution network for SOD, in which
a spatial converter based on sub-differentiable sampling is used to transform the input
features to achieve spatial attention spatially. Considering that most of the previous SOD
methods are fine-tuned from image classification networks that only respond to small and
sparse differentiated objects, Chen et al. [44] proposed a residual learning method based
on reverse attention, which is used to expand the object area gradually. Wang et al. [45]
proposed a pyramid attention module with an enlarged receptive field that can effectively
enhance the corresponding network layer’s expression ability. Zhang et al. explored
a global context-aware AM that captures long-term semantic dependencies between all
spatial locations in an attentive manner. Some works directly embed the existing attention
module into the network architecture to focus on the salient region’s features and reduce
the feature redundancy [26,46].

3. Approach

This section begins with an overview of the proposed semantic-directed attention
refinement of the network’s entire architecture in Section 3.1. Then, the proposed semantic
guided decoding (SGD) module is introduced in detail in Section 3.2. The proposed parallel
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attention fusion (PAF) module is described in Section 3.3. Finally, the loss function for
SARNet supervision training is given in Section 3.4.

3.1. Overall Network Architecture

As shown in Figure 2, in order to specifically solve the challenges of SOD in RSI,
the proposed SARNet is mainly composed of a backbone network (such as VGG [47] and
ResNet series [48] and Res2Net [49], etc.), an SGD module for integrating high-level seman-
tic information and guiding top-down feature refinement, and a PAF module for merging
cross-level features and global semantic information in a parallel manner. Specifically, take
ResNet-50 as an example, the backbone network extracts the features of the input RSI at
five different resolutions, which can be expressed as

{
Fi|i = 1, 2, · · · , 5

}
. First of all, we

compare the side-out features of the last three layers of the network, i.e.,
{

Fi|i = 3, 4, 5
}

.
As the input of the GSD module to obtain the global semantic features that can roughly
locate the object. Then high-level features and global semantic features are input into the
PAF module as supplements and guides of low-level features to enhance the object’s edge
details. The entire SARNet adopts a coarse-to-fine feedback strategy to integrate multiple
features and refine salient objects’ details gradually. All side-outputs and global semantic
pseudo saliency maps are supervised, and the final saliency map is obtained by mapping
output after F1 feature integration.

SGD

PAFPAFPAFPAFPAF

1F 2F 3F 4F 5F

GT Prediction

Image

CRB:

Supervis ion

Upsampling # times

Conv+BN+ReLU

Up #:×

CRB3 3×
CRB3 3×

CRB3 3×

CRB3 3×CRB3 3×

Up 4×
Up 2×

U
p

2
×

U
p

2
×

Figure 2. The pipeline of the proposed SARNet. Our model takes the RGB image (352 × 352 × 3)
as input and uses the public backbone networks to extract multi-level features. These features are
guided and integrated by SGD and PAF modules to gradually generate predictions supervised by GT.

3.2. Semantic Guided Decoder (SGD)

The current popular SOD deep network model usually aggregates all side-out fea-
tures without discrimination [17,18,24,36,50], but this strategy will lead to confusion and
redundancy of cross-level feature fusion. On the other hand, considering that the backbone
network obtains multi-scale representation by continuous downsampling, the feature reso-
lution after the first three feature extraction stages (i.e., three ×2 downsampling) is low
enough. We presume that the features extracted in the later stages are high-level repre-
sentations with rich semantic information. Therefore, we propose an SGD that aggregates
the last three layers’ output features

{
Fi|i = 3, 4, 5

}
to obtain more accurate contextual

semantic information from the global scope.
Specifically, as shown in Figure 3, in order to provide sufficient semantic information

required for the location of salient objects with scale-changeable RSI, when a plurality of
high-level features are given, F4 and F5 are first upsampled to the same size as F3 and then
concatenated to obtain the initial global semantic feature Fg

1 , can be expressed as:
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Fg
1 = Cat

(
F3, Up×2

(
F4
)

, Up×4

(
F5
))

