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Abstract: Ship detection is a significant and challenging task in remote sensing. At present, due to
the faster speed and higher accuracy, the deep learning method has been widely applied in the field
of ship detection. In ship detection, targets usually have the characteristics of arbitrary-oriented
property and large aspect ratio. In order to take full advantage of these features to improve speed and
accuracy on the base of deep learning methods, this article proposes an anchor-free method, which
is referred as CPS-Det, on ship detection using rotatable bounding box. The main improvements
of CPS-Det as well as the contributions of this article are as follows. First, an anchor-free based
deep learning network was used to improve speed with fewer parameters. Second, an annotation
method of oblique rectangular frame is proposed, which solves the problem that periodic angle and
bounded coordinates in conjunction with the regression calculation can lead to the problem of loss
anomalies. For the annotation scheme proposed in this paper, a scheme for calculating Angle Loss is
proposed, which makes the loss function of angle near the boundary value more accurate and greatly
improves the accuracy of angle prediction. Third, the centerness calculation of feature points is
optimized in this article so that the center weight distribution of each point is suitable for the rotation
detection. Finally, a scheme combining centerness and positive sample screening is proposed and its
effectiveness in ship detection is proved. Experiments on remote sensing public dataset HRSC2016
show the effectiveness of our approach.

Keywords: anchor-free method; ship detection; rotation object detection; remote sensing images

1. Introduction

In the field of remote sensing, ship detection is always an important subject. Remote
sensing ship images are generally divided into two categories: ships offshore and ships
inshore. Images containing ships offshore usually appear as a large area with a small
number of targets. For this kind of image, we need a detection method with fast processing
speed. Images containing ships inshore often appear as dense targets, and some of the
targets are similar to those on land. For this kind of image, we need a detection method
with high accuracy. Considering the above requirements, this article aims to propose an
accurate and efficient method for ship detection in different environments.

In recent years, deep learning has a full application in target detection, and some
widely used target detection methods have been migrated and applied to various fields.
Due to the excellent performance of deep learning in the field of target detection, we
use deep learning method to detect ships in remote sensing images. At present, deep
learning methods on target detection can generally be divided into two types: anchors
based detectors [1–3] and anchor-free based detectors [4–8].
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Compared with the anchors based detectors, the anchor-free based detectors appeared
later, but it has more advanced theory and better development prospect. The anchor based
detectors need to design multiple anchors of different sizes and shapes for each point on
the feature map to match the ground truth, which not only needs to set a large number of
hyperparameters in advance but also makes the training process complicated.

The anchor-free based detectors simplify this process. At present, anchor-free based
detectors can be divided into the method based on key point detection [4–6] and the method
based on dense box [7,8]. Their common idea is to reduce the task of predicting each point
on the feature map.

Methods based on key point detection such as CornerNet [4] used corner pooling to
cluster the feature map to the extreme value point in both horizontal and vertical directions.
In FCOS [8], which is a method of dense box detection, each point is regarded as a single
prediction unit, and the target position is predicted by calculating the horizontal and
vertical length of the feature point to the four edges of the target box. FCOS proposes
centerness, which gives weight from small to large to each feature point within the target
range according to its position from far to near to the center, so that the point at the center
has greater influence on the predicted result. In COCO dataset [9], FCOS also achieves
better detection effect.

In the general methods described above, they use horizontally placed rectangular
bounding box (BBox) to locate ship targets. However, in remote sensing image detection,
the direction of the ship is equally important information. Moreover, in the case of inshore,
the dense arrangement of ships usually causes trouble to the recognition of BBox [10,11].

At present, there exists the problem of loss anomaly in the object detection of rotation
bounding box (RBox) [12]. The common annotation for RBox is to record the center point,
width, height and rotation angle. Therefore, labeling an RBox needs to set an axis as the
starting point for the rotation angle. For a label format (x, y, w, h, θ) of RBox, there is
an equivalent with it, which is (y, x, w, h, θ ± π

2 ). This non-unique representation can
lead to situations where the network predicts the correct target location but calculates a
large loss. In SCR-Det [13] proposed by Yang, in order to solve this problem, the loss of
RBox is calculated by SkewIOU Loss, which regulates the direction of gradient descent by
introducing constraints of IOU Loss to assist the calculation of SmoothL1 Loss.

