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Abstract: In most practical applications of remote sensing images, high-resolution multispectral
images are needed. Pansharpening aims to generate high-resolution multispectral (MS) images from
the input of high spatial resolution single-band panchromatic (PAN) images and low spatial resolution
multispectral images. Inspired by the remarkable results of other researchers in pansharpening based
on deep learning, we propose a multilevel dense connection network with a feedback connection.
Our network consists of four parts. The first part consists of two identical subnetworks to extract
features from PAN and MS images. The second part is a multilevel feature fusion and recovery
network, which is used to fuse images in the feature domain and to encode and decode features
at different levels so that the network can fully capture different levels of information. The third
part is a continuous feedback operation, which refines shallow features by feedback. The fourth
part is an image reconstruction network. High-quality images are recovered by making full use
of multistage decoding features through dense connections. Experiments on different satellite
datasets show that our proposed method is superior to existing methods, through subjective visual
evaluation and objective evaluation indicators. Compared with the results of other models, our
results achieve significant gains on the multiple objective index values used to measure the spectral
quality and spatial details of the generated image, namely spectral angle mapper (SAM), relative
global dimensional synthesis error (ERGAS), and structural similarity (SSIM).

Keywords: convolutional neural network; feedback; pansharpening; multilevel; double stream structure

1. Introduction

Remote sensing satellite images are a type of image that has been widely concerned
and applied at present. They provide an important reference for applications in digital
maps, disaster emergency, and geological observation [1,2]. In practical remote sensing
image applications, the images must simultaneously have the highest spatial resolution
and spectral resolution. The two most important metrics, the incident radiation energy
of the sensor and the amount of data collected by the sensor, are limited by the physical
structure of the satellite sensor, making it impossible to obtain remote sensing images with
a high spatial resolution and spectral resolution at the same time.

To address this problem, current Earth observation satellites generally use two differ-
ent types of sensors simultaneously. They are used to obtain single-band panchromatic
(PAN) images with a high spatial resolution, but low spectral resolution, and multi-band
spectral (MS) images with complementary characteristics. As far as possible, the infor-
mation from the two images is used simultaneously, and a pansharpening algorithm is
typically used to fuse the two images so as to obtain images with both a high spatial
resolution and high spectral resolution.

Because of the demand for high-quality remote sensing images, much pansharpening-
based work has been carried out, and various algorithms for remote sensing image fusion
have been proposed, namely: (1) component substitution (CS) [3–6], (2) multi-resolution
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analysis (MRA) [7–11], (3) hybrid methods [12,13], and (4) model-based algorithms [14–16].
The core idea of the CS method is to first rely on conversion to project MS images into
another space to separate the spatial structure and the spectral information. The PAN
image and spatial structure component are then matched and replaced by the histogram so
that the PAN image has the same mean value and equation as the replaced component,
and finally, the pansharpening task is completed by an inverse transformation operation.
Methods such as intensity-hue-saturation (IHS) [3], principal component analysis (PCA) [4],
Gram–Schmidt (GS) [5], and partial substitution (PRACS) [6] all adopt this concept. These
methods achieve good results when the PAN image and MS image are highly correlated,
but because of the local differences caused by a spectral mismatch between the PAN image
and MS image, there is obvious spectral distortion in the fusion results.

In the MRA method, three main steps are used to fuse the image. The first step is to
use the pyramid transform or wavelet transform to process the source image and divide
it into multiple scales. Then, the fusion of each scale of the source image is carried out,
and the inverter operation generates the fusion result. This method provides both spatial
and frequency domain localisation. Decimated wavelet transform [7], à trous wavelet
transform [8], Laplacian Pyramid [9], Contourlet [10], and Curvelet [11] are examples of
this approach.

The hybrid method combines the advantages of CS and MRA methods in a combi-
nation of ways to achieve higher-performance fusion results. Model-based algorithms
operate mainly by establishing the MS image, PAN image, and high-resolution multispec-
tral (HRMS) image relationship model. They rely on prior knowledge for image fusion. A
hierarchical Bayesian model to fuse many multi-band images with various spectral and
spatial resolutions is proposed in [14]. An online coupled dictionary learning (OCDL) [15],
and, in [16], two fusion algorithms by incorporating the contextual constraints via MRF
models into the fusion model, have been proposed.

In recent years, deep learning and convolutional neural networks have achieved
outstanding results in all fields of image processing [17–32]. Inspired by image super-
resolution using deep convolutional neural networks (SRCNN) [17,18], Masi et al. [19]
proposed a network called pansharpening by convolutional neural networks (PNN), which
adopts the same three-layer structure as the other and combines specific knowledge in
the field of remote sensing to introduce nonlinear radiation indicators so as to increase
the input. This was the first application of a CNN in the pansharpening field. With
the remarkable effect of the residual structure, Wei et al. [20] designed a deep residual
network (DRPNN) for pansharpening. He et al. [21] proposed two detail-based networks
to clarify the role of CNN in pansharpening tasks from a theoretical perspective, and clearly
explained the effectiveness of the residual structures for pansharpening.

Yang et al. [22] proposed a deep network architecture for pansharpening (PanNet),
which is different from the other methods. A hopping connection called spectral mapping
was used to compensate for spectral loss caused by training in the high-pass domain.
This approach has achieved remarkable results, but it still has significant limitations. It
is generally accepted that PAN and MS images contain different information. The PAN
image is a carrier of geometric detail (spatial) information, while the MS image preserves
spectral information. PanNet is trained by directly superimposing the PAN and MS image
input network, resulting in the network’s inability to fully extract the different features
contained in the PAN and MS images, and results in an insufficient use of different spatial
information and spectral information. It only uses a simple residual structure, which
cannot fully extract the image features of different scales, and lacks the ability to recover
details. The network directly outputs the fusion results through one convolutional layer,
and fails to make full use of all of the features extracted by the network, affecting the final
fusion effect.

In this paper, we propose a multilevel dense connection network with feedback
connections (MDCwFB), including two branches, a detail branch, and an approximate
branch, based on the idea of detail injection and super-resolution work. Different spatial
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and spectral information are extracted from PAN images and MS images by the dual-stream
structure. Multi-scale blocks with attention mechanisms are used on both lines to extract
more abundant and effective multi-scale features from the image. The image fusion and
reconstruction work are carried out in the feature domain. The fused features are encoded
and decoded based on the idea of a dense connection. The shallow network is limited by
the size of the receptive field, and can only extract rough features; however, these features
are repeatedly used in the subsequent network, which further limits the learning ability
of the network. Therefore, we introduce the feedback connection mechanism to transfer
the deep features back to the shallow network through a long jump connection, which is
used to optimise the rough low-level features and enhance the early reconstruction ability
of the network. Through the interaction between the PAN image and MS image features,
the detail branch can fully extract the details of the low-resolution multispectral (LRMS)
image supplemented as an approximate branch, and the two can help each other obtain an
excellent HRMS image.

In summary, the main contributions of this study are as follows:

1. We propose a multi-scale feature extraction block with an attention mechanism (MEB-
wAM) to solve the problems of insufficient feature extraction and the lack of multi-
scale feature extraction ability of PAN images and MS images using multiple depth
cascaded networks. The spatial information and channel information are compressed
separately to obtain an importance index.