, (1)

where Cat is concatenating operation, and then the salient object’s position is roughly
located, and the probability of existence is calculated by the discriminator Dis and Sigmoid
function S, respectively. Meanwhile, after feature channel compression and vectorization
processing, the initial Fg

1 is combined with the position probability of salient objects by
matrix multiplication M, so as to weight each layer of feature map in space and aggregate
global information, and then the weight Cg

1 of salient objects on each channel is obtained.
The process is defined as:

Fg
2 = T

(
CRB

(
Fg

1

))
, Cg

1 = M
{

S
[

T
(

Dis
(

CRB
(

Fg
1

)))]
, Fg

2

}
, (2)

where Dis represents the discriminant operation of mapping high-dimensional features
to 1-dimensional features with a kernel size of 1 × 1. Further, we perform weighted
aggregation on the Fg

2 of the previous stage in the channel dimension to obtain the channel
feature representation Fg

3 of each pixel. This process is expressed as:

Cg
2 = T

(
Cg

1

)
, Fg

3 = M
(

CRB
(

Fg
2

)
, Cg

2

)
. (3)

Finally, the channel feature Fg
3 of each pixel is normalized and matrix multiplied with

the weight Cg
2 of the feature map on each channel to reconstruct the feature representation

of each pixel. The process is defined as:

Fg
m = T

(
M
(

S
(

Fg
3

)
, Cg

2

))
. (4)

It is worth noting that Fg
m is a global guide feature with rich semantic information.

After the above series of operations, we comprehensively integrate multiple high-level
features with semantic information. As shown in Figure 4, compared with the output
feature visualization results of the last layer of the backbone (here taking ResNet50 as an
example), after the above transformation and calculation in the feature channel and space
of the SGD module are adopted, the network enhances the feature representation of pixels
and the perception of the object region, and can locate salient objects more accurately.

T

C T M

S

T M S M

D
is

T

3F

4F

5F

C M STConcatenation Transform Matmul Sigmoid
Dis:
Discriminator

Up 2×

Up 4×

C
R

B3
3

×
C

R
B1   1

×

C
R

B1   1
×

g
mF

Figure 3. Illustration of semantic guided decoder (SGD).
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RSI

GT

OBLL

OSGD

Figure 4. Visualization comparison between the output features of the last layer of the backbone
network (BLLo) and the output of the SGD module (SGDo).

3.3. Parallel Attention Fusion (PAF) Module

Although the output of SGD can approximately locate salient objects, it seriously lacks
detailed features (mostly tiny objects). Therefore, to make full use of this improved semantic
feature, we use the output of SGD as a global guiding feature to guide the aggregation of
low-level information. At the same time, as a supplement to low-level features, we use
the previous layer’s side-out feature as an additional feature to participate in the recovery
of salient object details. This strategy is widely used in SOD to reconstruct the object’s
edge [20,24–26]. On the other hand, the features usually obtained by the encoder are
redundant for the SOD task [51], and indistinguishable integrated multi-level features
may activate non-salient areas. Therefore, it is necessary to filter and retain these features
stream information.

Taken together, we propose the PAF module, as shown in Figure 5. First, the reverse
attention weight [44] is applied to the global semantic guide feature Fg

i to explore the
details of complementary regions and boundaries by erasing existing salient object regions.
For high-level auxiliary features Fh and low-level refinement features Fl , channel attention
mechanism (CAM) is used to filter to obtain more representative and essential features.
Then, to further enhance the discrimination of features, we feed the concatenated features
into a feature weighted structure with skip connections. Next, the output weighted feature
and the reverse attention weight are combined and fed into the discriminator. Finally,
the output of the discriminator and Fg

m are combined in the manner of residual connection
to obtain the global semantic guidance feature Fg

m−1 of the next stage.

CA
M

CA
M

C S

S

g
mF

lF

hF

D
is

D
is

Element-wise Multiplication

Element-wise Addition Reverse

1
g

mF −

−

−

+

+

×

×××

×

C
R

B3
3

×

Figure 5. Illustration of parallel attention fusion (PAF) Module.