Some teams have proposed ways to solve this problem from annotations. The first is to
record the coordinates of the four vertices. The DOTA dataset [14] produced by the teams
of Xia of Wuhan University and Bai of Huazhong University of Science and Technology and
the UCAS-AOD dataset [15] annotated by the Pattern Recognition and Intelligent System
Development Laboratory of the University of Chinese Academy of Sciences adopted this
annotation method. Another way to mark a RBox is to record the outer BBox of the RBox,
the clockwise offset of the four vertices of the RBox and the four vertices of the BBox.

In this article, we propose a method of anchor-free based rotation ship detection,
which is named CPS-Det, to reach the following goals:

• A reliable labeling method is proposed and combined with the prediction method of
anchor-free.

• A better method of loss calculation is proposed for angle prediction, which makes
angle prediction more accurate.

• The centerness calculation is optimized to make the weight distribution of each feature
point more reasonable, and the angle information is introduced to make it fit with the
predicted category and position.

• A Cascaded Positive sample Screening (CPS) scheme is proposed, which greatly
improves the accuracy of anchor-free based detector.

2. Materials and Methods

In this section, we will detail our proposed network architecture and show how it
works. In CPS-Det, we set up a feedback mechanism to carry out multiple positive sample
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screening, which reduces a lot of geometric operations while filtering out the background
information around the target.

2.1. Network Structure

As shown in Figure 1, the CPS-Det can be divided into three components: the backbone
network for feature extraction, the Feature Parymid Network (FPN) [16] for further feature
representation, the refined detection head for final prediction and the postprocessing for
train or test.

C1

C2

C3

C4

C5

Head

Head

Head

Head

Head

Classification

Regression

Angle

Centerness

ResNext50 NAS-FCOS FPN PredictionDetection HeadInput

Figure 1. Network of CPS-Det.

2.1.1. Feature Extraction

The backbone network of CPS-Det uses ResNeXt [17], which performs well in target
detection. The ResNeXt network is an improvement on the Residual Neural Network
(ResNet) [18], which was introduced in 2015 and won first place in the ImageNet competi-
tion classification task. The traditional method to improve the accuracy of the model is to
deepen or widen the network. However, with the increase of the number of hyperparame-
ters (such as the number of channels, filter size, etc.), the difficulty of network design and
computational overhead will also increase. By modifying the topology of the submodules,
ResNext can improve the accuracy without increasing the parameter complexity and also
reduce the number of hyperparameters. The structure of ResNeXt is shown in Table 1.

2.1.2. Feature Fusion

Next, we input the feature map into the feature fusion network, which is named
NASFCOS-FPN [19]. Instead of the traditional, hand-crafted approach, NASFCOS-FPN
made full use of neural architecture search with reinforcement learning [20].

Neural architecture search with reinforcement learning is used to train a controller to
select the best model structure in a given search space. It was proposed by NAS-FPN [21].
Based on Neural Architecture Search (NAS) with reinforcement learning, NAS-FPN de-
signed a new controller. The controller uses the accuracy of the submodel in the search
space as the reward signal to update the parameters. Thus, through such trial and error,
the controller learns better structure, and the search space plays an important role in the
successful search of the architecture.

NASFCOS-FPN uses NAS to design FPN for FCOS. It designs a series of selectable
filters as the search space, and uses the NAS to select the filters and the connection mode.
The FCOS network is trained with such a search strategy, and the FPN obtained is shown
in the Figure 1. In COCO dataset [9], compared with FCOS, FCOS with NASFCOS-FPN
improved by 2.4% in AP.
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Table 1. The structure of ResNeXt50.

Stage Output ResNeXt50

conv1 112 × 112 7 × 7, 64, stride 2

conv2 56 × 56

3 × 3, max pool, stride 21× 1, 128
3× 3, 128 C = 32
1× 1, 256

× 3

conv3 28 × 28

1× 1, 256
3× 3, 256 C = 32
1× 1, 512

× 4

conv4 14 × 14

1× 1, 512
3× 3, 512 C = 32
1× 1, 1024

× 6

conv5 7 × 7

1× 1, 1024
3× 3, 1024 C = 32
1× 1, 2048

× 3

1 × 1 global average pool
1000-d fc, softmax

params 25.0 × 106

2.1.3. Prediction

The output of the feature fusion network will be input to the classification branch
network, the localization branch network and the centerness branch network.