2. We use multilevel coding and decoding combined with densely connected structures
to fuse and reconstruct the extracted spatial and spectral information in the feature
domain. Deep networks encode the language and abstract information of the images,
making it difficult to recover the texture, boundary, and color information from
the advanced features; however, shallow structures are very good at identifying
these details. We inject low-level features into high-level features through long
jump connections, which can more easily recover fine realistic images, and dense
connections to make the feature graph semantic level in the encoder closer to the
feature graph in the decoder.

3. We propose using multiple subnetworks. We iterate the deep structure in the subnet-
work to inject the deep features from the previous subnetwork, that is, the HRMS that
completes rough reconstruction, into the shallow structure of the latter subnetwork.
This is done by way of a feedback connection to optimize the shallow features of the
latter, enabling the network to obtain a better reconstruction ability earlier.

4. We use the L1 loss function to optimise the network and attach the loss function to
each subnet to monitor its output in order to ensure that useful information can be
transmitted backwards in each iteration.

The remainder of this paper is arranged as follows. We present the CNN background
knowledge and work that has achieved remarkable results in other areas and other related
work based on CNN pansharpening in Section 2. Section 3 introduces the motivation of our
proposed multilevel dense connected network with a feedback connection, and explains
the structure of each part of the network in detail. In Section 4, we show the experimental
results and compare them with the other methods. We discuss the effectiveness of the
network structure in Section 5, and we summarise the paper in Section 6.

2. Background and Related Work
2.1. Convolutional Neural Networks

VGG-Net [25] and GoogLe-Net [26] show the possibility of obtaining better results
by increasing the depth and width of the network. Using multiple continuous small-size
instead of large-size convolution kernels to reduce the network parameters and using
different-size convolution kernels to obtain multi-scale features will inspire the design of
CNN frames in the future.

Previous work has shown that increasing the depth of the network improves the per-
formance of the network significantly, but because of the gradient explosion and gradient
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disappearance, deeper networks are difficult to train. He et al. [27] proposed a residual
learning framework to reduce the difficulty of network optimisation and to reduce degra-
dation problems so that deeper network structures could be used. ResNet, a method of fast
identity mapping, is used to design residual blocks; adding shortcut connections between
the input and output neither introduces additional parameters nor increases computational
complexity. Simply learning the difference between input and output makes network opti-
misation simple, allowing for the design of deeper and more complex network structures
to improve the results. However, even when dealing with a minimal dataset, it is easy to
result in network overfitting. To overcome this difficulty, Huang et al. [28] proposed the
dense connection network (DenseNet), designed for all of the previous layers and the rear
layers, which has excellent protection against overfitting. DenseNet makes comprehensive
use of simple features from shallow networks through feature reuse, and achieves a better
performance than ResNet, with fewer parameters and lower computational costs.

Olaf et al. [29] proposed the U-Net network, which has a fully symmetric encoder-
decoder structure. The compression path in the first half is used for feature extraction,
and the symmetric extended path is used for image recovery. The encoder acquires
the multi-scale features by reducing the spatial dimension, and the decoder gradually
recovers the details and spatial dimensions of the image. The loss of information during
the downsampling process is compensated by adding a shortcut connection between
the encoder and the decoder, which helps the decoder to better repair the details of the
target. This concept is widely used by other computer vision and image processing tasks.
Inspired by the idea that humans choose the next picture according to pictures they have
already seen, Li et al. [32] proposed a picture super-resolution feedback network to refine
the low-level information through high-level information. The design concept of these
image processing network frameworks has inspired other researchers who carried out the
pansharpening task and promoted the development of the convolutional neural network
and specific knowledge for pansharpening work in the remote sensing field.

2.2. CNN-Based Pansharpening

Inspired by the remarkable results of image super-resolution work based on CNNs,
Masi et al. [19] first proposed using a CNN to complete the pansharpening task. The
MS image and PAN image channels are superimposed into the network to obtain a form
similar to the SRCNN single input and single output. In a follow-up work, a nonlinear
radiation index was introduced to increase the input and further improve performance.
Wei et al. [20] introduced a residual network into the pansharpening work and designed
a deep residual network with an 11-layer network. Traditional pansharpening methods
generally use the high-pass information contained in PAN images to enhance the structural
consistency. Inspired by this concept, Yang et al. [22] proposed a network called PanNet,
which combines knowledge and deep learning technology in the remote sensing field.
It uses high-pass components as the network input. Before entering the network, the
original image is used to subtract the low-pass content obtained using the mean filter so
as to obtain the high-frequency information of the MS and PAN images used for training.
To compensate for the loss of spectral information caused by obtaining high-frequency
information in the early stage, PanNet uses a jump connection called spectral mapping to
inject the up-sampled MS image into the fusion image. Enhancing the spatial information
capture ability and forcing the network to fuse spectral information through the high-
frequency information training network delivers excellent results. To further improve
the network performance, Fu et al. [33] introduced cavity convolution based on PanNet.
By using multi-scale expansion blocks with convolution layers with different expansion
rates, the ability of the network to fully capture the multi-scale features of the PAN images
and MS images is enhanced, and high-precision fusion images are obtained. The above
networks use the L2 loss function to optimise the network. Because early work using the
L2 loss function to optimise the network produces image blur, follow-up work uses the L1
loss function to train the new network.
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Liu et al. [34] proposed a two-stream fusion network for pansharpening tasks. Because
PAN and MS images have different spatial and spectral information features, TFNet uses a
two-stream structure to extract features from the PAN and MS images, respectively. The
image fusion reconstruction task is completed in the feature domain through the encoder–
decoder structure. Fu et al. [35] proposed an improvement to TFNet called ResTFNet, in
which a basic residual structure to improve the network performance replaces the common
CNN unit used by the former. Fu et al. [36] proposed a generation countermeasure network
for remote sensing image pansharpening (PSGAN) using a two-stream structure to extract
complementary information from the MS and PAN images. A generator is then built to
produce high-quality HRMS images using encoders and decoders. In PSGAN and RED-
cGAN [37], which are GAN-based models, the generator tries to generate images similar to
the ground truth and the discriminator tries to distinguish between the generated images
and the HRMS images. In RED-cGAN, the results are further improved by introducing
the residual encoder–decoder network and conditional GAN. So, both the generator and
the discriminator network in these two methods need the HRMS images for supervised
learning. The two models are different from other methods, and during training, they use
multiple loss functions to constrain network learning.

3. Proposed Network

In this section, we will introduce in detail the specific structure of the MDCwFB
model proposed in this study, which not only has a clear interpretability, but also has an
excellent ability to prevent overfitting and to reconstruct images early. We will introduce
the algorithm solution for the proposed model and give a detailed description of each part
of the network framework. The schematic framework of our proposed network is shown
in Figures 1 and 2. It can be seen that our model includes two branches: one, the merely
approximate branch of the LRMS graph, enhances the retention of spectral information,
and the other is the detail branch for extracting spatial details. Such a structure has a clear
physical interpretability and reduces uncertainty in the network training. The detail branch,
which has a structure similar to the encoder–decoder system, consists of four parts: feature
extraction, feature fusion and recovery, feedback connection, and image reconstruction.