Precisely, the reverse attention weight wg for Fg
m can be calculated as:

wg = E− S
(

Fg
m

)
, (5)

where E represents a unit matrix with the same size as Fg
m. Simultaneously, the Fl

cam and
Fh

cam features processed by CAM are concatenated and then fed into the feature weighted
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structure with skip connection to obtain the enhanced feature representation Fe of the object.
This process is defined as:

Fe = Fl
cam ⊗ S

(
Dis
(

Cat
(

Fl
cam, Fh

cam

)))
. (6)

Further, element-wise multiplication is used to reduce Fe and wg’s gap and then fed
into the discriminator. Finally, the residual connection method is combined to obtain the
global semantic guidance feature Fg

m−1 of the next stage. The process can be expressed as:

Fg
m−1 = Fg

m ⊕ Dis(CRB(wg ⊗ Fe)). (7)

The entire PAF integrates distinctive feature representations in parallel. The PAF mod-
ule’s output visualization in Figure 6 shows that the step-by-step feedback strategy gener-
ates more recognizable and precise object discriminating features in the decoding network.

O1PAF

O3PAF

O5PAF

RSI

GT

Figure 6. Feature visualization comparison of top-down PAF modules output PAFoi (i means a
particular step) with multi-step feedback strategy.

3.4. Loss Function

In the supervision phase, to avoid the loss function treating all pixels equally,
and to guide it to pay more attention to the details of hard pixels and object boundaries,
our loss function consists of weighted IoU and binary cross-entropy loss (BCE), i.e.,
L = LwIoU + LwBCE. The loss here is the same as in [50], and its validity has been verified
in SOD. Therefore, our total loss is expressed as:

Ltotal = L(G, S1) +
6

∑
i=2

1
2i−2L(G, Si), (8)

where G is GT map and Si represents the side-output map at stage i.

4. Experiments

In Section 4.1, we introduce in detail the RSI datasets and the extended NSI datasets,
the evaluation metrics of the experimental results, and the implementation details of the
network model. In Section 4.2, we compare the model’s performance in multiple scenarios
from both quantitative and quantitative aspects. In Section 4.3, we conducted a series of
ablation experiments to demonstrate the compatibility of the model and the necessity of
model components. In Sections 4.4 and 4.5, we analyze the complexity and failure cases of
the proposed method, respectively.
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4.1. Experimental Settings
4.1.1. Datasets

Experiments were performed on two optical RSI datasets dedicated to SOD, namely
ORSSD [18] and EORSSD [20]. The ORSSD dataset contains most of the 800 images
collected and pixel-wise annotated from Google Earth and some conventional RSI datasets
for classification or object detection (such as NWPU VHR-10 [52], AID [53], Levir [54],
etc.), of which 600 are for training, and 200 are for testing. To get closer to the actual
scene, EORSSD expands the ORSSD to 2000 images, including 1400 for training and 600
for testing. These images summarize more complex real-world scene types and more
challenging object attributes. In these two RSI datasets, accurate and robust SOD is very
challenging because of the cluttered and complex background, multiple spatial resolutions,
type, size, number of salient objects, etc.

Besides, in order to further demonstrate the robustness and stability of the SARNet.
We tested the proposed model on three popular natural scene image (NSI) datasets for SOD,
including DUTS [55], DUT-OMRON [56], and HKU-IS [34]. DUTS is a large SOD dataset
with two subsets, of which 10,553 images in DUT-TR are used for training, and 5019 images
in DUT-TE are used for testing. DUT-OMRON consists of 5168 images, of which objects are
usually structurally complex. The HKU-IS includes 4447 images, which contain a plurality
of foreground objects. Like other SOD methods [22,57–59], we use DUT-TR to retrain our
SARNet, and the experimental results are as shown in Section 4.2.3.