The classification branch network will predict the confidence of each point on the
feature maps of different scales. This confidence determines the probability that the point
belongs to a target.

The localization branch network is divided into BBox location branch and angle branch.
The BBox location branch outputs the target outer rectangular box position predicted by
each point on the feature maps of different scales. The angle branch outputs the target
direction predicted by this point. The two branch networks predict the oblique rectangle
position of the target together.

The centerness branch network outputs the distance between the point on the feature
maps and the center of the target, ranging from 0 to 1. The higher the value, the closer the
point is to the center.

2.1.4. Postprocessing

In the training stage, the output of the classification branch, the localization branch
and the centerness branch will be used to calculate the classification loss, the BBox reg loss,
the Angle Loss and the centerness loss.

In the test stage, points with high confidence in both classification branch and center-
ness branch will be screened out and their corresponding location output in localization
branch will be obtained. After non-maximum suppression (NMS), the final prediction
result is obtained.

2.2. Location Regression

In the input part of the network, we processed the position of the target as shown in
the Figure 2. First, we calculate the target’s BBox (xmin, ymin, xmax, ymax) based on its
RBox (x-center, y-center, w, h, θ). Secondly, we calculate the intersection point of target’s
RBox and BBox on the top and left side of the vertex. Then we calculate the horizontal
and vertical distances between these two intersection points and the upper left vertex
of the BBox (L1, L2) and normalize them with W and H to get (Ratio1, Ratio2). In this
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representation, each oblique rectangle has a unique coordinate (xmax, ymax, xmin, ymin,
ratio1, ratio2), which is free from periodic interference by angles. Finally, for each point
on the feature maps, if it is within the target’s BBox, we calculate its distance to the four
boundaries of the BBox (L, T, R, B). In this way, the input (L, T, R, B, Ratio1, Ratio2) our
network accepts is actually the target’s external BBox and two parameters converted by
angle of target. To facilitate subsequent calculations, we also input the angle of the target.
However, it does not participate in the calculation of loss to avoid interference caused by
angle periodicity.

Target

L2

L1

H

W

（x, y）

L R

T

B

L = x
T = y

R = W – x

B = H – y
Ratio1 = L1 / W
Ratio2 = L2 / H

Figure 2. The annotation form we defined of target’s RBox.

2.3. Positive Sample Screening

After using the marking method of BBox + ratio, a large portion of the background
points that do not belong to ships will be introduced into positive samples. This is due
to the ship’s slender shape. Inspired by FCOS, we define that the few points that are
closer to the center of the target predict a result that is closer to the actual location of the
target. Therefore, the following methods were used to screen the positive samples. It can
be visualized in Figure 3.

Feature 
Maps

Annotations

Images

Reg loss

Angle loss

Centerness 
loss

Classificatio
n loss

Feature 
extraction

Get  Bbox of 
Target

Limit range of 
Bbox

Equipotential 
line screening

Positive 
examples 
extraction

Calculate with 
information of 
ground truth

Positive example of ship A

Positive example of ship B

Positive example from prediction

Figure 3. The process of positive sample screening.

2.3.1. Scale Limit of BBox

We use the scheme of FCOS to directly limit the range of bounding box regression for
each level of feature maps. For the 5 outputted feature maps, we set 5 intervals at each
interval of (0, 64, 128, 256, 512, +∞). For the feature point inside the BBox of the target,
its distance to the four edges is (L, T, R, B). If Min (L, T, R, B) or Max (L, T, R, B) is not in
the corresponding value range of the feature map to which the feature point belongs, the
feature point will no longer be regarded as a positive sample. As shown in Figure 3, in
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the loss calculation of a feature map, since the size of ShipA does not belong to the scale
interval corresponding to this feature map, all points in the region where it is located are
not considered as positive samples.

2.3.2. Defined Centerness

For the positive samples obtained after the above multi-scale screening, the centerness
weight was calculated and the second screening was performed.