Figure 1. Detailed structure of the proposed multistage densely connected network with feedback
connection. Red lines are defined as feedback connections.
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Figure 2. Specific structure of each subnet.

3.1. Feature Extraction Networks

A PAN image is considered the carrier of spatial detail in the pansharpening task, and
the MS image is the carrier of spectral information. Spatial and spectral information are
combined to generate high-resolution images through the PAN and MS image interaction.
Based on the ideas described previously, we rely on a CNN to fully extract the different
spatial and spectral information and to complete the feature fusion reconstruction and
image restoration in the feature domain.

We use two networks with the same structure to extract features from the PAN and
MS images, respectively. One network takes a single-band PAN image (size H ×W) as
the input, and the other takes a multi-band MS image (size H × W × N) as the input.
Before entering the network, we upsampled the MS image to the same size as the PAN
image via transposing convolution. Each feature extraction subnet consists of two separate
convolution layers, followed by a parameter rectified linear unit (PReLU).

Many studies on the CNN framework indicate that the depth and width of the network
significantly affect the quality of the results. A deeper and wider network structure can
help the network learn richer feature information and can capture the mapping between the
semantic information and context information in features. He et al. [26] proposed a residual
network structure, and Szegedy et al. [27] proposed an inception network structure that
significantly increased the depth and width of the network. The jump connection proposed
by the former reduces the training difficulty after the network deepens. The latter points
out the direction for the network to extract multi-scale features.

Inspired by the multi-scale expansion blocks proposed by the above work and
Yang et al. [33] in PanNet, and the spatial and channel extrusion and excitation blocks
proposed by Roy et al. [38] to extract more fully the different-scale features in the
image and enhance the more important parts of the features for pansharpening tasks,
we propose an MEBwAM to use different receptive fields on a monolayer network
and to add to the middle of two convolution layers. The first 3 × 3 convolution
layer preliminarily extracts the image features. The second 3 × 3 convolution layer
preliminarily fuses the enhanced features of the two branches.

This MEBwAM structure is shown in Figure 3. We did not use cavity convolution to
extract multi-scale features, even if it can arbitrarily expand the receptive field without
introducing additional parameters. Because of the grid effect, cavity convolution is a
sparse sampling method. The superposition of the cavity convolution with multiple
different scales causes some features to be unused. Thus, the extracted features will also
lose their correlation and continuity of information, which will affect the feature fusion
reconstruction. We use convolution kernels of size 3 × 3, 5 × 5, 7 × 7, and 9 × 9 in four
branches, respectively. To reduce the high computational cost, we used multiple cascading
size 3 × 3 convolution layers to replace the large-size convolution kernels in the other
three branches. Each convolution layer is followed by a PReLU. Finally, the results after
the four path cascades are fused through one 1 × 1 convolution layer. We then extract the
spatial attention and channel attention through two branches and recalibrate the extracted
multi-scale features using the obtained indexes to measure the importance. The information
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that is more important to the fusion results is enhanced, and the relatively invalid parts
are suppressed. The channel attention branch uses the global average pooling layer to
compress the spatial characteristics, and it combines the 1 × 1 convolution layer and
PReLU function to obtain more nonlinearity and better fit the complex correlation between
channels. The spatial attention branches use 1 × 1 convolutional layers to compress the
channel features. At the end, the two branches use the sigmoid function to obtain an
index to measure the spatial information and the importance of the channel, and the jump
connection of the whole module effectively reduces the training difficulty and the possible
degradation problem, as follows:

FCSE(x) = σ(Conv1,64(δ(Conv1,32(µ(x))))) (1)

FSSE(x) = σ(Conv1,1(x)) (2)

FMFRB = FCSE(x) ∗ x + FSSE(x) ∗ x + x (3)

fMS = Conv3,64(δ(FMFRB(δ(Conv3,64(ILRMS))))) (4)

fPan = Conv3,64(δ(FMFRB(δ(Conv3,64(IPan))))) (5)

fP+M = Conv2,64( fMS)⊗ Conv2,64( fPan) (6)

Figure 3. Multi-scale feature extraction block with attention mechanism structure. The left shows the complete structure of
the entire module, and the right shows the specific structure of the four different sensory branches.

We use Conv f ,n(·) to represent convolution layers with size f × f convolution kernels
and n channels, and σ(·), δ(·), and µ(·) represent the sigmoid activation functions, PReLU
activation function, and global average pooling layer, respectively. LRMS and PAN repre-
sent the images as the input, FMFRB represents the multi-scale feature extraction layer, and
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x refers to the feature fused together by four branches. f MS and f Pan represent the extracted
MS and PAN image features, respectively, and ⊗ represents the concatenation operation.

3.2. Multistage Feature Fusion and Recovery Network

For the encoder–decoder architecture in our proposed network, we propose a mul-
tilevel feature fusion recovery block (MFRB) to implement the encoding and decoding
operations and subsequent feedback connections. The concrete structures of the MFRB and
residual block are shown in Figure 4. We use three residual blocks and two downsampling
operations to form the encoder structure. Unlike the symmetric structure of traditional
encoder and decoder networks, our decoder structure includes three residual blocks and
three upsampling operations. The downsampling operation increases the robustness to
some interference of the input image, while obtaining the features of translation invariance,
rotation invariance, and scale invariance and reducing the risk of overfitting. Continuous
downsampling can increase the size of the receptive field and help the network fully cap-
ture multi-scale features. In this study, we choose to use a convolution layer with a step
size of two to complete the downsampling operation. The two feature extraction subnets
are downsampled after two convolution layers and multi-scale feature extraction blocks.

Figure 4. Structure of the proposed residual block and multilevel feature fusion recovery block.

The structure shown in Figure 4 is inspired by Zhou et al. [39], who proposed the
U-Net++ structure for a multilevel feature fusion recovery module. Many studies have
shown that because of the different size of the receptive field, the shallow structure focuses
on some simple features of the captured image, such as boundary, colour, and texture
information. After many convolution operations, the deep structure captures the contextual
language information and abstract features of the image. Downsampling operations help
the encoder fuse and encode features at different levels, and the features are recovered
through upsampling operations and decoders. However, edge information and small parts
of large objects are easily lost during multiple downsampling and upsampling operations.
It is very difficult to recover detailed texture information from encoded image semantics
and abstract information, which seriously affects the quality of the pansharpening. Adding
jump connections between encoders and decoders with the same feature map size and using
shallow features to help the decoder complete the feature recovery solves this problem to
some extent.
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Different levels of characteristics focus on different informations, but the importance of
the pansharpening tasks is consistent. To obtain higher-precision images, we need to make
full use of different levels of features, and simultaneously, we need to solve the problem of
using jump connections between the encoder and decoder because of the different feature
levels. As shown in Figure 4, we decode the features after each encoding level, which
means that our MFRB produces multiple outputs, each corresponding to a feature level.
We decode each level of features and then connect the same level of encoder and decoder
using a dense connection, which not only makes the feature graph in the encoder and
decoder want a closer semantic, level but also increases the ability of the network to resist
overfitting. In the network, we double the number of feature graph channels at each
downsampling layer and halve the number of feature graph channels at each upsampling
layer. The residual blocks in the network include one 1 × 1 convolutional layer and two
3 × 3 convolutional layers. Each convolutional layer is followed by a PReLU. Because we
double the number of channels after each downsampling, and the input and output of
the residual units need to have the same size, we change the number of channels by 1 × 1
convolutional layers to create hopping connections. The input of each decoder consists
of features recovered from the upper decoder and features in the same level of encoder
and decoder.