4.1.2. Evaluation Metrics

We adopt five widely used evaluation metrics in SOD to comprehensively demonstrate
the proposed model’s effectiveness, including mean absolute error (MAE,M), mean
F-measure

(
mFβ

)
, weighted F-measure

(
wFβ

)
[60], mean E-measure

(
mEφ

)
[61], and S-

measure
(
Sξ

)
[62]. Besides, the precision-recall (PR) curves and F-measure curves are

also used to compare with the SOTA models. The details of these evaluation metrics are
as follows:

(1) MAE (M) evaluates the average difference between all the corresponding pixels of
the predicted saliency map (P) and GT map (G) after normalization processing. We
compute theM score by:

M =
1

W × H

W

∑
i=1

H

∑
i=1
|S(i, j)− G(i, j)|, (9)

where W and H are the width and height of the evaluate map.
(2) Mean F-measure

(
mFβ

)
and weighted F-measure

(
wFβ

)
can improve interpolation,

dependency, and equality problems, leading to inaccurate estimates of MAE and
original F-measure values [60]. This metric is calculated as follows:

Fβ =

(
1 + β2)Precision× Recall
β2 × Precision + Recall

, (10)

where different weight β2 values are set to emphasize the importance of recall or
precision. It is customary to set 0.5 (i.e., mFβ) to treat equally or 0.3 (i.e., wFβ) to
emphasize precision over recall in previous works [29,46,51,59].

(3) Mean E-measure
(
mEφ

)
combines the image-level average’s local value with the

image-level average to obtain global statistical information and local pixel matching
information, an evaluation metric based on cognitive vision. It is computed as:

Eφ =
1

W × H

W

∑
i=1

H

∑
i=1

θ(φ), (11)
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where φ is the alignment matrix and θ(φ) denotes the enhanced alignment matrix [61].
To make a fair comparison, we took the mean score of the evaluation index in the experiment.

(4) S-measure
(
Sξ

)
takes the structural similarity of region-aware (Sr) and object-aware

(So) as the evaluation of structural information to consider the structural information
of the image. Sξ is calculated as follows:

Sα = α× So + (1− α)× Sr, (12)

where α ∈ [0, 1] is a trade-off parameter, usually set to 0.5.

4.1.3. Implementation Details

As in [20], we use the divided data in EORSSD for training and testing, respectively,
and combine rotation, flipping and random cropping strategies to augment all training
data. The model is implemented using PyTorch and deployed on a NVIDIA GeForce RTX
3090. For model training, the Adam algorithm is used to optimize model parameters with
a learning rate of 1×10−4. When the mini-batch size is 16, it takes about 4.5 h to train the
model for 80 epochs. In the inference stage, the average processing speed is about 47.3 FPS.

4.2. Comparison with SOTAs

Our results were evaluated with 14 SOTA SOD competitors, including three unsu-
pervised methods (i.e., HDCT [28], SMD [31] and DSG [32]), seven deep learning-based
methods (i.e., R3Net [36], DSS [21], PFA [24], EGNet [22], MINet [19], GateNet [59], and
F3Net [50]), and four methods developed for RSI (i.e., SMFF [16], CMC [3], LVNet [18],
and DAFNet [20]). To make a fair comparison, the results of all non-deep learning meth-
ods are provided by the authors or calculated directly by their released codes. The deep
learning-based methods use the same training data as the proposed model to retrain and
infer the test sets under the default parameter setting (if there are multiple backbone results,
the best one is taken).

4.2.1. Quantitative Comparison

Due to the use of different backbone networks, feature extraction performance is
affected in varying degrees. To make a comprehensive comparison, we use VGG16 [47],
ResNet-50 [48], and Res2Net-50 [49] as feature extractors at the same time. Table 1 summa-
rizes the evaluation scores across five metrics on two RSI datasets. It can be seen that the
results of our method on different backbones are almost better than those of other methods
(especially with Res2Net), which verifies the robustness of the proposed method. Figure 7
shows the PR curves and the F-measure curves on two datasets (our result is solid lines
marked in red), further demonstrating the proposed model’s superiority.