In FCOS, the weight of feature points is calculated by the following formula:

c =

√
min(l, r)×min(t, b)
max(l, r)×max(t, b)

(1)

According to Figure 2, (l, t, r, b) represents the distance between the target and the four
boundaries of the BBox. This formula intuitively reflects the degree of deviation between
the feature point and the target center. However, the weight distribution constituted by
feature points is shown in the Figure 4a. It does not have uniform equipotential lines.

(a) centerness of FCOS (b) round equipotential lines (c) elliptic equipotential lines

Figure 4. The equipotential line of the weight distribution.

Based on the extraction of image features by convolutional network, within the target
range, the closer the feature points are to the target center, the higher the weight of their
prediction results will be. For a target, feature points that are equally distant from the
center should be equally weighted. With the center point of the target as the origin, the
distribution of feature points with the same weight will present a circular equipotential
line, as shown in Figure 4b. It is a better choice to replace the centerness of FCOS with the
following formula:

c = 1− x2 + y2

w
2

2 + h
2

2 (2)

(x, y) is the position of the feature point corresponding to the target center as the
origin, and w and h are the width and height of the target’s BBox. On that basis, due to the
particularity of the ship shape, the effective information on both sides of the ship is less
than the direction of the ship’s head and tail. Therefore, the distribution of equipotential
lines of feature points should be elliptical.

On the basis of the circular isopotential lines, we modify the ratio of the semi-major
axis to the semi-minor axis, and rotate the coordinate system according to the direction
angle of the target; we establish the following elliptic equation:

c = 1− (xcosθ − ysinθ)2 + k2 × (xsinθ + ycosθ)2

w
2

2 + h
2

2 (3)

θ is the direction angle of the target, and k is the ratio of the semi-major axis to the
semi-short axis of the ellipse. In this formula the distribution of the ellipse equipotential
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lines is close to the real shape of the target. Finally, the weights of feature points are shown
as Figure 4c.

In order to approach the true length-width ratio of the ship, we set the hyperparameter
k = 4. In this way, the weight of some feature points in the BBox will be negative, and most
of them are concentrated on the sides and boundary of the ship.

2.3.3. Feedback to Localization and Classification

The centerness we calculated will be used for classification prediction and localization
prediction. For localization prediction, we take centerness as the weight calculated by
BBox reg loss and Angle Loss, so that feature points with more effective information can
have higher prediction confidence. For classification prediction, we return the feature
points with non-zero weight in centerness, and they are regarded as positive samples
to participate in the loss calculation. As shown in Figure 3, The distribution of positive
samples filtered by centerness will form an ellipse according to the direction of the target,
rather than the rectangle that fills the entire target’s BBox. Different from localization
prediction, classification prediction takes the weight of centerness as a classifier, and the
value of weight itself does not participate in loss calculation.

In the rotation target detection method, GRS-Det [22], proposed by Zhang of Xidian
University, it first determines whether the feature points are within the RBox of the target
through geometric calculation, and then carries out weight calculation for each point. By
contrast, we simplify the process with this feedback mechanism. The method proposed in
this article does not need to establish a coordinate system in the feature map to determine
the attribution of each point. Moreover, we can also adjust the ellipse hyperparameter k to
control the proportion of positive samples to optimize the model of CPS-Det.

2.4. Loss Function

During the training stage, the loss function can be represented as the sum of classifica-
tion loss, BBox reg loss, Angle Loss and centerness loss.

The definition of total loss is as follows:

L = Lcls + λrLreg + λaLang + λcLcel (4)

Lcls, Lreg, Lang and Lcel represent Classification Loss, BBox Reg Loss, Angle Loss and
Centerness Loss. λr, λa and λc are used to balance the importance of the four terms.

• Classification Loss

Lcls =
1

Npos
∑
x,y

L f l(p(x,y), p∗(x,y)) (5)

Npos denotes the number of positive samples, L f l represents Focal Loss [23], p(x,y)
is the classification scores of each feature point on each feature map, p∗(x,y) is the
correspondence of the real information of the ground truth on the feature map.