3.3. Feedback Connection Structure

Feedback is the use of one set of conditions to regulate another set of conditions, which
is done to increase or suppress changes in the system. The mechanism is called positive
feedback when processes tend to increase system changes. Negative feedback refers to
processes that try to counter changes and maintain balance. Feedback mechanisms usually
exist in human visual systems. In cognitive theory, feedback connections connecting
cortical visual regions can transmit response signals from higher-order regions to lower-
order regions. Inspired by the work carried out by Li et al. [32] on image super-resolution,
they carefully designed a feedback block to extract powerful high-level representations for
low-level computer vision tasks and transmit high-level representations to perfect low-level
functions. Fu et al. [40] added this feedback connection mechanism for super-resolution
tasks to the network of pansharpening tasks. Our proposed network is similar to their
network structure with four time steps in the above study, but we use different feedback
blocks. We use four identical subnetworks to add feedback connections between adjacent
subnetworks. The specific structure of the subnetwork is shown in Figure 2.

Because of the feedforward connection, each network layer can only accept informa-
tion from the previous layer. The dense connection structure in the subsequent network
reuses these features repeatedly, which further limits the network reconstruction ability.
The feedback connection solves this problem very well. We complete the initial recon-
structed features through the MFRB and input them into the next subnetwork as deep
information. This way of bringing high-level information back to the previous layer can
supplement the semantic and abstract information lacking in the low-level features, im-
prove the error information carried in the low-level features, and correct some of the
previous states so that the network has a solid ability to rebuild early:

f1, f2, f3 = FMFRB( fP+M) (7)

f1, f2, f3 = FMFRB( fP+M ⊗ f3) (8)

where f 1, f 2, and f 3 represent the three-level features extracted using MFRB, and the
subscripts represent the number of downsamplings. The first subnetwork uses only the
PAN image and MS image features added after one downsampling as the input to the MFRB
structure. The following three subnetworks fuse the recovered feature of the previous
subnet and the features of f 3 for the two feature extraction subnets f P+M, and carry out the
subsequent feature fusion recovery work in the input MFRB after the cascade operation
represented by the ⊗.
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3.4. Image Reconstruction Network

For image reconstruction, we use three residual blocks and a convolution layer to pro-
cess the features after the fusion and recovery operations. Each residual block corresponds
to a feature recovered to the original size after upsampling. By adding dense connections
between different modules, we use the decoded features from different levels of encoders.
Finally, the results of the detail branch are added to the LRMS image, as follows:

frb1 = Conv3,64(Conv3,64(Conv1,64( fMS ⊗ fPan ⊗ Deconv2,128( f1)))) (9)

frb2 = Conv3,64(Conv3,64(Conv1,64( fMS ⊗ fPan ⊗ frb1 ⊗ Deconv2,128( f2)))) (10)

frb3 = Conv3,64(Conv3,64(Conv1,64( fMS ⊗ fPan ⊗ frb1 ⊗ frb2 ⊗ Deconv2,128( f3)))) (11)

frb = Conv3,4( fMS ⊗ fPan ⊗ frb1 ⊗ frb2 ⊗ frb3) (12)

Iout = ILRMS + frb (13)

We use⊗ to represent cascading operations; and Deconv f ,n(·) represent convolutional
and deconvolutional layers, respectively; and f and n represent the size and number of
channels of convolutional kernels, respectively. frb1, frb2, and frb3 restore the multilevel
image by reconstructing the three-level features through three residual blocks. Finally,
a convolution layer is used to recover the details needed for the LRMS image from the
features extracted from the two-stream branches and the reconstructed multilevel image,
combined with the LRMS images, and the two branches interact to generate high-precision
HRMS images.

3.5. Loss Function

The effectiveness of the network junction is an important factor affecting the final
HRMS image quality, while the loss function is another important factor. Early CNN-based
pansharpening methods use the L2 loss function to optimise the network parameters, but
the L2 loss function could give rise to the local minimum value problem and cause artefacts
in the flat region. Subsequent studies have proven that the L1 loss function obtains a better
minimum value. Moreover, the L1 loss function better retains spectral information such
as colour and brightness than the L2 loss function. Hence, the L1 loss function is chosen
to optimise the parameters of the proposed network. We attach the loss function to each
subnetwork to monitor the training results while ensuring that the information delivered
to the latter subnet in the feedback connection is valid:

loss =
1
N

N

∑
i=1

∣∣∣Φ(X(i)
p , X(i)

m ; θ)−Y(i)
∣∣∣
1

(14)

where X(i)
p , X(i)

m , and Y(i) represent a set of training samples; X(i)
p and X(i)

m mean the PAN
image and low-resolution MS image, respectively; Y(i) represents high-resolution MS
images; Φ represents the entire network; and θ is the parameter in the network.

4. Experiments and Analysis

In this section, we will demonstrate the effectiveness and superiority of our proposed
method through experiments using the QuickBird, WorldView-2, WorldView-3, and Ikonos
datasets. The best model was selected for the experiment by comparing and evaluating
the training and test results of models with different network structures and parameters.
Finally, the visual and objective indicators of our best model were compared with several
other existing traditional algorithms and CNN methods to demonstrate the superior
performance of the proposed method.
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4.1. Datasets

For QuickBird data, the MS image has four bands, including blue, green, red, and
near-infrared (NIR) bands, and a spectral resolution of 450–900 nm. For WorldView-2 and
WorldView-3 data, the MS image has eight bands, including coastal, blue, green, yellow,
red, edge, NIR, and NIR 2 bands, and the spectral resolutions of the image are 400–1040 nm.
For Ikonos data, the MS image has four bands, including blue, green, red, and near NIR
bands, and a spectral resolution of 450–900 nm. The spatial resolution information for the
different datasets is shown in Table 1.

Table 1. Spatial resolution and number of bands of datasets for different satellites.

Sensors Bands PAN MS

QuickBird 4 0.61 m 2.44 m
WorldView-2 8 0.46 m 1.85 m
WorldView-3 8 0.31 m 1.24 m

Ikonos 4 1 m 4 m

The network architecture in this study was implemented with the Pytorch deep
learning framework and was trained on an NVIDIA RTX 2080Ti GPU. The training time
for the whole program was about 8 h. We used the Adam optimisation algorithm to
minimise the l1 loss function and optimise the model. We set the learning rate to 0.001, the
exponential decay factor to 0.9, and the weight decay to 10−6. The LRMS and PAN images
were both downsampled by the Wald protocol in order to use the original LRMS images
as the ground truth images. The image patch size was set to 64 × 64 and the batch size
to 64. To facilitate visual observation, the red, green, and blue bands of the multispectral
images were used as imaging bands of RGB images to form colour images. The results are
presented using ENVI. In the calculation of the image evaluation indexes, other bands of
the images were used at the same time. The training set was used to train the network, and
the validation set was used to evaluate the performance. The size of the training and test
sets for the four datasets is shown in Table 2.