Compared with other unsupervised learning algorithms for SOD, SMD [31] achieves
the best performance under all the two RSI datasets’ evaluation metrics. On the other
hand, among the deep learning-based SOD algorithms for NSI retrained with RSI data,
F3Net achieves the best performance, with Sξ reaching 0.908 and 0.907 on the ORSSD and
the RORSSD datasets, respectively. LVNet [18] and DAFNet [20], as deep learning-based
algorithms for RSI saliency detection, performance is significantly better than other algo-
rithms, especially DAFNet. This further demonstrates the necessity of specially designing
the detection model for the SOD of optical RSI. For the first two best methods (LVNet [18]
and DAPNet [20]) dedicated to optical RSI, our performance gains on the four metrics (Sξ ,
wFβ, mEφ, mFβ) are 1.7%∼7.5%, 1.2%∼8.8%, 5.0%∼16.4% and 15.3%∼30.5%, respectively.
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Table 1. Comparison with the SOTAs. The top three of our one and the other methods are highlighted in red, blue, and
green. ↑ and ↓ denote larger and smaller scores are better, respectively. † and ‡ denote CNN-based and RSI-based SOD
methods, respectively.

Models
ORSSD [18] EORSSD [20]

Sξ ↑ mEφ ↑ mFβ ↑ wFβ ↑ M ↓ Sξ ↑ mEφ ↑ mFβ ↑ wFβ ↑ M ↓

HDCT [28] 0.620 0.650 0.424 0.372 0.131 0.597 0.639 0.403 0.266 0.109
DSG [32] 0.719 0.734 0.575 0.566 0.104 0.643 0.661 0.462 0.402 0.125
SMD [31] 0.764 0.775 0.621 0.557 0.072 0.711 0.731 0.550 0.409 0.077

R3Net † [36] 0.814 0.868 0.738 0.738 0.040 0.819 0.831 0.632 0.418 0.017
DSS † [21] 0.826 0.836 0.696 0.621 0.036 0.787 0.764 0.582 0.461 0.019
PFA † [24] 0.861 0.855 0.731 0.672 0.024 0.836 0.866 0.679 0.549 0.016
EGNet † [22] 0.872 0.901 0.750 0.645 0.022 0.860 0.877 0.697 0.538 0.011
MINet † [19] 0.849 0.894 0.779 0.709 0.028 0.858 0.915 0.772 0.694 0.013
GateNet † [59] 0.893 0.927 0.827 0.763 0.015 0.880 0.904 0.770 0.643 0.011
F3Net † [50] 0.908 0.947 0.827 0.763 0.015 0.907 0.944 0.810 0.769 0.010

SMFF ‡ [16] 0.531 0.568 0.268 0.250 0.185 0.540 0.521 0.301 0.209 0.143
CMC ‡ [3] 0.603 0.642 0.345 0.311 0.127 0.580 0.590 0.270 0.201 0.106
LVNet †‡ [18] 0.882 0.926 0.800 0.751 0.021 0.864 0.883 0.736 0.631 0.015
DAFNet †‡ [20] 0.919 0.954 0.844 0.756 0.011 0.918 0.938 0.798 0.652 0.005

SARNet-VGG16 0.913 0.948 0.862 0.851 0.019 0.924 0.955 0.854 0.830 0.010
SARNet-ResNet50 0.921 0.952 0.867 0.853 0.014 0.926 0.955 0.849 0.832 0.008
SARNet-Res2Net50 0.935 0.966 0.887 0.872 0.010 0.929 0.961 0.857 0.824 0.008
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Figure 7. Comparison of PR curves and F-measure curves of 15 SOTA methods over two optical RSI
datasets. Best viewed on screen.