• BBox Reg Loss

Lreg =
1

∑x,y c∗
(x,y)

∑
x,y

[LIOU(t(x,y), t∗(x,y))× c∗(x,y)] (6)

LIOU is the IOU Loss [24], c∗(x,y) is the centerness of each feature point calculated by
elliptic equipotential line. t(x,y) is the prediction of BBox. t∗(x,y) is BBox’s real location.

• Angle Loss

Lang =
1

∑x,y c∗
(x,y)

∑
x,y
{[Lsml∗(r1(x,y), r1∗(x,y)) + Lsml∗(r2(x,y), r2∗(x,y))]× c∗(x,y)} (7)

r1(x,y) and r2(x,y) is the two predicted ratios (Ratio1, Ratio2) used to calculate the
direction angle of the target, r1∗(x,y) and r2∗(x,y) is the ratios calculated from the real
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angle of the target.

Lsml∗(r, r∗) =

{
(r−r∗)2

r∗+1 , |r− r∗| < 1
|r− r∗| − 0.5, otherwise

(8)

In CPS-Det, the predicted angle of the target is calculated by:

θ = arctan(
r1×W
r2× H

) (9)

W and H are the width and height of target’s BBox. Therefore, as the angle approaches
0◦ or 90◦, r1 or r2 approaches 0. In this case, the small error of r will also have a big
impact on the calculation of the angle. To solve this problem, we improved SmoothL1
Loss from:

Lsml(r, r∗) =
(r− r∗)2

2
, |r− r∗| < 1 (10)

to:

Lsml∗(r, r∗) =
(r− r∗)2

r∗ + 1
, |r− r∗| < 1 (11)

Because of regulation of (r∗ + 1), Angle Loss has greater weight when the target di-
rection is horizontal or vertical. This enables the network to make better optimization
of the value boundary.

• Centerness Loss
Lcel(c, c∗) is Cross entropy loss. c is the predicted centerness and c∗ is the real centerness.

2.5. Summary of Algorithm Design

In this article, we use the anchor-free based deep learning network as the framework
and propose an original strategy of positive sample screening based on the this network
structure. In the process of prediction and postprocessing, a series of solutions are designed
to serve this strategy.

First, we put forward the annotation method in the form of (L, T, R, B, Ratio1, Ratio2).
In position regression, this method transforms the solution of RBox into the solution
of BBox. In addition to simplifying the operation, it also lays a foundation for positive
sample screening.

Second, we use the Scale limit of BBox proposed by FCOS. In FCOS, it is proposed
to better detect the small target inside the big target. It allows objects of different sizes
to belong to different feature maps. In ship detection of remote sensing images, there is
usually no overlap of targets. However, the use of the Scale limit of BBox makes each target
no longer belong to the whole feature map; it reduces redundant prediction tasks at each
feature map, which improves the prediction accuracy of each feature map.

Third, we propose the centerness calculated by the ellipse equipotential lines. Since
the elliptical equipotential lines are intended to approximate the shape of the ship, the
centerness value of the pixel inside the ship is larger. The centerness calculated in this step
can effectively clear the background around the ship.

Finally, in loss calculation, we take centerness as the weight, which makes the positive
sample points with high quality have higher confidence. In order to compensate for the
error in the calculation of horizontal and vertical ships’ angles caused by the annotation
method proposed in the first step, we put forward an Angle Loss calculation method to
correct the error.

3. Experimental Results and Discussions
3.1. Dataset and Evaluation Metrics

The HRSC2016 dataset [25] was used in the following experiment; it consists of two
scenarios, inshore ship and offshore ship, which are derived from six well-known harbors.
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Image sizes range from 300× 300 to 1500× 900. The training, validation and test datasets
consist of 436, 181 and 444 images, respectively.

The HRSC2016 dataset has a number of typical ship distributions, including inshore
docking, side-by-side docking and docking in shipyards. In the traditional ship detection
methods, the detection of ships docked inshore and docked in shipyard is usually a
difficult problem. In this scenario, the characteristics of ships are difficult to distinguish
from runways and containers. Meanwhile, the intensive docking of ships not only adds a
lot of difficulties to the traditional target segmentation algorithm but also to many current
deep learning methods. Therefore, the detection results on HRSC2016 dataset can directly
reflect the response ability of target detection network to complex scenes.