Table 2. Size of training and test sets for different satellite datasets.

Dataset Train Set Validation Set The Size of the
Original PAN

QuickBird 750 200 7472 × 6020
WorldView-2 600 150 8080 × 7484
WorldView-3 1000 300 13,632 × 11,244

Ikonos 144 16 5192 × 4632

4.2. Evaluation Indexes

Below, we introduce some widely used indicators to quantitatively evaluate the
performance of the proposed and comparative methods.

• SAM [41]: The spectral angle mapper (SAM) measures the spectral distortion of the
pansharpened image compared with the reference image. It is defined as the angle
between the spectral vectors of the pansharpened image and the reference image in
the same pixel, where x1 and x2 refer to two spectrum vectors, as follows:

SAM(x1, x2) = arccos(
x1 · x2

‖x1‖ · ‖x2‖
) (15)

• CC [35]: The correlation coefficient (CC) is a widely used index for measuring the
spectral quality of pansharpened images. It calculates the correlation coefficient
between the generated image X and the corresponding reference image Y, where w
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and h represent the width and height of the image, respectively, and is the average
value of the image:

CC =

w
∑

i=1

h
∑

j=1
(Xi,j − uX)(Yi,j − uY)√

w
∑

i=1

h
∑

j=1
(Xi,j − uX)

2 w
∑

i=1

h
∑

j=1
(Yi,j − uY)

2
(16)

• Q4 [42]: The quality indicator (Q4) is defined as follows: where z1 and z2 are two
quaternions; µz1

and µz2
formed by spectral vectors of MS images are the means of z1

and z2, respectively; σz1z2 denotes the covariance between z1 and; and σ2
z1

and σ2
z2

are
the variances of z1 and z2, respectively.

Q4 =
4|σz1z2 | ·

∣∣µz1

∣∣ · ∣∣µz2

∣∣
(σ2

z1
+ σ2

z2
) · (µ2

z1
+ µ2

z2
)

(17)

• RASE [34]: The relative average spectral error (RASE) estimates the overall spectral
quality of the pansharpened image, where RMSE(Bi)

2 is the root mean square error
between the i band of the pansharpened image and the third band of the reference
image, and M is the mean of the N bands.

RASE =
100
M

√√√√ 1
N

N

∑
i=1

RMSE(Bi)
2 (18)

• ERGAS [22]: The relative global dimensional synthesis error (ERGAS), also known
as the relative overall two-dimensional comprehensive error, is generally used as the
overall quality index, where p and m are the spatial resolution of the PAN and MS
images, respectively; RMSE(Bi) is the root mean square error between the i bands of
the fused image and the reference image; and Mean(Bi) is the mean of the Bi band of
the MS image.

ERGAS = 100
P
M

√√√√ N

∑
i=1

(
RMSE(Bi)

Mean(Bi)
)

2

(19)

• SSIM [43]: Structural similarity (SSIM) is a measure of similarity between two images,
where x and y are the pansharpened and reference images, respectively; µ∗ and σ2

∗ are
the mean and variance of the corresponding images, respectively; σxy is the covariance
of the fused image and the reference image; and c1 and c2 are constants used to
maintain stability.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(20)

4.3. Experiments and Analysis

To demonstrate the superiority of the proposed model, we considered several state-
of-the-art pansharpening methods based on CNNs for comparison in our experiments,
including PNN [19], DRPNN [20], PanNet [33], ResTFNet [35], and TPNwFB [40]. The first
three methods were trained with the input network after stacking the PAN and MS images,
and the latter two methods used the two-stream network structure.

Moreover, we chose several representative traditional methods, including CS-based
methods, MRA-based methods, and model-based methods, including GS [5], HPF [44],
DWT [7], GLP [41], and PPXS [45]. Several widely used full-reference performance indi-
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cators were selected to assess sharpening quality, namely: SAM [41], RASE [34], Q4 [42],
ERGAS [22], CC [35], and SSIM [43].

4.3.1. Experiment with QuickBird Dataset

The fusion results using the QuickBird dataset with four bands are shown in Figure 5.
Figure 5a shows the HRMS (with a resolution of 256 × 256 pixels), Figure 5b–f shows the
fusion results of the traditional algorithms, and Figure 5g–l showx the fusion results of
the deep learning methods. It can be intuitively observed that the fused images of the five
non-deep learning methods have obvious colour differences. There is obvious spectral
distortion in these images, the edge details of the images are blurred, and obvious artefacts
appear around the moving object. Among these methods, the DWT image exhibits the
most severe spectral distortion. PPXS has the worst RASE index evaluation and the most
severe spatial distortion, and the fusion image is fuzzy. The GLP and GS images show
obvious edge blur in the spectral distortion region, while the HPF image shows slight blur
and edge texture blur on the image. For the six deep neural network methods, there is good
fidelity in the spectrum and spatial information, and there is no obvious difference in image
texture, so it is difficult to further distinguish the difference through naked-eye observation.
Therefore, we used the following indicators for further comparison to objectively analyse
the advantages and disadvantages of each fusion method. Table 3 shows the results of
analysing each method objectively according to the index values.

Figure 5. Results using the QuickBird dataset with four bands (resolutions of 256 × 256 pixels):
(a) reference image; (b) DWT; (c) GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet;
(j) ResTFNet; (k) TPNwFB; (l) ours.
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Table 3. Evaluations using the QuickBird dataset (best result is in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

DWT 13.3873 39.0162 0.6557 9.9660 0.8359 0.8190 0.6132
GLP 7.1609 25.0432 0.8239 6.8099 0.9370 0.9175 0.8051
GS 7.4490 27.8070 0.7868 7.5485 0.9391 0.8769 0.7705

HPF 6.9484 25.3087 0.8153 6.8842 0.9381 0.9105 0.7948
PPXS 7.2280 39.7749 0.5429 10.6433 0.8343 0.7297 0.4780
PNN 5.4652 22.1989 0.8472 5.9944 0.9528 0.9334 0.8332

DRPNN 4.4166 17.6795 0.8839 4.7854 0.9698 0.9573 0.8759
PanNet 4.1151 14.8537 0.8988 4.0121 0.9782 0.9684 0.8914

ResTFNet 3.1698 13.1028 0.9259 3.5548 0.9832 0.9766 0.9234
TPNwFB 2.6576 10.6316 0.9470 2.9099 0.9895 0.9846 0.9462

Ours 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569

As shown in Table 3, the objective evaluation index of the QuickBird experiments
shows that the performance of the deep learning-based pansharpening methods using
the four-band dataset is significantly better than that of traditional methods. Of the five
traditional methods, the HPF method achieved the best performance. Although the HPF
method and the GLP method only differed a little in the other indicators, the HPF method
outperformed the GLP method in maintaining spectral information. However, the spatial
details were better in the GLP. Since the beginning of PNN, the effects of image fusion based
on deep learning have significantly improved, although the results obtained by PNN and
DRPNN have obvious distortions in edge details compared with other network structures.