4.2.2. Visual Comparison

The visual comparison of some representative scenes is shown in Figures 1 and 8,
where the results are obtained by training or retraining on the EROSOD dataset through
SARNet with ResNet50 backbone and other deep learning-based models. In Figure 1,
although other methods are disturbed by object resolution and scene contrast, our method
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can accurately identify the whole object and obtain a clear boundary. A variety of chal-
lenging scenarios are covered in Figure 8, including small objects (a), large objects (b),
low-contrast environments (c), and cluttered backgrounds (d). We observe that the pro-
posed method can consistently generate more complete salient maps with sharp boundaries
and meticulous details, as reflected in the following aspects:

(1) Accurately locate the object. The proposed model perceives and accurately locates
salient objects with varied scales and shapes in various scenes and has excellent
background suppression ability. In detecting the scene with small objects in Figure 8a,
most of the methods will miss aircraft and ships’ detection. For the river area (i.e.,
the second row of (b) and the first row of (d) in Figure 8), LVNet [18], EGNet [22],
and SMD [31] can only roughly discover the potential location of the object.

(2) The sharp edge of the object. How to get a clear object edge has always been a
hot issue in the field of SOD. For all the specific challenging scenarios in Figure 8,
the competitors can hardly get a saliency map with sharp edges. On the contrary,
the proposed method can obtain precise and reliable object edges, especially in small
objects and low contrast scenes.

(3) The internal integrity of the object. From the second image of (b) and two images of
(d) in Figure 8, it can be seen that most models cannot maintain the integrity of the
object for the saliency detection of scenes containing slender and large targets, such as
LVNet [18], F3Net [50], GateNet [59] , and MINet [19]. In comparison, our SARNet
can obtain internally consistent saliency maps.

RSI GT Ours DAFNet LVNet EGNet F3Net GateNet MINet R3Net SMD

(a)
Small

Objects

(c)
Low 

Contrast

(d)
Cluttered 

background

(d)
Big

Objects

Figure 8. Visual comparison between our results and SOTA methods in various challenging RSI
scenes, including scenes with small (a) and big (b) objects, scenes with low contrast (c), and cluttered
backgrounds (d), better for zooming in. Our SARNet under the ResNet50 backbone and deep learning
based methods are trained or retrained on the EORSSD dataset.

4.2.3. Extension Experiment on NSI Datasets

To further discuss the proposed model’s compatibility and scalability, we compare
it with nine SOTA saliency detection models, including BMPM [63], PiCA [64], RAS [44],
PAGE [45], AFNet [65], BASNet [66], F3Net [50], GateNet [59], and MINet [19], on three
NSI datasets that are widely used in SOD. Judging from the four evaluation metrics’ scores
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in Table 2 (marked in red is the best), our SARNet can be highly competitive with these
SOTA models, even better than most SOD models. In addition, some visual comparison
results in NSI are shown in Figure 9, our results have sharp boundaries while maintaining
the integrity of salient objects.

NSI Ours MINet LDF F3Net PAGENet BASNet BMPMGT

Figure 9. Visual comparison with some SOTAs on NSI datasets.

Table 2. The extended experimental results on three NSI datasets for saliency detection. The best three results are highlighted
in red, blue and green. ↑ and ↓ denote larger and smaller is better, respectively.

Models
DUT-OMRON [56] DUTS-TE [55] HKU-IS [34]

Sξ ↑ mEφ ↑ wFβ ↑ M ↓ Sξ ↑ mEφ ↑ wFβ ↑ M ↓ Sξ ↑ mEφ ↑ wFβ ↑ M ↓

20
18

BMPM [63] 0.809 0.837 0.681 0.064 0.862 0.860 0.761 0.049 0.907 0.937 0.859 0.039
PiCA [64] 0.832 0.841 0.695 0.065 0.869 0.862 0.754 0.043 0.904 0.936 0.840 0.042
RAS [44] 0.814 0.846 0.695 0.062 0.839 0.861 0.740 0.059 0.887 0.929 0.843 0.045

20
19

PAGE [45] 0.824 0.853 0.722 0.062 0.854 0.869 0.769 0.052 0.903 0.940 0.866 0.037
AFNet [65] 0.826 0.853 0.717 0.057 0.867 0.879 0.785 0.046 0.905 0.942 0.869 0.036

BASNet [66] 0.836 0.869 0.751 0.056 0.866 0.884 0.803 0.048 0.909 0.946 0.889 0.032