In order to evaluate the effectiveness of the network, we use recall rate, average
precision (AP) and computing speed as the evaluation criteria.

3.2. Experimental Environment

In this article, all the experiments are implemented under the Pytorch framework. On
HRSC2016 dataset, each input image was resized to 800× 800. The network is trained on
single Nvidia GeForce RTX 2080Ti, and the batch size is set to 4. In the experiment, the size
of the input training image is 800× 800, and the ResNext50 network was used.

We use the FCOS network as baseline, initialized with the ResNext50 pre-training
matrix, and the usual FPN to fuse features. In the subsequent training, the training results
of FCOS are used as initialization. The number of epochs in training is 50, and the initial
learning rate is 0.01. In each epoch, it is one iter to complete a training of all images within
a batch, and one epoch is completed after all images are trained. In order to achieve better
convergence of network training, the learning rate was 1

3 of the initial learning rate in the
first 500 iters, and then the learning rate was restored to 0.01. The learning rate at 60% and
80% of the training process decays to 1

10 of the current learning rate. In the experiment
initialized with FCOS, the number of training epochs dropped to 40. In each epoch, each
image goes through ten iterations with random flips, rotations, changes in brightness and
other data augmentations to increase the robustness of the detector.

3.3. Ablation Study

In this experiment, in order to obtain a more accurate comparison effect, we use
Equation (2) to calculate the centerness in the experiment using FCOS as baseline. In order
to test the results of positive sample screening, we conducted the following experiments:

1. Firstly, we experiment the effect of the limit on the regression size of the bounding
box on the results. After the restriction of BBox’s scale was removed, the positive
samples of each feature layer increased significantly. In the process of training, loss
declines slowly. When the pre-training matrix uses ResNext50 to train the same epoch,
loss does not decline to the minimum value. It also gets a bad result in validation.
The experimental results are shown in the Figure 5. In this experiment, a total of
617 images were trained, and they go through ten iterations to augment the data. In
the training of 50 epochs, a total of 77,000 iters were executed while batch = 4. The
calculation of Loss is shown in Equation (4). All of the λ are equal to 1. Without
limiting range of BBox, it only got a AP value of 0.601, and tests showed that it did
not capture the ship’s characteristics. The experiment proves that the large increase of
positive samples has a negative effect when the size restriction of BBox is canceled.



Remote Sens. 2021, 13, 2208 10 of 17

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
iters

1.0

1.5
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2.5

3.0
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Influence of limit range of BBox on loss descent curve
Limit range of BBox
Without limit

Figure 5. Loss descent curve of baseline.

2. Next, the influence of elliptic equipotential line feature screening and NASFCOS-FPN
on the experimental results is tested. Recall-Precision curve are shown in Figure 6. In
Figure 6, (Exp1, Exp2, Exp3, Exp4) corresponds to Table 2. By integrating the curves
in the figure, we get the AP of the different methods. As shown in Table 2, elliptic
equipotential line screening can improve the results. It improves the AP of baseline
by 1.92%. This also reached a consistent result with the first experiment, which is that
reducing the inferior positive sample points helps to improve the network’s ability to
acquire target features. At the same time, we tested the effect of NASFCOS-FPN on
the results. We introduce NASFCOS-FPN to optimize the feature fusion, which can
enable the retained positive sample points to obtain more reliable feature information.
It improves AP of baseline by 2.42%. Finally, we combine the two approaches; the AP
was improved to 0.891. Furthermore, this is the complete structure of CPS-Det. Its
loss curve is shown in the Figure 7. Training based on the baseline executed only 40
epochs, giving a total of about 60,000 iters.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

AP

Exp4
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Figure 6. AP curve of ablation study, "Exp" represents the experimental sequence number in Table 2.



Remote Sens. 2021, 13, 2208 11 of 17

0 10,000 20,000 30,000 40,000 50,000
iters

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

lo
ss

Loss descent curve
Classification loss
Bbox Reg loss
Angle loss
Centerness loss
Total loss

Figure 7. Loss descent curve of CPS-Det.

Table 2. Ablation study of CPS-Det on HRSC2016.

Model NASFCOS-FPN Equipotential Line AP No.