As the network widened and deepened, the more complex networks produced better
fusion effects. For the QuickBird dataset, the network with a double-stream structure
showed a strong ability, giving the fused image more detailed texture and spectral in-
formation closer to the original image. Whether an index evaluated spatial or spectral
information, the performance of the neural network proposed in this study was superior
to all comparison fusion methods, with no obvious artefacts or spectral distortion visi-
ble to the naked eye in the fusion results. These results prove the effectiveness of our
proposed method.

4.3.2. Experiment with WorldView-2 Dataset

The fusion results using the WorldView-2 dataset with eight bands are shown in
Figure 6. Figure 6a shows the HRMS (with a resolution of 256 × 256 pixels), Figure 6b–f
shows the fusion results of the traditional algorithms, and Figure 6g–l shows the fusion
results of the deep learning methods. It can be intuitively observed from the figure that
the fused images of the five non-deep learning methods have obvious colour differences,
and the results of the traditional methods are affected by some spatial blur. With this
dataset, the GLP and HPF algorithms recovered spatial details and spectral information to
some extent, and the overall fusion images obtained were comparable to the deep learning
results. As shown in Table 4, the GLP and HPF algorithms obtained better results, as
measured by the RASE and CC indicators.

Although the quantitative indicators more clearly indicate the performance differences
of different methods, we also focused on visual inspection to find distortion in the fusion
results. In the lower half of the image, the fusion results obtained by the traditional methods
have obvious artefacts and blur. The deep learning-based approaches performed better
in some ways, especially in the SAM index, where there were impressive performance
improvements. It is worth noting that the network with a feedback connection mechanism
obtained significantly better results than the other methods in this analysis, which resulted
in the best quantitative evaluation results, which means that the fused images were more
similar to the ground truth. In each objective evaluation index, our proposed method
showed excellent quality in spatial details and spectral fidelity.
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Figure 6. Results using the WorldView-2 dataset with eight bands (resolutions of 256 × 256 pixels):
(a) reference image; (b) DWT; (c) GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet;
(j) ResTFNet; (k) TPNwFB; (l) ours.

Table 4. Evaluations using the WorldView-2 dataset (best result is in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

DWT 8.2285 27.0587 0.6555 6.7675 0.8618 0.7906 0.6101
GLP 5.1016 18.6561 0.8215 4.5684 0.9413 0.9030 0.7947
GS 5.2705 20.4123 0.7956 4.9990 0.9468 0.8730 0.7714

HPF 5.0426 19.0910 0.8041 4.6748 0.9403 0.8946 0.7744
PPXS 5.3303 29.4923 0.5077 7.3115 0.8470 0.7221 0.4323
PNN 4.8141 19.2690 0.8138 4.7262 0.9380 0.8986 0.7866

DRPNN 4.7541 19.3807 0.8120 4.7610 0.9372 0.8971 0.7855
PanNet 4.6892 20.1068 0.8143 4.9474 0.9344 0.9012 0.7853

ResTFNet 4.4584 19.2466 0.8291 4.7270 0.9389 0.9083 0.8010
TPNwFB 4.0041 17.0178 0.8540 4.1836 0.9517 0.9255 0.8280

Ours 3.7239 16.1352 0.8705 3.9623 0.9572 0.9342 0.8468

4.3.3. Experiment with WorldView-3 Dataset

The fusion results using the WorldView-3 dataset with eight bands are shown in
Figure 7. Figure 7a shows the HRMS (with a resolution of 256 × 256 pixels), Figure 7b–f
shows the fusion results of the traditional algorithms, and Figure 7g–l shows the fusion
results of the deep learning methods. Figure 7 shows that the five non-deep learning meth-
ods had relatively obvious spectral deviations, especially in the roofs of dense buildings,
accompanied by blurred details visible to the naked eye. The GLP, GS, and HPF methods
performed well in the overall spatial structure, but their images were distorted and blurred
in spectrum and detail, and some areas of spectral distortion led to local detail loss, as
well as fuzzy artefacts in the edges of vehicles and buildings. For the fusion methods
based on deep learning, it is difficult to distinguish the image texture information with the
naked eye. There is no obvious difference in the local region spectrum. The quantitative
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indicators more clearly indicate the performance differences of different methods, so to
further distinguish the image quality, and we used the following indicators to analyse the
advantages and disadvantages of each fusion method objectively. Table 5 shows the results
of analysing each method objectively according to the index values.

Figure 7. Results using the WorldView-3 dataset with eight bands (resolutions of 256 × 256 pixels):
(a) reference image; (b) DWT; (c) GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet;
(j) ResTFNet; (k) TPNwFB; (l) ours.

Table 5. Evaluations using the WorldView-3 dataset (best result is in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

DWT 9.1148 29.7271 0.6512 7.4942 0.8865 0.7862 0.6165
GLP 3.6949 15.1595 0.8340 3.7954 0.9748 0.9354 0.8182
GS 3.7643 17.5827 0.8182 4.4745 0.9709 0.9125 0.8087

HPF 3.5543 16.0405 0.8236 4.0530 0.9697 0.9351 0.8016
PPXS 3.5398 25.7945 0.6753 6.7897 0.9206 0.8584 0.6379
PNN 3.1461 12.4780 0.8769 3.1131 0.9815 0.9540 0.8779

DRPNN 2.9596 12.0899 0.8844 3.0088 0.9830 0.9579 0.8848
PanNet 2.5685 11.7391 0.8898 2.9607 0.9840 0.9618 0.8898

ResTFNet 2.6448 12.2164 0.8969 3.0638 0.9828 0.9617 0.8975
TPNwFB 2.6331 11.9128 0.8906 2.9720 0.9834 0.9617 0.8888

Ours 2.3971 11.2365 0.9048 2.8235 0.9853 0.9660 0.9061

The objective evaluation index using the WorldView-3 dataset shows that the pan-
sharpening methods using deep learning are clearly superior to the non-deep learning
fusion methods. The GLP algorithm achieved the best results out of the traditional algo-
rithms in the indexes, other than SAM, but there was still a big gap compared with the
deep learning-based methods. HPF and GS achieved good results in preserving spatial
information, and the spectral information obtained in the fusion results was better than that
obtained by other non-deep learning methods. However, the evaluation index related to
the spatial details showed obvious disadvantages compared with the GLP method, which
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means that the fused images appear to have more detail blur and artefacts in some parts.
The effectiveness of the network structure directly affected the fusion effects in the deep
learning-based pansharpening methods. The PanNet network fully retained spectral and
spatial information on this dataset, resulting in good fusion results. Based on all of the
evaluation indexes, the performance of the proposed method was obviously superior to
that of the existing fusion methods, which proves the effectiveness of the proposed method.

4.3.4. Experiment with Ikonos Dataset

The fusion results of the Ikonos dataset with four bands are shown in Figure 8.
Figure 8a shows the HRMS (with a resolution of 256 × 256 pixels), Figure 8b–f shows the
fusion results of the traditional algorithms, and Figure 8g–l shows the fusion results of
the deep learning methods. All of the traditional methods produced images with obvious
spectral distortion and blurred or lost edge details. It can be clearly observed from the
figure that the images obtained using the PNN and DRPNN methods had obvious spectral
distortion. At the same time, because the spatial structure is too smooth, much of the edge
information was lost and many artefacts were produced.