20
20

F3Net [50] 0.838 0.870 0.747 0.053 0.888 0.902 0.835 0.035 0.917 0.953 0.900 0.028
GateNet [59] 0.838 0.862 0.729 0.055 0.885 0.889 0.809 0.040 0.915 0.949 0.880 0.033
MINet [19] 0.833 0.865 0.738 0.055 0.884 0.898 0.825 0.037 0.919 0.953 0.897 0.029

SARNet 0.843 0.873 0.773 0.058 0.890 0.904 0.827 0.037 0.920 0.956 0.914 0.028

4.3. Ablation Study

Section 3 describes and explains the details of the proposed architecture in detail,
from which we can see that our SARNet is composed of three key components, i.e., the
backbone network for feature extraction, the integration strategy of side-out features,
and the proposed semantic guidance decoding (SGD) module and parallel attention fusion
(PAF) module. Therefore, this section conducts ablation experiments in the following three
aspects to evaluate the necessity and contribution of each key component:

• Scalability. Table 1 shows that the performance of SARNet can be effectively improved
by using better backbones, and it also demonstrates the scalability of the proposed
architecture. As shown in Table 1, the benchmark results on two RSI datasets show that
the performance of SARNet can be effectively improved through a better backbone,
which demonstrates the scalability of the proposed network architecture. As shown
by the expansion experiments on NSI datasets in Table 2, the proposed model has
exceptional competitive detection performance on multiple natural scene datasets,
which further shows the compatibility and robustness of our SARNet.
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• Aggregation strategy. Table 3 quantitatively shows the interaction and contribution
of the proposed semantic guidance and cascade refinement mechanism on two RSI
datasets. “LF3” and “HF3” respectively involve only three low-level features (F1 ∼ F3)
and three high-level features (F3 ∼ F5). “SGD1” and “SGD2”, respectively, refer to
only the combination of F5 and F5 + F4 in the semantic guidance stage. “PAFg” and
“PAFh”, respectively, use the combination of Fl + Fg and Fl + Fh in the parallel feature
fusion stage. It can be seen from the metric scores in Table 3 that the proposed model
benefits from the additional global semantic features and the feature aggregation
strategy adopted.

• Module. We conducted some evaluations on the effectiveness of the proposed modules.
The baseline model (BM) used is a network with FPN structure. We assembled the
SGD and PAF modules on the BM during the experiment, and the scores are shown in
Table 4. Note that multi-level features are integrated by simple concatenate or addition
operations to replace the proposed feature aggregation modules in the experiment.
From the experimental results of the two datasets, we can see that both SGD and PAF
modules can improve the model’s performance in varying degrees. The PAF module
contributes more to the network than the SGD module. With the combination of the
two modules, the proposed model can achieve the best performance.

Table 3. Ablation study of different aggregation strategies on the ORSSD and EORSSD datasets.

Settings
ORSSD [18] EORSSD [20]

Sξ ↑ mEφ ↑mFβ ↑ wFβ ↑ M ↓ Sξ ↑ mEφ ↑ mFβ ↑ wFβ ↑ M ↓

LF3 0.875 0.831 0.742 0.682 0.032 0.843 0.825 0.732 0.688 0.031
HF3 0.889 0.862 0.778 0.691 0.022 0.881 0.846 0.755 0.681 0.026
SGD1 0.904 0.918 0.833 0.792 0.019 0.894 0.901 0.812 0.773 0.023
SGD2 0.918 0.931 0.866 0.849 0.014 0.902 0.928 0.838 0.792 0.017
PAFg 0.924 0.938 0.873 0.864 0.012 0.920 0.946 0.845 0.816 0.011
PAFh 0.917 0.927 0.868 0.853 0.014 0.916 0.937 0.841 0.810 0.013
SARNet 0.935 0.966 0.887 0.872 0.010 0.929 0.961 0.857 0.824 0.008

Table 4. Ablation study with different components combinations on the ORSSD and
EORSSD datasets.