Baseline

No No 0.8578 Exp1
No Yes 0.8770 Exp2
Yes No 0.8820 Exp3
Yes Yes 0.8912 Exp4

3. The following experiment compared the results using improved scheme in the calcu-
lation of Angle Loss and using SmoothL1 Loss. According to Equation (11), we use
(r∗ + 1) to control weight of Angle Loss when |r− r∗| < 1. Experimental results have
proven that we have better detection results on both horizontal and vertical ships
compared to using SmoothL1 Loss directly. The results of the detection are shown in
Figure 8. Figure 8a is the result of using SmoothL1 Loss, and Figure 8b is the result of
using Angle Loss defined by us. We can see that in the horizontal and vertical cases,
the accuracy of angle detection is improved, and the problem of missed detection
caused by angle error is also improved.

4. We conducted a series of experiments as shown in Table 3 below to verify the influence
of the ellipse parameter k. As k increases, the positive sample will decrease as the
ellipse contracts, and the weight of all positive sample points except the center point
will also decrease. AP is going to increase as k goes up, but the growth rate is also
decreasing. This means that valid positive samples have been screened out, and the
further increase of k will only lead to the imbalance of positive and negative samples,
which finally leads to the decline of AP.

Table 3. The influence of the ellipse parameter k.

k 1 2 4 6 8

AP 0.8820 0.8877 0.8912 0.8892 0.8764
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Figure 8. The effect of Angle Loss.
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3.4. Result on HRSC2016

To demonstrate the performance of CPS-Det, we compared it with some state-of-the-
art models, i.e., Gliding Vertex [26], R3Det [27], IENet [28], FCOS [8] and GRS-Det [22]. The
overall comparison performance is reported in Table 4. It can be noted that the performance
of CPS-Det on AP is better than that of Gliding Vertex using the similar labeling method
and GRS-Det also using the anchor-free method. It is inferior to the R3Det by 0.14%, which
uses deeper layers on backbone. This shows that CPS-Det has advanced performance in
ship detection. Considering the accuracy and speed, CPS-Det still achieves excellent results.
As shown in Table 5, because the network is based on the anchor-free design and has strict
criteria for the selection of positive samples, it takes a short detection time on each image.
On the RTX2080 with TFLOPS 8.98% lower than the GTX1080Ti, our time is 6.39% longer
than the GRS-Det. On the RTX2080Ti with TFLOPS 21.57% higher than the GTX1080Ti, our
time is 22.52% shorter than the GRS-Det. In order to getting more intuitive comparison
of processing speed on different platforms, we propose the following formula to evaluate
the speed:

speed =
1

time× TFLOPS
(12)

The speed calculated by this formula represents the processing speed per unit of time
and unit of computing force.

Table 4. Overall performance comparisons on HRSC2016 dataset.

Model Backbone Anchor-Free AP

IENet ResNet101 Yes 0.7501
FCOS (BBox) ResNeXt50 Yes 0.8014

Gliding Vertex ResNet101 No 0.8820
R3Det ResNet101 No 0.8926

GRS-Det ResNet50 Yes 0.8890
CPS-Det ResNext50 Yes 0.8912

Table 5. Average speed evaluation on different models.

Model AP GPU TFLOPS Time Speed

R3Det 0.8926 GTX1080Ti 10.8 0.0833 s 1.112
GRS-Det (ResNet50) 0.8890 GTX1080Ti 10.8 0.0595 s 1.556

CPS-Det 0.8912 RTX2080 9.83 0.0633 s 1.615
CPS-Det 0.8912 RTX2080Ti 13.13 0.0461 s 1.652

To further show the performance of CPS-Det, the detection results are visualized
in Figure 9. According to the detection results, CPS-Det has a good detection effect for
different imaging sources, different sizes and different types of ships. This result also
confirms the improvement effect of the ellipse parameter k = 4 on the detection accuracy,
because it approximates the aspect ratio of the ship. CPS-Det can accurately detect targets
in the presence of dense arrangement and the interference of suspected targets on land.
Even if the ship is surrounded inside the land, the network can detect it through the target
characteristics obtained by training. This proves the robustness of the detector.
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Figure 9. Visualization of detection results from CPS-Det on HRSC2016 dataset.