Figure 8. Results using the Ikonos dataset with four bands (resolutions of 256 × 256 pixels):
(a) reference image; (b) DWT; (c) GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) Pan-
Net; (j) ResTFNet; (k) TPNwFB; (l) ours.

The index values shown in Table 6 objectively show a comparison of the various
methods, and the overall effect of deep learning is clearly better than that of the traditional
methods. These data show that the networks with encoder–decoder structures achieved a
better performance than the other structures. ResTFNet [40] obtained significantly superior
results using this dataset. The image from our proposed method is closest to the original
image, and the evaluation index clearly shows the effectiveness of the proposed method.
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Table 6. Evaluations using the Ikonos dataset (best result is in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

DWT 10.5533 27.6226 0.3325 6.6046 0.8132 0.3591 0.3485
GLP 4.1592 18.6534 0.5146 4.0825 0.9214 0.6853 0.5322
GS 4.4746 19.3090 0.4943 4.2446 0.9140 0.6560 0.5299

HPF 4.0864 18.6456 0.5015 4.0770 0.9208 0.6803 0.5210
PPXS 4.1144 18.5605 0.4182 4.0434 0.9233 0.6615 0.4756
PNN 3.2697 10.5819 0.7377 2.5439 0.9749 0.8434 0.7786

DRPNN 3.4152 10.7096 0.7233 2.5020 0.9755 0.8422 0.7711
PanNet 2.1556 6.4254 0.8191 1.5415 0.9909 0.9148 0.8525

ResTFNet 0.7217 1.7198 0.9497 0.5064 0.9994 0.9816 0.9712
TPNwFB 1.3316 3.7853 0.9022 1.0422 0.9969 0.9563 0.9276

Ours 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748

4.3.5. Full-Resolution Experiment

The fusion results of the Ikonos dataset with four bands are shown in Figure 9.
Figure 9a shows the LRMS (with a resolution of 256 × 256 pixels), Figure 9b–f shows the
fusion results of the traditional algorithms, and Figure 9g–l shows the fusion results of
the deep learning methods. For the full-resolution experiment, we used the model trained
by the reduced-resolution experiment and the real data as the input to generate fused
images. In this experiment, we directly input MS and PAN images into models without
any resolution reduction, which guarantees the ideal full-resolution experimental results,
and follows a similar approach as the other models.

Figure 9. Results using the QuickBird real dataset with four bands (resolutions of 256 × 256 pixels):
(a) reference image; (b) DWT; (c) GLP; (d) GS; (e) HPF; (f) PPXS; (g) PNN; (h) DRPNN; (i) PanNet;
(j) ResTFNet; (k) TPNwFB; (l) ours.

In contrast with the reduced-resolution experiment, we used LRMS as the target for
comparison with the fused image, so the greater the texture, the better the fusion effect.
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By observing the fusion images, DWT, and GS, all were found to have obvious spectral
distortion, and the edge information of GS appeared fuzzy. Although the overall spatial
structure information was well preserved in the GLP and HPF methods, local information
was lost. The merged image in the PPXS method was too smooth, resulting in severe loss
of edge details.

ResTFNet, TPNwFB, and our proposed method had the best overall performance. The
objective data analysis demonstrated that PPXS is very competitive in Dλ, but becomes
slightly worse in QNP and Ds. Notably, the methods based on deep learning exhibited a
performance gap from the non-deep learning methods. Table 7 shows that the network
proposed in this paper achieved a better effect in the full-resolution experiment, which
fully demonstrated that the innovation proposed in this paper plays a positive role in
pansharpening. As shown in Table 8, for different deep learning methods, we had the
longest processing time in the test mode. The data clearly show that the more complex
the model, the more time it takes to generate a single fusion image, but a more complex
structure can achieve higher performance results. Our method is mainly to optimize the
structure from the perspective of improving the effect of the fusion result. The issue of
optimizing the network runtime was not considered.

Table 7. Evaluations using the QuickBird real dataset (best result is in bold).

Method QNP Dλ Ds

DWT 0.5691 0.2569 0.2342
GLP 0.8978 0.0436 0.0613
GS 0.9218 0.0222 0.0573

HPF 0.8647 0.0309 0.1077
PPXS 0.7407 0.0045 0.2559
PNN 0.7763 0.1274 0.1103

DRPNN 0.8601 0.0293 0.0889
PanNet 0.9074 0.0361 0.0586

ResTFNet 0.9198 0.0265 0.0551
TPNwFB 0.9215 0.0260 0.0539

Ours 0.9253 0.0260 0.0500

Table 8. Different deep learning methods for processing time.

Method TIME

PNN 1.8064
DRPNN 1.8562
PanNet 2.0114

ResTFNet 2.2514
TPNwFB 2.6903

Ours 2.7232

5. Discussion
5.1. Discussion of MFEBwAM

In this subsection, we examine the influence of each part of the model through ablation
learning in order to obtain the best performance of the model. We propose a multi-scale
block with an attention mechanism to fully grasp and use the multi-scale features in
the model.

To verify the effectiveness of the proposed module and the effect of different receiving
field parameters on the fusion results, several convolutional blocks with different receiving
field sizes were cascaded to form a multi-scale feature extraction module. We compared the
multi-scale blocks of different scales with test their effect. We selected the best multi-scale
blocks using convolutional kernel combinations with different receptive field sizes, where
the convolutional kernel sizes were K = {1,3,5,7,9}. These convolutional kernels of different
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sizes were combined in various ways to determine the multi-scale blocks with the highest
performance experimentally. The experimental results are shown in Table 9.

Table 9. Quantitative evaluation results of multi-scale feature extraction modules with different
combinations are shown in bold.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

K = 1,3,3,5 2.2015 9.7735 0.9571 2.6459 0.9907 0.9869 0.9542
K = 1,3,5,5 2.3236 10.7120 0.9519 2.9033 0.9889 0.9843 0.9487
K = 1,3,5,7 2.2028 10.0900 0.9557 2.7201 0.9901 0.9858 0.9524
K = 3,3,5,7 2.1144 9.5339 0.9605 2.5787 0.9913 0.9874 0.9567
K = 3,5,5,7 2.2613 10.4199 0.9538 2.8112 0.9894 0.9849 0.9506
K = 3,5,7,7 2.3164 10.3704 0.9530 2.7964 0.9895 0.9853 0.9501
K = 3,5,7,9 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569

Many studies on the CNN framework indicate that the depth and width of the
network significantly impact the quality of the results. A deeper and wider network
structure helps the network learn richer feature information and captures the mapping
between the semantic information and context information in the features. As shown in the
table, the objective evaluation index clearly indicates that our proposed method is superior
to the other composite multi-scale blocks. We used four branches with receptive field sizes
of 3, 5, 7, and 9, separately, although if we increased the parameters and the amount of
calculations, we would obtain clearly better results.