Settings ORSSD [18] EORSSD [20]

BM SGD PAF Sξ ↑ mEφ ↑ mFβ ↑ wFβ ↑ M ↓ Sξ ↑ mEφ ↑ mFβ ↑ wFβ ↑ M ↓

X 0.807 0.855 0.727 0.742 0.047 0.796 0.832 0.711 0.724 0.045
X X 0.868 0.896 0.812 0.800 0.028 0.857 0.894 0.811 0.793 0.024
X X 0.876 0.923 0.834 0.815 0.018 0.867 0.927 0.835 0.807 0.017
X X X 0.935 0.966 0.887 0.872 0.010 0.929 0.961 0.857 0.824 0.008

4.4. Complexity Analysis

We provide some comparisons of the complexity of CNN-based SOD algorithms,
including model parameters (#Param), GPU memory usage, and the number of floating-
point operations (FLOP), as shown in Table 5. For SOD detectors, memory usage and FLOPs
tested using a 336 × 336 input image except that a method specifies its input dimensions.
Here, #Param and GPU memory usage are measured in millions (M), and the number of
FLOPs is measured in Giga (G). From these criteria for evaluating the complexity of the
model, we can see that our method is at a lower-middle level.
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Table 5. Model complexity comparison of some CNN-based methods

Complexity DSS EGNet PiCA AFNet BASNet F3Net GateNet MINet SARNet
[21] [22] [64] [65] [66] [50] [59] [19] Ours

#Param(M) 62 108 33 37 87 26 100 270 40
Memory(M) 3209 1177 1541 1123 1103 652 2058 2355 1126

FLOPs(G) 115 271 37 36 127 15 84 93 38

4.5. Failure Case

Although our model is more advanced than SOTAs in qualitative and quantitative
experiments, a few cases in which the detection results are not satisfactory are shown
in Figure 10. As shown in the first three columns in Figure 10, when the scene contains
salient objects other than GT objects (that is, oil tanks, roofs, and water in the first to third
columns), the detector can find all potential objects, which may require further contextual
constraints to mitigate the situation. Our model detects small objects (cars and ships) in
the fourth and fifth columns rather than bridges in the scene, which may be due to the lack
of image data with salient objects on bridges in the training data (only four in EORSSD).
In the sixth and seventh columns, we show examples of incomplete target detection, which
can be improved by fine-tuning or training optimization.

Ours

RSI

GT

Figure 10. Some failure cases in RSI.

5. Conclusions

This paper explores salient object detection in complex optical remote sensing scenes
and tries to solve the challenging problems of inaccurate location and the unclear edge
of salient objects. We propose a novel semantic-guided attention refinement network
for SOD of optical RSI, which is an end-to-end encoding-decoding network architecture.
The proposed SGD module focuses on the aggregation of high-level features to roughly but
accurately locate the objects in the scene and guides the aggregation of low-level features
through top-down feedback to refine the boundaries. The PAF module further integrates
high-level and low-level side-out features and semantic guidance features through corre-
sponding attention mechanisms. The comprehensive comparison between two RSI datasets
and three extended NSI datasets and various ablation experimental results show that our
SARNet shows the most advanced performance and strong robustness and compatibility
on multi-scene datasets.

In future works, we will further study the following two directions: (1) to make more
and larger optical RSI data sets for SOD. At present, the largest optical RSI dataset, i.e.,
EORSSD [20], contains 2000 images, which is higher than the number of the ORSSD [18]
images. However, compared with the number of NSI for SOD or other datasets for object
detection and semantic segmentation, the number of images is insufficient to support
large-scale deep learning. Besides, remote sensing data usually cover a wide range of
land, so it is necessary to expand the scale of the image to cover more. (2) Explore the
multi-modal SOD method for RSI. In the last two years, the SOD method for RGB-D has
been widely studied in NSI [33,46,67]. A variety of sensors can capture remote sensing
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images; naturally, the idea of multi-modal SOD can be extended to the SOD of multi-source
remote sensing scenes.
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