3.5. Discussion

In this article, we discuss how positive sample screening can improve the detection
performance of achor-free based networks. Based on this idea, we improved the labeling
method of the target, the weight distribution of the positive sample and the calculation
method of Angle Loss. Through these methods, the performance of CPS-Det has been
greatly improved.

Compared with the anchor-based method, our thinking is obviously different. In
general, we believe that more scale anchors, deeper networks and more samples can be
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used to obtain more accurate prediction detectors. However, the opposite conclusion was
drawn in the experiment above, that is, screening out a small number of high-quality
positive samples has a positive impact on the detection accuracy. In our analysis, it is
believed that the anchor-based method realizes the gradient distribution from far to near
distance and from low to high overlap degree by matching the anchors and ground truth
of each feature point. Even if the feature point is not in the region that the target belongs
to, some of its anchors will form a good match to the target location. In the training,
they point to the real position of the target together through positional regression. In the
anchor-free based detector, however, each feature point has only one chance to predict its
distance from the target boundary. This makes it difficult to form a dense gradient but
will lead to a part of the background near the target to give the wrong prediction results,
affecting the accuracy of detection. Therefore, under the condition of positive and negative
sample equilibrium, keeping effective positive sample points can significantly improve the
accuracy and reduce the computation.

Based on the above conclusion, we arrive at a paradoxical fact: in a sense, increasing
or decreasing the number of positive samples both improve the target detection result.
The root cause of this paradox is not whether or not we use anchor-free based network
but the feature point-based convolutional network itself. We give each feature point a
variety of detection tasks, such as target classification, position, angle, etc. In the end, these
tasks are performed by a feature point with the highest confidence probability. This is
contrary to our common sense. In the process of human target recognition, the type of
target is usually determined by the central region. The outline of a target, on the other
hand, is determined by its edges. Based on this difference, we come to this conclusion:
whether using anchor-free based network or anchor based network, the purpose of positive
sample selection is to reach a critical point, so that a single feature point can obtain the
most accurate prediction for multiple tasks. How to make full use of the target information
in the image to achieve real intelligent recognition is still a complex and important subject.

There are still some aspects of the experiment above worth discussing:

• Under the limited scale of BBox, although the detection accuracy has been improved,
the feature maps in the middle lose the chance to predict small targets and large
targets. In the detection of large targets, because its aspect ratio is close to the setting
of ellipse hyperparameter k, it still has good detection results. However, in small
target detection, the performance of the detector is reduced.

• Although our improved Angle Loss optimizes the detection results of horizontal
and vertical targets, it does not fundamentally solve this problem. This is because
the angle is not predicted directly but calculated by trigonometric functions. As we
approach the boundary value, the error will affect the result more than we can adjust
it by weight. This can lead to angles that are not correctly predicted over a very small
interval. Furthermore, what we did was compress this interval to improve the overall
prediction accuracy. We tried to give more weight to the loss calculation close to the
boundary value, but this would lead to the inability to find the direction of gradient
descent in training.

These are the problems that we will try to solve in future research.

4. Conclusions

The experiment designed in this article achieves directional target detection based
on anchor-free network. On HRSC2016 dataset, CPS-Det has excellent detection accuracy
and faster detection speed. The annotation scheme proposed by us solves the periodicity
problem of angle in training. A series of subsequent positive sample screening based
on this scheme not only reduces the complex geometric operations but also reduces the
number of samples in which the network participates in the prediction.

At present, CPS-Det is proposed for ship detection and also makes a specific target
matching scheme for this purpose. In the task of ship detection, these proposed schemes
are proved to be effective.
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Different from the field of computer vision, under the limitation of resolution of
remote sensing images, the features of targets are fewer and simpler, mainly manifested as
simple geometric figures. Therefore, the scheme of assigning sample weights according to
target characteristics proposed in this paper can also be transferred to other related fields.
For example, the elliptical equipotential line scheme proposed in this paper can also be
applied to high tower detection or airport runway detection. Furthermore, the idea of
modeling the shapes for different types of targets can also be applied to the recognition
and classification of multiple targets in complex scenes.

In the future, we will apply it to more areas of remote sensing target recognition and
achieve higher accuracy and wider applications.
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