To verify the effectiveness of multi-scale modules with attention mechanisms in our
overall model, we compared them using four datasets. We experimented with networks
without multi-scale modules and dual branch networks with multi-scale modules and
compared the fusion results. The experimental results are shown in Table 10.

Table 10. Quantitative evaluation results of different structures using different datasets. The best
performance is shown in bold. In A, a contrasting network of multi-scale modules without attention
mechanisms is used. In B, our network is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.2933 10.1812 0.9553 2.7446 0.9899 0.9855 0.9525
QuickBird (B) 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569

WorldView-2 (A) 3.8541 16.1349 0.8678 3.9645 0.9574 0.9332 0.8435
WorldView-2 (B) 3.7239 16.1352 0.8705 3.9623 0.9572 0.9342 0.8468
WorldView-3 (A) 2.4843 11.9051 0.8945 2.9258 0.9662 0.9466 0.8848
WorldView-3 (B) 2.3971 11.2365 0.9048 2.8235 0.9853 0.9660 0.9061

Ikonos (A) 0.8433 2.1165 0.9517 0.5979 0.9990 0.9810 0.9710
Ikonos (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748

The objective evaluation index is shown in the table. Increasing the width and depth
of the network made the network extract richer feature information and identify additional
mapping relationships that met the expectations. Deleting multi-scale modules led to a lack
of multi-scale feature learning ability and detail learning, which cannot enhance the use
of more effective features in the current task, thereby decreasing the image reconstruction
ability. Therefore, according to the experimental results, we choose to use a multi-scale
module with an attention mechanism to extract the PAN and MS image features separately,
thus improving the function of our network.

5.2. Discussion of Feedback Connections

To make full use of the deep features with powerful representation, we used multiple
subnets to obtain useful information from the deep features in the middle of the subnetwork
through feedback, and we refined the weak shallow features. From the application of
the feedback connections in other image processing fields, we know that the number
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of iterations of the subnetwork significantly impacts the final results. We evaluated the
network with different numbers of iterations using the QuickBird dataset. The experimental
results are shown in Table 11.

Table 11. Results of the network quantitative evaluation with different iterations. The best perfor-
mance is shown in bold.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

1 2.4321 11.0341 0.9511 2.9753 0.9881 0.9833 0.9465
2 2.1202 10.0387 0.9576 2.7089 0.9902 0.9861 0.9529
3 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569
4 1.9929 9.6510 0.9607 2.6114 0.9910 0.9872 0.9563

According to the experimental results, an insufficient number of iterations made the
feedback connection less effective, so that the deep features could not fully refine the
shallow features, whereas too many iterations led to convergence difficulties or feature
explosions. This increases the computation and affects the convergence of the network.
Hence, we chose to do the pansharpening task using a network that iterated the subnet
three times and added feedback to the continuous network.

To demonstrate the effectiveness of the feedback connectivity mechanism using dif-
ferent datasets, we trained a network with the same four subnet structures and attached
the loss function to each subnet, but we disconnected the feedback connection between
each subnetwork to make the network unable to use valuable information to perfect the
low-level function. A comparison of the resulting indexes is shown in Table 12. We can see
that the feedback connection significantly improves the network performance and gives
the network a solid early reconstruction ability.

Table 12. Quantitative evaluation results of various structures using different datasets. The best
performance is shown in bold. In A, a contrasting network of multi-scale modules without attention
mechanisms is used. In B, our network is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.2933 10.1812 0.9553 2.7446 0.9899 0.9855 0.9525
QuickBird (B) 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569

WorldView-2 (A) 3.8541 16.1349 0.8678 3.9645 0.9574 0.9332 0.8435
WorldView-2 (B) 3.7239 16.1352 0.8705 3.9623 0.9572 0.9342 0.8468
WorldView-3 (A) 2.4843 11.9051 0.8945 2.9258 0.9662 0.9466 0.8848
WorldView-3 (B) 2.3971 11.2365 0.9048 2.8235 0.9853 0.9660 0.9061

Ikonos (A) 0.8433 2.1165 0.9517 0.5979 0.9990 0.9810 0.9710
Ikonos (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748

5.3. Discussion of MFRB

In contrast with other two-stream networks for pansharpening, which used encoder-
decoder structures to decode only the results after the last level encoding, and we decoded
the results after each level encoding. Moreover, we added dense connections among the
multilevel features obtained in order to enhance the ability of the network to make full
use of all of the features and to reduce the loss of information during upsampling and
downsampling. To show that this further improves the network performance, we trained
a network that only begins decoding operations from the features after the last level of
encoding, and we compared the results with those of our proposed network using four
datasets. The experimental results are shown in Table 13.
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Table 13. Quantitative evaluation results of different structures using different datasets. The best
performance is shown in bold. In A, a contrasting network without MFRB is used. In B, our network
is used.

Scale SAM RASE Q_AVE ERGAS CC Q4 SSIM

QuickBird (A) 2.2933 10.1812 0.9553 2.7446 0.9899 0.9855 0.9525
QuickBird (B) 1.9839 9.2234 0.9596 2.4948 0.9917 0.9880 0.9569

WorldView-2 (A) 3.8541 16.1349 0.8678 3.9645 0.9574 0.9332 0.8435
WorldView-2 (B) 3.7239 16.1352 0.8705 3.9623 0.9572 0.9342 0.8468
WorldView-3 (A) 2.4843 11.9051 0.8945 2.9258 0.9662 0.9466 0.8848
WorldView-3 (B) 2.3971 11.2365 0.9048 2.8235 0.9853 0.9660 0.9061

Ikonos (A) 0.8433 2.1165 0.9517 0.5979 0.9990 0.9810 0.9710
Ikonos (B) 0.6157 1.4487 0.9558 0.4389 0.9996 0.9831 0.9748

The objective evaluation index clearly indicates that the multilevel coding features
were decoded separately, and the dense connections effectively used the information of
various scales to reduce the differences in the semantic feature level in the encoder and
decoder, reduce the difficulty of training the network, and further improve the network
image reconstruction ability.

6. Conclusions

In this study, we proposed a deep learning-based approach to solve the pansharpening
problem by combining convolutional neural network technology with domain-specific
knowledge. We proposed a multilevel dense connection network with feedback connections
(MDCwFB). This method draws on the U-Net++ [38] network architecture, increasing
a small number of parameters, significantly improving the network depth and width,
and enhancing the network reconstruction ability and pansharpening image quality. We
considered the two objectives of spectral information preservation and spatial information
preservation. We chose to use a two-stream structure to process the PAN and LRMS
images, respectively, in order to make full use of the two images. Special multi-scale feature
extraction blocks were used to extract powerful multi-scale features and to enhance the
more important features using attention mechanisms. Feedback mechanisms maintain
powerful deep functions to refine low-level functions and help shallow networks obtain
useful information from rough reconstructed HRMS. Many experiments proved that our
proposed pansharpening method is fully effective. The proposed method uses a structure to
enhance the multi-scale feature extraction, and it decodes and reconstructs different levels
of coding features, making it more sensitive to multi-scale features. It has a remarkable
effect on remote sensing image fusion with complex image information. Our method
achieves better results for images with rich spectral and spatial information, such as images
with large vegetation, large buildings, and various features of different objects.
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